6,380 research outputs found
Experimental Study on Low Power Wide Area Networks (LPWAN) for Mobile Internet of Things
In the past decade, we have witnessed explosive growth in the number of
low-power embedded and Internet-connected devices, reinforcing the new
paradigm, Internet of Things (IoT). The low power wide area network (LPWAN),
due to its long-range, low-power and low-cost communication capability, is
actively considered by academia and industry as the future wireless
communication standard for IoT. However, despite the increasing popularity of
`mobile IoT', little is known about the suitability of LPWAN for those mobile
IoT applications in which nodes have varying degrees of mobility. To fill this
knowledge gap, in this paper, we conduct an experimental study to evaluate,
analyze, and characterize LPWAN in both indoor and outdoor mobile environments.
Our experimental results indicate that the performance of LPWAN is surprisingly
susceptible to mobility, even to minor human mobility, and the effect of
mobility significantly escalates as the distance to the gateway increases.
These results call for development of new mobility-aware LPWAN protocols to
support mobile IoT.Comment: To appear at 2017 IEEE 85th Vehicular Technology Conference (VTC'17
Spring
An Analysis of Packet Fragmentation Impact in LPWAN
Packet fragmentation has mostly been addressed in the literature when
referring to splitting data that does not fit a frame. It has received
attention in the IoT community after the 6LoWPAN working group of IETF started
studying the fragmentation headers to allow IPv6 1280 B MTU to be sent over
IEEE 802.15.4 networks supporting a 127 B MTU. In this paper, and following
some of the recent directions taken by the IETF LPWAN WG, an analysis of packet
fragmentation in LPWANs has been done. We aim to identify the impact of sending
the data in smaller fragments considering the restrictions of industrial
duty-cycled networks. The analyzed parameters were the energy consumption,
throughput, goodput and end to end delay introduced by fragmentation. The
results of our analysis show that packet fragmentation can increase the
reliability of the communication in duty-cycle restricted networks. This is of
especial relevance when densifying the network. We observed relevant impact in
energy consumption and extra latency, and identified the need for
acknowledgements from the gateway/sink to exploit some of the benefits raised
by fragmentation.Comment: paper accepted and presented at IEEE Wireless Communications and
Networking Conference, 15-18 April, Barcelona, Spai
Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios
Connectivity is probably the most basic building block of the Internet of
Things (IoT) paradigm. Up to know, the two main approaches to provide data
access to the \emph{things} have been based either on multi-hop mesh networks
using short-range communication technologies in the unlicensed spectrum, or on
long-range, legacy cellular technologies, mainly 2G/GSM, operating in the
corresponding licensed frequency bands. Recently, these reference models have
been challenged by a new type of wireless connectivity, characterized by
low-rate, long-range transmission technologies in the unlicensed sub-GHz
frequency bands, used to realize access networks with star topology which are
referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we
introduce this new approach to provide connectivity in the IoT scenario,
discussing its advantages over the established paradigms in terms of
efficiency, effectiveness, and architectural design, in particular for the
typical Smart Cities applications
Design and analysis of adaptive hierarchical low-power long-range networks
A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications
Understanding the limits of LoRaWAN
The quick proliferation of LPWAN networks, being LoRaWAN one of the most
adopted, raised the interest of the industry, network operators and facilitated
the development of novel services based on large scale and simple network
structures. LoRaWAN brings the desired ubiquitous connectivity to enable most
of the outdoor IoT applications and its growth and quick adoption are real
proofs of that. Yet the technology has some limitations that need to be
understood in order to avoid over-use of the technology. In this article we aim
to provide an impartial overview of what are the limitations of such
technology, and in a comprehensive manner bring use case examples to show where
the limits are
Optimal Policy Derivation for Transmission Duty-Cycle Constrained LPWAN
Low-power wide-area network (LPWAN) technologies enable Internet of Things (IoT) devices to efficiently and robustly communicate over long distances, thus making them especially suited for industrial environments. However, the stringent regulations on the usage of certain industrial, scientific, and medical bands in many countries in which LPWAN operate limit the amount of time IoT motes can occupy the shared bands. This is particularly challenging in industrial scenarios, where not being able to report some detected events might result in the failure of critical assets. To alleviate this, and by mathematically modeling LPWAN-based IoT motes, we have derived optimal transmission policies that maximize the number of reported events (prioritized by their importance) while still complying with current regulations. The proposed solution has been customized for two widely known LPWAN technologies: 1) LoRa and 2) Sigfox. Analytical results reveal that our solution is feasible and performs remarkably close to the theoretical limit for a wide range of network activity patterns
Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs : an overview and future challenges
Long-range sub-GHz technologies such as LoRaWAN, SigFox, IEEE 802.15.4, and DASH7 are increasingly popular for academic research and daily life applications. However, especially in the European Union (EU), the use of their corresponding frequency bands are tightly regulated, since they must confirm to the short-range device (SRD) regulations. Regulations and standards for SRDs exist on various levels, from global to national, but are often a source of confusion. Not only are multiple institutes responsible for drafting legislation and regulations, depending on the type of document can these rules be informational or mandatory. Regulations also vary from region to region; for example, regulations in the United States of America (USA) rely on electrical field strength and harmonic strength, while EU regulations are based on duty cycle and maximum transmission power. A common misconception is the presence of a common 1% duty cycle, while in fact the duty cycle is frequency band-specific and can be loosened under certain circumstances. This paper clarifies the various regulations for the European region, the parties involved in drafting and enforcing regulation, and the impact on recent technologies such as SigFox, LoRaWAN, and DASH7. Furthermore, an overview is given of potential mitigation approaches to cope with the duty cycle constraints, as well as future research directions
IoT Security Vulnerabilities and Predictive Signal Jamming Attack Analysis in LoRaWAN
Internet of Things (IoT) gains popularity in recent times due to its flexibility, usability, diverse applicability and ease of
deployment. However, the issues related to security is less explored. The IoT devices are light weight in nature and have low
computation power, low battery life and low memory. As incorporating security features are resource expensive, IoT devices are
often found to be less protected and in recent times, more IoT devices have been routinely attacked due to high profile security
flaws. This paper aims to explore the security vulnerabilities of IoT devices particularly that use Low Power Wide Area Networks
(LPWANs). In this work, LoRaWAN based IoT security vulnerabilities are scrutinised and loopholes are identified. An attack was
designed and simulated with the use of a predictive model of the device data generation. The paper demonstrated that by predicting
the data generation model, jamming attack can be carried out to block devices from sending data successfully. This research will
aid in the continual development of any necessary countermeasures and mitigations for LoRaWAN and LPWAN functionality of
IoT networks in general
- …
