13 research outputs found

    Application of Steganography for Anonymity through the Internet

    Full text link
    In this paper, a novel steganographic scheme based on chaotic iterations is proposed. This research work takes place into the information hiding security framework. The applications for anonymity and privacy through the Internet are regarded too. To guarantee such an anonymity, it should be possible to set up a secret communication channel into a web page, being both secure and robust. To achieve this goal, we propose an information hiding scheme being stego-secure, which is the highest level of security in a well defined and studied category of attacks called "watermark-only attack". This category of attacks is the best context to study steganography-based anonymity through the Internet. The steganalysis of our steganographic process is also studied in order to show it security in a real test framework.Comment: 14 page

    An In-Depth Study on Open-Set Camera Model Identification

    Full text link
    Camera model identification refers to the problem of linking a picture to the camera model used to shoot it. As this might be an enabling factor in different forensic applications to single out possible suspects (e.g., detecting the author of child abuse or terrorist propaganda material), many accurate camera model attribution methods have been developed in the literature. One of their main drawbacks, however, is the typical closed-set assumption of the problem. This means that an investigated photograph is always assigned to one camera model within a set of known ones present during investigation, i.e., training time, and the fact that the picture can come from a completely unrelated camera model during actual testing is usually ignored. Under realistic conditions, it is not possible to assume that every picture under analysis belongs to one of the available camera models. To deal with this issue, in this paper, we present the first in-depth study on the possibility of solving the camera model identification problem in open-set scenarios. Given a photograph, we aim at detecting whether it comes from one of the known camera models of interest or from an unknown one. We compare different feature extraction algorithms and classifiers specially targeting open-set recognition. We also evaluate possible open-set training protocols that can be applied along with any open-set classifier, observing that a simple of those alternatives obtains best results. Thorough testing on independent datasets shows that it is possible to leverage a recently proposed convolutional neural network as feature extractor paired with a properly trained open-set classifier aiming at solving the open-set camera model attribution problem even to small-scale image patches, improving over state-of-the-art available solutions.Comment: Published through IEEE Access journa

    A Reduce Identical Composite Event Transmission Algorithm for Wireless Sensor Networks

    Get PDF
    Abstract: In this paper, a Reduce Identical Composite Event Transmission (RICET) algorithm is proposed to solve the problem of detecting composite events in wireless sensor networks. The RICET algorithm extends the traditional data aggregation algorithm to detect composite events, and this algorithm can eliminate redundant transmission and save power consumption, thereby extending the lifetime of the entire wireless sensor network. According to the experimental results, the proposed algorithm not only reduces power consumption by approximately 64.78% and 62.67%, but it also enhances the sensor node's lifetime by up to 8.97 times compared with some traditional algorithms

    TTP-free Asymmetric Fingerprinting based on Client Side Embedding

    Get PDF
    In this paper, we propose a solution for implementing an asymmetric fingerprinting protocol within a client-side embedding distribution framework. The scheme is based on two novel client-side embedding techniques that are able to reliably transmit a binary fingerprint. The first one relies on standard spread-spectrum like client-side embedding, while the second one is based on an innovative client-side informed embedding technique. The proposed techniques enable secure distribution of personalized decryption keys containing the Buyer's fingerprint by means of existing asymmetric protocols, without using a trusted third party. Simulation results show that the fingerprint can be reliably recovered by using either non-blind decoding with standard embedding or blind decoding with informed embedding, and in both cases it is robust with respect to common attacks. To the best of our knowledge, the proposed scheme is the first solution addressing asymmetric fingerprinting within a clientside framework, representing a valid solution to both customer's rights and scalability issues in multimedia content distributio

    Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts

    Get PDF
    In this paper, a forensic tool able to discriminate between original and forged regions in an image captured by a digital camera is presented. We make the assumption that the image is acquired using a Color Filter Array, and that tampering removes the artifacts due to the demosaicking algorithm. The proposed method is based on a new feature measuring the presence of demosaicking artifacts at a local level, and on a new statistical model allowing to derive the tampering probability of each 2 Ă— 2 image block without requiring to know a priori the position of the forged region. Experimental results on different cameras equipped with different demosaicking algorithms demonstrate both the validity of the theoretical model and the effectiveness of our schem

    The Evolutionary Random Interval Fingerprint for a More Secure Wireless Communication

    Get PDF

    Minimizing embedding impact in steganography using trellis-coded quantization

    Full text link

    Image Forgery Localization via Block-Grained Analysis of JPEG Artifacts

    Get PDF
    In this paper, we propose a forensic algorithm to discriminate between original and forged regions in JPEG images, under the hypothesis that the tampered image presents a double JPEG compression, either aligned (A-DJPG) or non-aligned (NA-DJPG). Unlike previous approaches, the proposed algorithm does not need to manually select a suspect region in order to test the presence or the absence of double compression artifacts. Based on an improved and unified statistical model characterizing the artifacts that appear in the presence of both A-DJPG or NA-DJPG, the proposed algorithm automatically computes a likelihood map indicating the probability for each 8Ă—88 \times 8 discrete cosine transform block of being doubly compressed. The validity of the proposed approach has been assessed by evaluating the performance of a detector based on thresholding the likelihood map, considering different forensic scenarios. The effectiveness of the proposed method is also confirmed by tests carried on realistic tampered images. An interesting property of the proposed Bayesian approach is that it can be easily extended to work with traces left by other kinds of processin

    Ultrawideband Transceiver Design Using Channel Phase Precoding

    Full text link

    A Framework for Decision Fusion in Image Forensics Based on Dempster-Shafer Theory of Evidence

    Get PDF
    In this work, we present a decision fusion strategy for image forensics. We define a framework that exploits information provided by available forensic tools to yield a global judgment about the authenticity of an image. Sources of information are modeled and fused using Dempster-Shafer Theory of Evidence, since this theory allows us to handle uncertain answers from tools and lack of knowledge about prior probabilities better than the classical Bayesian approach. The proposed framework permits us to exploit any available information about tools reliability and about the compatibility between the traces the forensic tools look for. The framework is easily extendable: new tools can be added incrementally with a little effort. Comparison with logical disjunction- and SVM-based fusion approaches shows an improvement in classification accuracy, particularly when strong generalization capabilities are neede
    corecore