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TTP-free Asymmetric Fingerprinting based on
Client Side Embedding

T. Bianchi Member, IEEE, and A. Piva Senior Member, IEEE

Abstract—In this paper, we propose a solution for implement-
ing an asymmetric fingerprinting protocol within a client-side
embedding distribution framework. The scheme is based on two
novel client-side embedding techniques that are able to reliably
transmit a binary fingerprint. The first one relies on standard
spread-spectrum like client-side embedding, while the second
one is based on an innovative client-side informed embedding
technique. The proposed techniques enable secure distribution of
personalized decryption keys containing the Buyer’s fingerprint
by means of existing asymmetric protocols, without using a
trusted third party. Simulation results show that the fingerprint
can be reliably recovered by using either non-blind decoding with
standard embedding or blind decoding with informed embedding,
and in both cases it is robust with respect to common attacks.
To the best of our knowledge, the proposed scheme is the first
solution addressing asymmetric fingerprinting within a client-
side framework, representing a valid solution to both customer’s
rights and scalability issues in multimedia content distribution.

Index Terms—Fingerprinting, Buyer-Seller watermarking
(BSW) protocol, Client-side embedding, secure watermark em-
bedding.

I. INTRODUCTION

The recent proliferation of various platforms for the distri-
bution of multimedia contents requires the adoption of effec-
tive protection measures for preventing copyright violations.
Digital watermarking provides a means to embed into the to-
be-distributed content a unique code, as a fingerprint, linking
the content to a specific recipient.

In the most common case, distribution tracing is made
possible by letting the entity selling the content, referred
to simply as the Seller, insert a distinct watermark, called
a fingerprint, identifying the person purchasing the content,
referred to as the Buyer, within any copy of data that is
distributed. Whenever an unauthorized published content is
found, this fingerprint can be used to trace the author of the
illegal redistribution [1]–[3].

Most of the existing watermarking techniques for multime-
dia content protection have been developed to face two impor-
tant practical issues. One (known in the literature as customer’s
rights problem) is related to the fact that the distribution server
should not know the actual fingerprint embedded into the
content, since an accused customer could claim that he/she
has been framed by a malicious seller who inserted his/her
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fingerprint in an arbitrary content. The mere existence of this
problem could discredit the forensic tracing architecture and
severely limit its adoption. A possible solution to this problem
is represented by the asymmetric fingerprinting schemes [4].
In such schemes, only the buyer has access to the fingerprinted
content; however, if the seller later finds a copy of the content,
the buyer can still be identified and proved guilty in front of
a judge. Several asymmetric fingerprinting protocols suitable
for realistic multimedia contents, often referred to as Buyer-
Seller Watermarking Protocols, exist [5]–[8]: a special class
includes those relying only on messages exchanged between
the buyer and the seller, without requiring the adoption of a
dedicated trusted third party (TTP) [9], [10].

The second issue is related to the system scalability. In a
classical distribution model, adopted also by the Buyer-Seller
Watermarking Protocols, individually watermarked copies
have to be generated and delivered by the distribution server
to each user. Since both the computational burden due to
watermark embedding and the required bandwidth grow lin-
early with the number of users, in large-scale systems the
server could consume a prohibitive amount of resources. An
effective solution to the system scalability problem is provided
by client-side embedding [11]. In such schemes, the server
distributes the same encrypted copy of the content to all the
clients, along with different client-specific decryption keys
allowing each user to decrypt a slightly different version of
the content, bearing a different watermark. Secure client-side
embedding methods suitable for realistic multimedia content
have been developed adopting spread-spectrum watermarking
[12], informed embedding [13], and vector quantization [14].

Although client-side embedding provides an elegant so-
lution to the system scalability problem, it still suffers of
the customer’s rights problem, since the server has access to
the decryption keys that carry the client-specific watermarks.
Some works [15], [16] have proposed to introduce a TTP
in order to manage the distribution of the decryption keys,
however, again, such a TTP can become quickly overloaded
in a realistic system, thus hindering the advantages offered by
the client-side embedding. To the best of our knowledge, there
is no existing solution that incorporates the aforementioned
techniques into an asymmetric fingerprinting protocol, thus
solving both the customer’s rights problem and the scalability
issue.

In this paper, we propose a simple scheme to exploit existing
secure asymmetric fingerprinting protocols within a client-side
embedding distribution framework.

Namely, we modify the client-side embedding technique
proposed in [12] so that it can be used to reliably transmit
a binary fingerprint, which enables the secure distribution of
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decryption keys by means of existing TTP-free buyer-seller
watermarking protocols.

Thanks to the properties of the used protocol, the server can
distribute personalized decryption keys without knowing the
actual fingerprint embedded in each key, which eliminates the
need of a TTP. At the same time, since the size of a decryption
key is much lower than the size of a multimedia content, and
a single key can be used for multiple contents, the complexity
of running an existing TTP-free buyer-seller protocol, like e.g.
that in [9], for the distribution of the keys is still reasonable.

This paper extends a previous work by Bianchi et al. [17]
under several aspects. An important novelty is the introduction
of a client-side informed embedding technique, which enables
reliable recovery of the fingerprint by means of blind decoding.
We also provide a detailed analysis of the security and the
scalability of the proposed technique, as well as new experi-
mental results obtained on an extended dataset and under more
realistic conditions.

The paper is organized as follows: In Section II, we briefly
review some basic concepts useful to understand the described
solutions. In Section III, we introduce the proposed asymmet-
ric protocol, together with two client-side embedding strategies
enabling its implementation. In Section IV, we discuss fin-
gerprint decoding for the two described client-side embedding
techniques. In Section V, we present some experimental results
demonstrating the feasibility of the proposed solutions. Some
conclusions will end the paper in Section VI.

II. PRELIMINARIES

In this section, first of all, the notation describing a water-
marking process is introduced; next, homomorphic encryption
is introduced as building block of the proposed solution.
Finally, buyer seller protocols, with particular attention to the
ones based on the use of look-up tables (LUT), are defined.

A. Watermarking Model

Given a vector x = [x0, x1, . . . , xM−1], representing either
the original host signal samples or, more generally, a set of
features of the host signal, and some to-be-hidden information,
represented as a binary vector b = [b0, b1, . . . , bL−1], an
embedder inserts the watermark code b into the host signal
to produce a watermarked signal y, usually making use of a
secret key sk to control some parameters of the embedding
process and allow the watermark recovery only to authorized
users. It is often useful to describe the embedding function by
introducing a watermark signal w, so that the watermarked
signal can be expressed as y = x+w.

B. Homomorphic Cryptosystems

A cryptosystem is said to be homomorphic with respect to
an operation ? if there exists an operator φ(·, ·) such that for
any two plain messages m1 and m2, we have:

φ(Jm1K, Jm2K) = Jm1 ? m2K (1)

where J·K denotes the encryption operator. Homomorphic
encryption allows to perform a set of operations by working

on encrypted data. In particular, an additively homomorphic
cryptosystem maps an addition in the plaintext domain to an
operation in the ciphertext domain, (usually a multiplication).
Given two plaintexts m1 and m2, the following equalities are
then satisfied:

Jm1K · Jm2K = Jm1 +m2K (2)

and, as a consequence,

JmKa = JamK (3)

where a is a public integer. Additively homomorphic cryp-
tosystems allow then to perform in the encrypted domain
additions, subtractions and multiplications with a known (non-
encrypted) value (but not division, since it could lead to non
integer values), thus providing a way of applying any linear
operator in the encrypted domain.

Another desirable property of a homomorphic cryptosystem
is the semantic security, such that given two encrypted values
it is not computationally feasible to decide whether they
conceal the same value or not; this property guarantees the
confidentiality of the cryptosystem when encrypting data with
a restricted set of possible values (for example bits), or when
a set of data exhibiting a peculiar correlation structure (for
example consecutive signal samples) is encrypted as separate
ciphertexts. A well known additively homomorphic and se-
mantically secure asymmetric encryption scheme is the one
proposed by Paillier [18].

C. Asymmetric Fingerprinting

In asymmetric fingerprinting [4] the Buyer first commits
to a secret that only he/she knows (registration phase), then
Buyer and Seller follow a protocol (named Buyer-Seller water-
marking protocol) after which only the Buyer receives a copy
of the watermarked work. However, if the copy is illegally
distributed, the Seller can identify the Buyer from whom the
copy originated, and prove it to a Judge by using a proper
dispute resolution protocol.

A fundamental building block of asymmetric fingerprinting
is a functionality that allows Seller and Buyer to jointly
perform watermark embedding, in such a way that the original
content x is a private input of the Seller, whereas the finger-
print data b and thus the watermark w are a private input of the
Buyer. Most recent solutions adopt secure signal processing
techniques based on homomorphic encryption, that has been
introduced in the previous part of the Section. Let us assume
that the Buyer holds a public/private key pair (puk, prk) of an
additively homomorphic cryptosystem, like the Paillier one. If
Seller and Buyer can share an encryption of the watermark
signal w, encrypted with the Buyer’s public key puk, then
watermark embedding can be performed by the Seller in the
encrypted domain as follows

JyiK = JxiK · JwiK. (4)

where the operation is applied componentwise on the data vec-
tor. Indeed, the Seller, knowing the plaintext values of xi, can
compute the ciphertexts JxiK by relying on the Buyer’s public
key puk. However, the computed value JyiK is meaningless
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for the Seller, since the private key for decrypting belongs the
Buyer, the only one having access to the watermarked content.

D. LUT-based Secure Embedding

In the secure embedding proposed by Celik et al. in [12],
[19], a distribution server generates a long-term master en-
cryption look-up table E of size T , whose entries, denoted by
E(0),E(1), . . . ,E(T−1), are i.i.d. random variables following
a Gaussian distribution N (0, σE). The LUT E will be used to
encrypt the content to be distributed to the KU clients. Next,
for the k-th client, the server generates a personalized water-
mark LUT Wk whose entries follow a Gaussian distribution
N (0, σW ), and builds a personalized decryption LUT Dk by
combining componentwise the master encryption LUT E and
the watermark LUT Wk:

Dk(t) = −E(t) + Wk(t) (5)

for t = 0, 1, . . . , T −1. The personalized decryption LUTs are
then transmitted once to each client over a secure channel. It
is worth noting that the generation of the LUTs is carried out
just once at the setup phase.

A content, represented as a vector x of size M, is encrypted
by adding to each element of it R entries of the LUT E pseudo
randomly selected according to a content dependent key sk.
We assume that each content is linked with a unique key sk,
that could be retrieved from a particular content by using for
example some robust hashing techniques, as those described
in [20], [21].

The obtained encrypted content c is sent to all the authorized
clients along with the key sk. The k-th client can decrypt c by
using his/her personalized decryption LUT Dk, with the final
effect that a spread-spectrum watermark sequence is embedded
into the decrypted content yk, through an additive rule (i.e.
each content feature is modified according to the rule yk,i =
xi + wk,i).

In detail, driven by the content dependent key sk, a set of
M ×R values tih in the range [0, T − 1] is generated, where
0 ≤ i ≤ M − 1, 0 ≤ h ≤ R − 1. Each of the M content
features xi is encrypted by adding R entries of the encryption
LUT identified by the indexes (ti0, . . . , ti(R−1)), obtaining the
encrypted feature ci as follows:

ci = xi +

R−1∑
h=0

E(tih). (6)

Joint decryption and watermarking is accomplished by recon-
structing with the content dependent key sk the same sequence
of indexes tih and by adding R entries of the decryption LUT
Dk to each encrypted feature ci:

yk,i = ci+

R−1∑
h=0

Dk(tih) = xi+

R−1∑
h=0

Wk(tih) = xi+wk,i (7)

where the i-th watermark component is given as the sum of
R entries of the LUT Wk. The result of this operation is the
watermarked content yk = x+wk identifying the k-th user.

As explained in [12], the parameter R influences the security
of the encryption and should be set to R > 1 in order to
provide resilience against known-plaintext attacks.

III. ASYMMETRIC CLIENT-SIDE EMBEDDING

The key idea of the proposed method is that the decryp-
tion LUT in (5) can be alternatively seen as the negative
version of the encryption LUT watermarked by a proper
signal W corresponding to the watermarking LUT. Hence,
existing buyer-seller watermarking protocols can be used to
securely distribute personalized decryption LUTs in such a
way that the server does not have access to plaintext versions
of those decryption LUTs. However, since existing TTP-free
protocols require the buyer to be identified by a unique binary
fingerprint, the watermarking LUT must be properly modified
so as to embed a binary message into the content and guarantee
that the embedded message can be reliably decoded from
a possibly modified watermarked content. In the following,
we will describe the main tools required to implement the
proposed asymmetric version of client-side embedding.

A. Secure Distribution of Personalized Decryption LUTs

Let us assume that the k-th user is identified by the L-
bit fingerprint bk. In the proposed system, the fingerprint is
encoded using a binary antipodal modulation, yielding the to
be transmitted message mk, where mk,l = σW (2bk,l − 1),
0 ≤ l ≤ L−1. Hence, the watermarking LUT of the k-th user
can be obtained as

Wk = Gmk (8)

where G is a T×L encoding matrix. Namely, G can be thought
as the generator matrix of a linear block code over the set of
real numbers [22], [23]. Several choices are possible for G: a
really simple solution is to use a repetition code, i.e., G has
only one entry equal to one for each row and approximately
T/L entries equal to one for each column. Another solution
is to generate the elements of G as i.i.d. Gaussian variables
with zero mean and variance 1/L.

Since the encoding is linear, the personalized decryption
LUT Dk can be obtained in a secure way by using a
simple protocol based on an additively homomorphic cryp-
tosystem. Let us assume that by executing a secure buyer-
seller protocol like the one described in [10] the Server
obtains an encryption of the Client’s fingerprint JbkK =
[Jbk,0K, Jbk,1K, . . . , Jbk,L−1K], encrypted with the Client’s pub-
lic key, together with a proper proof of identity. Thanks to the
homomorphic properties of the cryptosystem, the Server can
compute a rescaled encrypted message as

Jm̃k,lK = Jbk,lK2J1K−1 = J2bk,l − 1K. (9)

In a similar way, each entry of the Client’s personalized LUT
can be directly computed in the encrypted domain as

JDk(j)K = JE(j)K−1
L−1∏
l=0

Jm̃k,lKσWG(j,l). (10)

Finally, the Server can send the encrypted LUT JDkK to the
Client, who decrypts it with his/her private key obtaining

Dk = −E+Gmk. (11)

In practice, equation (10) requires that both E(j) and
σWG(j, l) are expressed as integer values to be used with
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an additively homomorphic cryptosystem defined on modular
arithmetic, like Paillier’s cryptosystem. This can be achieved
by representing such values according to a fixed point repre-
sentation. For example, when using nm bits for the magnitude
part and nf bits for the fractional part, the corresponding
integer representation of E(j) can be obtained by computing
round(E(j)2nf ) and clipping the result to nm + nf bits. At
the Client’s side, the correct values of Dk are obtained by
dividing the decrypted integer values by 2nf . Since a secure
homomorphic cryptosystems permits to employ fixed point
representations with many bits, the degradation with respect
to floating point arithmetic is usually negligible [24].

B. Client-side Standard Embedding

The easiest way of embedding the fingerprint encoded as
in (8) in a multimedia content is to directly employ the LUT-
based embedding technique described in Section II-D, which
in the following will be referred to as client-side standard
embedding (CSSE). In order to have a more compact notation,
the LUT-based encryption in (6) can be modeled by adding to
the signal the product of the encryption LUT E and a proper
binary matrix T defined according to the sequence of indexes
tih, i.e.,

c = x+ TE (12)

where T is a M × T binary matrix defined as

T(i, j) =

{
1 tih = j, h = 0, . . . , R− 1

0 otherwise.
(13)

Hence, CSSE can be obtained in the following way

y = c+ TDk = x+ TGmk = x+ G̃mk (14)

that is, the fingerprint mk is encoded in the watermarked signal
by means of the equivalent linear block code defined by the
M × L generator matrix G̃ = TG.

C. Client-side Informed Embedding

Informed embedding methods are a class of data hiding
schemes where the watermarking problem is viewed as one
of communications with side information at the encoder [25].
These systems can achieve host-interference rejection by ad-
equately exploiting in system design knowledge of the host
signal at the encoder, in such a way that in the absence of
attacks the probability of decoding error is equal to zero.
Within this class of methods, Quantization Index Modulation
(QIM) [26], using as embedding rule the quantization of
some content features, is widely adopted due to its good
performance.

A client-side embedding technique relying on quantization-
based watermarking has been proposed in [13], exploiting a
variation of spread transform dither modulation (STDM). In
the following, we will show how similar ideas can be extended
also to the proposed approach. According to the QIM principle
[26], it is possible to define an informed embedding rule by
choosing a set of quantizers, each associated to a different
message m, and quantizing x with the quantizer corresponding
to the to-be-transmitted message. In order to apply QIM to the

proposed scheme, it is useful to introduce the notion of lattice
quantizer. A lattice L can be informally defined as the set of
points in a M -dimensional space obtained as integer linear
combinations of the columns of a M × L lattice generator
matrix L, i.e.,

L(L) =
{
r|r = Lz, z ∈ ZL

}
. (15)

A lattice quantizer is then defined as a rule that associates to
each vector x the nearest lattice point in L, i.e.,

QL(x) = argmin
r∈L
||x− r||2. (16)

The set of all vectors that are quantized to the same lattice
point r is called the Voronoi cell associated to r. The volume
of the Voronoi cell is often referred to as the lattice volume
and can be computed as VL = det(LTL)1/2.

When M > L, the matrix L defines a L-dimensional lattice
embedded into a M -dimensional space. Following the STDM
approach [13], [26], quantization according to the lattice
defined by L can be viewed as projecting a M -dimensional
vector x onto the subspace spanned by L and approximating
the projection p by the nearest lattice point. The projection
of x onto the subspace spanned by L can be expressed as
p = L(LTL)−1LTx and the quantized projection is obtained
as

pQ = QL(L)(p) (17)

The final quantized vector can be obtained by substituting the
quantized projection for the original projection, i.e.,

xQ = x− p+ pQ. (18)

QIM based on a lattice quantizer can be defined by relying
on the concept of lattice partitioning [27]–[29]. Given a lattice
L, we can define a sublattice Lc as a subset of the points in L
that is itself a lattice. Starting from a sublattice Lc and a point
r ∈ L, the set of all points obtained as the sum of r and a point
in Lc is called a coset of Lc. It can be shown that given L and
Lc, there are exactly VLc

/VL distinct cosets. The set of all the
cosets of Lc with respect to L constitutes a lattice partition of
L, i.e., the union of all the possible distinct cosets yields the
lattice L. Lattice-QIM is then defined as follows: 1) choose
a lattice partition with 2L cosets; 2) associate each coset Lm

with one of the possible 2L messages; 3) encode message m
as y = QLm(x), where QLm denotes the quantizer defined
by the translated lattice Lm.

By looking at (14), it is evident that the proposed technique
encodes the fingerprint as a point of a translated lattice
defined by the generator matrix L = 2σW G̃. Namely, the
watermarking signal can be expressed as

wk = Lbk − rW (19)

where rW = [σW , σW , . . . , σW ]. Hence, it is possible to
define a proper embedding rule by exploiting the lattice
generated by L, or, more specifically, its translation by −rW .

In order to adopt lattice-QIM in the proposed client-side
framework, we first choose a proper lattice partition of L(L).
Such a partition will be defined according to the cosets of the
sublattice generated by Lc = 2L = 4σW G̃. It is easy to verify
that there are 2L cosets, each obtained by adding to the lattice
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Fig. 1. Example of lattice-QIM performed by CSIE for L = 2. The circles
represent the points of L(Lc). The triangles represent the four possible cosets
of L(Lc) translated by −rW . The solid line indicates the Voronoi region
of L(Lc). The asterisk and the cross represent two possible host signal
projections p. Let us assume that we want to encode the fingerprint b = [1, 1].
In both cases, p is quantized on the same point of L(Lc), denoted by the
bold circle, and we get the same watermarked projection, denoted by the
bold triangle. Since quantization depends only on the host, it can be done at
the server’s side, enabling client side embedding of the watermark. However,
in the “cross” case the watermarked projection does not correspond to the
closest coset point, as can be noticed by the Voronoi regions of the coset
corresponding to b = [1, 1], plotted in dashed lines.

generated by Lc an offset vector Lbk, where bk is one of the
possible 2L binary vectors of length L. Then, each fingerprint
is encoded by quantizing the projection p according to the
translation of the corresponding coset by −rW . It is easy to
verify that this strategy encodes each fingerprint as a point
obtained by adding to the lattice generated by Lc an offset
vector given by wk = Lbk − rW .

In practice, the quantization rule is relaxed by first quantiz-
ing the projection p according to the lattice generated by Lc
and then adding an offset vector wk, i.e.,

pQ = QL(Lc)(p) +wk. (20)

The above rule does not guarantee to choose the translated
coset point that is closest to p. However, the corresponding
embedding rule can be implemented as the sum of a content
dependent part and a fingerprint dependent part as

y = x+QL(Lc)(p)− p+wk = xQ +wk (21)

which enables its use in a client-side setting. We point out
that the shift by −rW with respect to the cosets of the lattice
generated by Lc is needed in order to have an unbiased error
when defining the above embedding rule. A visual example of
the proposed embedding technique is shown in Fig. 1.

The corresponding client-side informed embedding (CSIE)
can be obtained by defining the encrypted content as

c = xQ + TE (22)

and decrypting it by using the decryption LUT defined in (11),
which yields

y = c+ TDk = xQ + G̃mk (23)

that is equivalent to the embedding rule in (21).

Since searching for the closest lattice point in an arbitrary
lattice is in general a NP-hard problem [30], in our implemen-
tation we choose to compute pQ by rounding to the nearest
integer the coordinates of (LTc Lc)−1LTc x, i.e.,

pQ = Lc
[
(LTc Lc)−1LTc x

]
+wk. (24)

where [r] denotes rounding each component of r to the nearest
integer. It is worth noting that the above strategy is equivalent
to choosing the nearest lattice point if Lc is orthogonal.
Noticeably, the above technique can alternatively be seen as a
STDM where each bit of the fingerprint is embedded using a
different spreading vector corresponding to a column of G̃.

IV. FINGERPRINT DECODING

In this section, we will discuss the decoding of the transmit-
ted fingerprint from the received watermarked content. Since
the scheme is asymmetric, the decoder does not know the
messages mk, so it can not employ a correlation detector as
in [12]. Instead, the detector obtains an estimated fingerprint
b̂k and verifies whether it matches with a recorded Client,
using the proof of identity provided by the underlying buyer-
seller protocol. CCSE and CSIE require different decoders,
that will be separately treated.

A. Decoders for Standard Embedding

Let us assume that the watermark decoder receives a copy
of a signal watermarked according to (14) and corrupted by
an additive noise, i.e., the received signal is

y′ = y + n = x+ G̃mk + n. (25)

When the original signal is available at the decoder, its
interference can be removed and decoding can be performed
on the signal y′′ = y′ − x = G̃mk + n. Otherwise, blind
decoding can be obtained by directly using the received signal
y′ and considering x as an additional noise term.

Several decoding strategies can be considered to recover
the Client’s fingerprint b̂k. When the signal is corrupted
by additive white Gaussian noise (AWGN), the maximum
likelihood decoder is the Minimum Distance (MD) decoder

b̂k = sgn
{
argmin

m
||y′′ − G̃m||2

}
. (26)

where we define

sgn{a} =

{
1 a > 0

0 a ≤ 0.
(27)

The MD decoder achieves optimal decoding performance
when all the fingerprints are equiprobable. Nevertheless, the
direct implementation of the MD decoder is a NP-hard prob-
lem, since it requires the enumeration of all the possible
fingerprints. A practical solution is to use sphere decoding,
which with high probability achieves the MD solution in
polynomial time.

Alternatively, suboptimal decoders can be used. In this
paper, we will consider the Matched Filter (MF) decoder

b̂k = sgn
{
G̃Ty′′

}
(28)
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and the Pseudo-Inverse (PI) decoder

b̂k = sgn
{
(G̃T G̃)−1G̃Ty′′

}
. (29)

MF and PI decoders are based on standard suboptimal receiver
commonly adopted in digital communications. Namely, the PI
decoder corresponds to zero-forcing equalization followed by
hard decision.

B. Decoders for Informed Embedding

The decoding of a fingerprint embedded according to (23)
can be performed by looking for the translated coset which
is closest to the received signal y′. In this case, the decoding
is always blind, since the original signal x is not required for
deciding the closest coset.

In general, the corresponding MD decoder can be obtained
as

b̂k = sgn
{
argmin

m
min
r∈ZL

||y′ − 4σW G̃r− G̃m||2
}
. (30)

Alternatively, we note that by quantizing y′ to the nearest
point of the fine lattice generated by σW G̃, each component
of a translated coset is represented by the integer coordinates
4z±1, where z ∈ Z. Hence, MD decoding can be equivalently
achieved as

b̂k = sgn
{
arg min

r∈ZL
||y′ − σW G̃r||2 mod 4

}
(31)

where the remainder of the division by 4 is computed indepen-
dently for each component and mapped in the interval [−2, 2).

The above decoder is optimal for an AWGN channel, how-
ever it requires sphere decoding which may be to expensive in
practical situations. Suboptimal decoders can be obtained by
approximating the quantization of y′ according to the lattice
generated by σW G̃ as in (24), leading to the following PI
decoder

b̂k = sgn
{[

1

σW

(
G̃T G̃

)−1
G̃Ty′

]
mod 4

}
. (32)

Under the assumption that the lattice is near orthogonal, i.e.,
G̃T G̃ ≈ RT

L IL, we can also approximate the PI decoder using
the following scaled MF decoder

b̂k = sgn
{[

L

RTσW
G̃Ty′

]
mod 4

}
. (33)

V. PERFORMANCE EVALUATION

A. Security

The security analysis of the proposed scheme depends on
several aspects, including the security of the encrypted content
c, the ability to track dishonest Clients and the impossibility
of framing honest Clients.

As to the encrypted content, if the power of the encryption
LUT is much larger than the signal power, the encrypted signal
c is virtually indistinguishable form random noise. Security
can be further enhanced by computing c modulo an integer
Z: if Z � σE , then the values of the encrypted signal are
approximately uniformly distributed on [0, Z−1], irrespective
of the signal values. A dishonest Client could try to exploit

the knowledge of the sequence of indexes tih for estimating
the content from c. In [12], it is shown that such an attack
has a very low performance as long as the LUT length T is
of the same order as the content length M .

The ability to track dishonest Clients is directly inherited
from the underlying Buyer-Seller protocol used to distribute
decryption LUTs. If a Server can successfully decode a
Client’s fingerprint from an illegally redistributed copy, he
can link the copy to the Client through the proof of identity
provided by the protocol. In order to prevent a dishonest Client
from removing his watermark from the decryption LUT, the
generator matrix G can be kept secret, acting as a secret
watermarking key. Moreover, the Client’s fingerprint can be
easily randomized by the Server in the encrypted domain [9],
so that neither the Client nor the Server knows the actual
fingerprint embedded into the decryption LUT. The Client
could also try to remove the watermark from the decrypted
content: in the next section, we will see that such an attack is
usually unsuccessful, unless the content is severely degraded.

A coalition of dishonest Clients could compare their respec-
tive decryption LUTs in order to remove the watermark, the so
called collusion attack. An effective way to withstand collusion
attacks is to use an anticollusion code in the design of the
fingerprint [31]. In the proposed scheme, anticollusion codes
could be used directly in the underlying Buyer-Seller protocol,
for example by using the solution in [32], which guarantees
that the fingerprint bk obtained at the end of the protocol
is a Tardos’ code [33], [34]. An alternative way is to assign
different generator matrices to different Clients. If matrices
G are independently generated, codes generated by different
Gs will be nearly orthogonal, achieving similar anticollusion
performance as the orthogonal codes proposed in [35].

Finally, the asymmetry of the underlying BS protocol guar-
antees that an innocent Client can not be framed by a dishonest
Server, since the Server only sees encrypted versions of the
Client’s fingerprint and decryption LUT.

B. Scalability

The proposed solution requires the Server to compute
and distribute encrypted decryption LUTs. The computational
complexity of the proposed scheme is therefore bigger than
the complexity of the plaintext solution in [12]. Nevertheless,
the solution in [12] does not protect customer’s rights, unless
it is complemented with a dedicated TTP. Moreover, by using
a composite representation of the LUTs [36] the bandwidth
required to transmit an encrypted LUT increases only accord-
ing to the cryptosystem expansion factor, i.e., by a factor two
with Paillier, or even less using Paillier extensions [37].

Currently, the only solutions protecting customer’s rights
without a TTP are based on Server’s side encrypted domain
embedding. With respect to those solutions, the proposed
approach offers both computational and communication com-
plexity advantages. In the proposed scheme the Server has
to distribute a different encrypted LUT to each client; let
us assume that the computational cost for processing a LUT
of size T is proportional to T . If those LUTs are used to
access NC contents, then the computational cost per user and
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per distributed content will be proportional to T/NC . In the
Server’s side scheme, the Server has to distribute different
encrypted contents for each client. If we again assume that
the computational cost for processing a content of size M
is proportional to M , then the computational cost per user
and per distributed content is also proportional to M . Hence,
the proposed scheme has a computational gain of MNC/T
with respect to a Server’s side solution. According to [12], an
attacker observing an overall content of size MNC protected
with a LUT of size T , can obtain a fingerprint-free copy with
a signal-to-noise ratio (SNR) equal to MNC/T . Hence, the
computational gain of the proposed solution is equal to the
SNR attainable by a possible attacker exploiting the LUT
structure. Namely, if SNR = 20 dB, which corresponds to a
poor quality content, the proposed scheme is 100 times less
complex than a Server’s side scheme.

As to communication complexity, if there are NU clients,
in the proposed scheme the Server distributes NU LUTs of
size T plus NC encrypted contents of size M . Conversely,
in a Server’s side scheme the Server should distribute NUNC
encrypted contents of size M . Hence, the proposed scheme
uses a fraction T/(MNC) + 1/NU of the bandwidth of the
Server’s side scheme. If NU � 1, the bandwidth reduction
roughly corresponds to the computational gain.

C. Experimental Results

For the experimental validation of the proposed technique,
we have simulated a system performing client-side embedding
on digital images. We have considered a dataset of 100
gray scale uncompressed 8 bit images, each having resolution
1024×1024 pixels. The images represent a variety of subjects,
including people, landscapes, building, close objects. For each
image, the signal x has been obtained by applying a 8 × 8
discrete cosine transform (DCT) to the image and taking 4
DCT coefficients for each 8 × 8 block, corresponding to the
coefficients between the 7th and 10th positions according to
the zig-zag ordering used by JPEG standard. In order to avoid
interference with JPEG compression, the DCT 8× 8 grid has
been shifted by four pixels in both vertical and horizontal
directions. This resulted in a vector x of 216 components.

Each image has been encrypted by using an encryption LUT
E with power σ2

E = 106. After adding the elements of E to the
selected DCT coefficients, the images have been reconstructed
by using an inverse block DCT and pixel values have been
mapped to 9 bit values by applying rounding and a modulo
512 operation. An analogous sequence of operations have been
performed when decrypting the images with the decryption
LUT D. The use of the modulo operation guarantees that the
encryption is perfectly reversible as long as D = −E. When
D = −E+W, some pixels may exceed the range [0, 255] in
the watermarked image: the use of 9 bits guarantees that those
pixel values can be detected after decryption and clipped to the
range [0, 255]. Both E and D have been encoded using a fixed
point representation with nm = 13 bits for the magnitude part
and nf = 18 bits for the fractional part, so as to allow for an
encrypted domain implementation using modular arithmetic as
explained at the end of Section III-A.

In all experiments, the LUT size has been set to T = 216

and R = 4 LUT entries are added together to encrypt each
element. We simulated the embedding and subsequent decod-
ing of a 128 binary fingerprint. Two encoding strategies were
considered, repetition coding (RC) and i.i.d. random Gaussian
coding (GC), as described in Section III. As to decoding, we
considered MF and PI decoding, both in the nonblind and
in the blind case. For each image, 100 independent tests were
performed by randomly generating different encryption LUTs,
different fingerprints, and different encoding matrices G. This
yielded 100 × 100 = 10000 transmitted fingerprints for each
experiment.

The decoding performance has been evaluated by measuring
the fingerprint error rate (FER), corresponding to the ratio of
erroneously decoded fingerprints to the overall transmitted fin-
gerprints. In the simulations, a fingerprint is correctly decoded
when all the fingerprint bits are correctly detected. We remark
that this is a worst case scenario for fingerprint detection, since
it corresponds to the lowest probability of falsely accusing an
innocent user. Namely, if we assume that different fingerprints
are independently drawn, with this decoding convention the
probability of falsely accusing an innocent user can be upper
bounded as Pfa ≤ NU2

−L, where NU is the number of
users. For L = 128, this probability is virtually zero even
if NU ≈ 109, which is a very large number of users for any
possible application. In order to evaluate the quality of the
watermarked image with respect to the original image, we
also measured the peak signal-to-noise ration (PSNR) and the
mean structural similarity (MSSIM) index [38].

1) Performance of CSSE: A first set of experiments con-
sidered the decoding performance in the absence of attacks,
by testing different watermarking powers corresponding to
values σ2

W ∈ [10−7, 103]. The decoding performance in the
nonblind case can be observed in Fig. 2. The results show that
for σ2

W > 10−2 all the strategies achieve a good fingerprint
decoding performance, with GC being slightly better than
RC and PI decoding being slightly better than MF decoding.
Namely, for σ2

W = 10−2 GC using PI decoding is able to
correctly decode more than 95% of the fingerprints.

Fig. 3 shows the decoding performance in the blind case.
As expected, the performance is significatively worse than in
the nonblind case. Namely, all strategies, except RC using
MF decoding, can correctly decode more than 90% of the
fingerprints only when σ2

W ≥ 10.
The effect of the watermarking strength on the reconstructed

images can be appreciated from Fig. 4 and Fig. 5, showing
the obtained values of PSNR and MSSIM index, respectively.
For each encoding strategy and each value of σ2

W , we show
the average, minimum, and maximum values obtained over
the whole dataset. The results show that a good quality of
the watermarked image can be achieved as long as σ2

W ≤ 1,
whereas the quality sharply degrades for σ2

W > 10. This means
that when using nonblind decoding the proposed method can
achieve very good decoding performance without significantly
affecting the quality of the watermarked image. As a visual
example, a watermarked image at σ2

W = 1, using GC, is shown
in Fig. 17-(b).

A second set of experiments were conducted in the presence
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Fig. 2. FER performance of CSSE in the absence of attacks for different
encoding and decoding strategies, considering nonblind decoding.

10
−6

10
−4

10
−2

10
0

10
2

10
−2

10
−1

10
0

σ
W
2

F
E

R

 

 

RC − MF
RC − PI
GC − MF
GC −  PI

Fig. 3. FER performance of CSSE in the absence of attacks for different
encoding and decoding strategies, considering blind decoding.
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Fig. 4. PSNR obtained by CSSE in the absence of attacks for different
encoding strategies.
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Fig. 5. MSSIM obtained by CSSE in the absence of attacks for different
encoding strategies.

of attacks, for σ2
W = 1. In this case, we considered only

nonblind decoding, since blind decoding did not provide
satisfactory performance in the absence of attacks for the
selected watermarking power. The watermarked images were
either corrupted by AWGN or compressed using the JPEG
standard. In the first case, we considered watermark-to-noise
ratios (WNRs) in the range [−20, 0], where we define WNR =

10 log10
Rσ2

W

σ2
N

, being σ2
N the variance of the additive noise. In

the second case, we considered different JPEG quality factors
(QF), ranging from 10 to 100.

Fig. 6 shows the performance of nonblind decoding in the
presence of AWGN attack. With the exception of RC using MF
decoding, all the strategies achieve very similar performance
and guarantee almost error-free decoding of the fingerprint
for WNR > −15, which demonstrates a great robustness in
the presence of AWGN. Indeed, from the results Fig. 7 and
Fig. 8, showing the values of PSNR and MSSIM index after
the AWGN attack, it is evident that for WNR ≤ −15 the
image is so degraded as to be of no practical value.

Fig. 9 shows the performance of nonblind decoding in the
presence of JPEG attack. Similarly to the AWGN case, all the
strategies achieve very similar performance except RC using
MF decoding. In general, the proposed scheme can withstand
JPEG compression with a quality factor as low as 40 without
showing significant decoding errors and can still correctly
decode about 20% of the fingerprints for a quality factor equal
to 20. As shown in Fig. 10 and Fig. 11 by the values of PSNR
and MSSIM index after the JPEG attack, some of the images
may still have an acceptable quality for a quality factor equal
to 40, however most of the images have to be largely degraded
in order to impede the correct decoding of the fingerprint.

2) Performance of CSIE: Similar sets of experiments were
conducted considering the client-side informed embedding
strategy described in Section III-C. In this case, only blind
decoding has been considered. The decoding performance in
the absence of attacks is shown in Fig. 12. The results indicate
that the PI decoder achieves a performance similar to that
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Fig. 6. FER performance of CSSE in the presence of AWGN attack for
different encoding and decoding strategies, considering nonblind decoding.
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Fig. 7. PSNR obtained by CSSE after AWGN attack for different encoding
strategies.
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Fig. 8. MSSIM obtained by CSSE after AWGN attack for different encoding
strategies.

10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

QF

F
E

R

 

 
RC − MF
RC − PI
GC − MF
GC −  PI

Fig. 9. FER performance of CSSE in the presence of JPEG attack for different
encoding and decoding strategies, considering nonblind decoding.
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Fig. 10. PSNR obtained by CSSE after JPEG attack for different encoding
strategies.
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Fig. 11. MSSIM obtained by CSSE after JPEG attack for different encoding
strategies.
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Fig. 12. FER performance of CSIE in the absence of attacks for different
encoding and decoding strategies.
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Fig. 13. PSNR obtained by CSIE in the absence of attacks for different
encoding strategies.

of the original client-side embedding system using nonblind
decoding, whereas the MF decoder appears slightly impaired
in this setting.

The quality of the reconstructed images using the client-
side informed embedding technique is very similar to that
obtained with the original client-side embedding, as can be
seen from Fig. 13 and Fig. 14, showing the obtained values of
PSNR and MSSIM index, respectively. As a visual example,
a watermarked image at σ2

W = 1, using GC, is shown in Fig.
17-(c).

The performance in the presence of AWGN attack, for
σ2
W = 1, can be observed in Fig. 15. Also in this case the

performance of informed embedding is very similar to the
performance of the original system. A different behavior can
be observed in Fig. 16, showing the decoding performance
in the presence of JPEG attack, for σ2

W = 1. In this case,
client-side informed embedding is less robust than the original
system using nonblind decoding, since all decoders show
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Fig. 14. MSSIM obtained by CSIE in the absence of attacks for different
encoding strategies.
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Fig. 15. FER performance of CSIE in the presence of AWGN attack for
different encoding and decoding strategies.

significant decoding errors for a quality below 70. However, it
is worth noting that most decoders can still correctly decode
about 15% of the fingerprints for a quality factor equal to
30, which can still provide some deterrence effect. Moreover,
we point out that a correct fingerprint detection means that
all fingerprint bits are correctly detected, which is the most
restrictive scenario.

Since in this scenario the distortion on the content is
mainly due to the attack, the values of PSNR and MSSIM
index obtained after the AWGN attack and the JPEG attack
are virtually identical to those obtained using the standard
technique (see Fig. 7-8 and Fig. 10-11) and, for the sake of
conciseness, they are not reported here.

VI. CONCLUSIONS

In this work, a new client-side embedding technique en-
abling the distribution of multimedia content through an
asymmetric fingerprint protocol has been presented. The core
idea we have followed is that existing asymmetric protocols,
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Fig. 17. Examples of watermarked images at σ2
W = 1, using GC: (a) original image; (b) CSSE; (c) CSIE. The images show a 600 × 600 portion of an

image in our dataset. Both watermarked images are visually indistinguishable from the original image.
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Fig. 16. FER performance of CSIE in the presence of JPEG attack for
different encoding and decoding strategies.

not requiring a dedicated trusted third party, can be exploited
to securely exchange the personalized decryption keys needed
by the client-side embedding scheme. Since the size of a
decryption key is much lower than the size of the content
to be distributed, and a single key can be used for multiple
contents, the proposed solution offers significant advantages
with respect to a traditional server-side asymmetric protocol.

In order to make the proposed approach feasible, the Buyer’s
binary fingerprint has been encoded in the personalized de-
cryption key via linear block coding, which can be securely
implemented at the Seller’s side by using homomorphic en-
cryption.

Concerning the client-side watermark embedding procedure,
we have designed a standard embedding version (CSSE),
as well as an informed embedding implementation (CSIE).
Simulation results show that the embedded fingerprint can be
reliably decoded in both cases from the watermarked content,
even when using low watermarking power and in the presence
of common attacks, like additive Gaussian noise and JPEG
compression. In particular, the CSSE with a non blind Pseudo-

Inverse (PI) decoder achieved the best results, followed by the
CSIE with PI decoder, that has worse results with respect to
the previous version just in case of JPEG attack.

Finally, we believe the proposed scheme can offer a valid
solution in multimedia content distribution, since it is able to
protect both seller’s and customer’s rights, and, at the same
time, it effectively solves scalability issues.
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