12 research outputs found

    Symbol-Level Selective Full-Duplex Relaying with Power and Location Optimization

    Get PDF
    In this paper, a symbol-level selective transmission for full-duplex (FD) relaying networks is proposed to mitigate error propagation effects and improve system spectral efficiency. The idea is to allow the FD relay node to predict the correctly decoded symbols of each frame, based on the generalized square deviation method, and discard the erroneously decoded symbols, resulting in fewer errors being forwarded to the destination node. Using the capability for simultaneous transmission and reception at the FD relay node, our proposed strategy can improve the transmission efficiency without extra cost of signalling overhead. In addition, targeting on the derived expression for outage probability, we compare it with half-duplex (HD) relaying case, and provide the transmission power and relay location optimization strategy to further enhance system performance. The results show that our proposed scheme outperforms the classic relaying protocols, such as cyclic redundancy check based selective decode-and-forward (S-DF) relaying and threshold based S-DF relaying in terms of outage probability and bit-error-rate. Moreover, the performances with optimal power allocation is better than that with equal power allocation, especially when the FD relay node encounters strong self-interference and/or it is close to the destination node.Comment: 34 pages (single-column), 14 figures, 2 tables, accepted pape

    Selective Combining for Hybrid Cooperative Networks

    Full text link
    In this study, we consider the selective combining in hybrid cooperative networks (SCHCNs scheme) with one source node, one destination node and NN relay nodes. In the SCHCN scheme, each relay first adaptively chooses between amplify-and-forward protocol and decode-and-forward protocol on a per frame basis by examining the error-detecting code result, and NcN_c (1NcN1\leq N_c \leq N) relays will be selected to forward their received signals to the destination. We first develop a signal-to-noise ratio (SNR) threshold-based frame error rate (FER) approximation model. Then, the theoretical FER expressions for the SCHCN scheme are derived by utilizing the proposed SNR threshold-based FER approximation model. The analytical FER expressions are validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201

    Performance Analysis of Hybrid Relay Selection in Cooperative Wireless Systems

    Full text link
    The hybrid relay selection (HRS) scheme, which adaptively chooses amplify-and-forward (AF) and decode-and-forward (DF) protocols, is very effective to achieve robust performance in wireless networks. This paper analyzes the frame error rate (FER) of the HRS scheme in general cooperative wireless networks without and with utilizing error control coding at the source node. We first develop an improved signal-to-noise ratio (SNR) threshold-based FER approximation model. Then, we derive an analytical average FER expression as well as an asymptotic expression at high SNR for the HRS scheme and generalize to other relaying schemes. Simulation results are in excellent agreement with the theoretical analysis, which validates the derived FER expressions.Comment: IEEE Transactions on Communications, 201

    Coherent and Non-coherent Techniques for Cooperative Communications

    Get PDF
    Future wireless network may consist of a cluster of low-complexity battery-powered nodes or mobile stations (MS). Information is propagated from one location in the network to another by cooperation and relaying. Due to the channel fading or node failure, one or more relaying links could become unreliable during multiple-hop relaying. Inspired by conventional multiple-input multiple-output (MIMO) techniques exploiting multiple co-located transmit antennas to introduce temporal and spatial diversity, the error performance and robustness against channel fading of a multiple-hop cooperative network could be significantly improved by creating a virtual antenna array (VAA) with various distributed MIMO techniques. In this thesis, we concentrate on the low-complexity distributed MIMO designed for both coherent and non-coherent diversity signal reception at the destination node. Further improvement on the network throughput as well as spectral efficiency could be achieved by extending the concept of unidirectional relaying to bidirectional cooperative communication. Physical-layer network coding (PLNC) assisted distributed space-time block coding (STBC) scheme as well as non-coherent PLNC aided distributed differential STBC system are proposed. It is confirmed by the theoretical analysis that both approaches have the potential for offering full spatial diversity gain.    Furthermore, differential encoding and non-coherent detection techniques are generally associated with performance degradation due to the doubled noise variance. More importantly, conventional differential schemes suffer from the incapability of recovering the source information in time-varying channels owing to the assumption of static channel model used in the derivation of non-coherent detection algorithm. Several low-complexity solutions are proposed and studied in this thesis, which are able to compensate the performance loss caused by non-coherent detection and guarantee the reliable recovery of information in applications with high mobility. A substantial amount of iteration gain is achieved by combining the differential encoding with error-correction code and sufficient interleaving, which allows iterative possessing at the receiver

    Cooperative Diversity and Partner Selection in Wireless Networks

    Get PDF
    Next generation wireless communication systems are expected to provide a variety of services including voice, data and video. The rapidly growing demand for these services needs high data rate wireless communication systems with reliability and high user capacity. Recently, it has been shown that reliability and achievable data rate of wireless communication systems increases dramatically by employing multiple transmit and receive antennas. Transmit diversity is a powerful technique for combating multipath fading in wireless communications. However, employing multiple antennas in a mobile terminal to achieve the transmit diversity in the uplink is not feasible due to the limited size of the mobile unit. In order to overcome this problem, a new mode of transmit diversity called cooperative diversity (CD) based on user cooperation, was proposed very recently. By user cooperation, it is meant that the sender transmits to the destination and copies to other users, called partners, for relaying to the destination. The antennas of the sender and the partners together form a multiple antenna situation. CD systems are immuned not only against small scale channel fading but also against large scale channel fading. On the other hand, CD systems are more sensitive to interuser (between sender and partner) transmission errors and user mobility. In this dissertation, we propose a bandwidth and power efficient CD system which could be accommodated with minimal modifications in the currently available direct or point-to-point communication systems. The proposed CD system is based on quadrature signaling (QS). With quadrature signaling, both sender’s and partners’ information symbols are transmitted simultaneously in his/her multiple access channels. It also reduces the synchronization as well as the interference problems that occur in the schemes reported in the literature. The performance of the proposed QS-CD system is analyzed at different layers. First, we study the bit error probability (BEP) of the QS-CD system for both fixed and adaptive relaying at the partner. It is shown from the BEP performance that the QS-CD system can achieve diversity order of two. Then, a cross-layer communication system is developed by combing the proposed QS-CD system at the physical layer and the truncated stop-and- wait automatic repeat request (ARQ) at the data link layer. The performance of the cross-layer system is analyzed and compared with existing schemes in the literature for performance metrics at the data link layer and upper layers, i.e., frame error rate, packet loss rate, average packet delay, throughput, etc. In addition, the studies show that the proposed QS-CD-ARQ system outperforms existing schemes when it has a good partner. In this respect, the proposed system is fully utilizing the communication channel and less complex in terms of implementation when compared with the existing systems. Since the partner selection gives significant impact on the performance of the CD systems, partner selection algorithms (PSAs) are extensively analyzed for both static and mobile user network. In this case, each individual user would like to take advantage of cooperation by choosing a suitable partner. The objective of an individual user may conflict with the objective of the network. In this regard, we would like to introduce a PSA which tries to balance both users and network objectives by taking user mobility into consideration. The proposed PSA referred to as worst link first (WLF), to choose the best partner in cooperative communication systems. The WLF algorithm gives priority to the worst link user to choose its partner and to maximize the energy gain of the radio cell. It is easy to implement not only in centralized networks but also in distributed networks with or without the global knowledge of users in the network. The proposed WLF matching algorithm, being less complex than the optimal maximum weighted (MW) matching and the heuristic based Greedy matching algorithms, yields performance characteristics close to those of MW matching algorithm and better than the Greedy matching algorithm in both static and mobile user networks. Furthermore, the proposed matching algorithm provides around 10dB energy gain with optimal power allocation over a non-cooperative system which is equivalent to prolonging the cell phone battery recharge time by about ten times

    Cooperative Diversity and Partner Selection in Wireless Networks

    Get PDF
    Next generation wireless communication systems are expected to provide a variety of services including voice, data and video. The rapidly growing demand for these services needs high data rate wireless communication systems with reliability and high user capacity. Recently, it has been shown that reliability and achievable data rate of wireless communication systems increases dramatically by employing multiple transmit and receive antennas. Transmit diversity is a powerful technique for combating multipath fading in wireless communications. However, employing multiple antennas in a mobile terminal to achieve the transmit diversity in the uplink is not feasible due to the limited size of the mobile unit. In order to overcome this problem, a new mode of transmit diversity called cooperative diversity (CD) based on user cooperation, was proposed very recently. By user cooperation, it is meant that the sender transmits to the destination and copies to other users, called partners, for relaying to the destination. The antennas of the sender and the partners together form a multiple antenna situation. CD systems are immuned not only against small scale channel fading but also against large scale channel fading. On the other hand, CD systems are more sensitive to interuser (between sender and partner) transmission errors and user mobility. In this dissertation, we propose a bandwidth and power efficient CD system which could be accommodated with minimal modifications in the currently available direct or point-to-point communication systems. The proposed CD system is based on quadrature signaling (QS). With quadrature signaling, both sender’s and partners’ information symbols are transmitted simultaneously in his/her multiple access channels. It also reduces the synchronization as well as the interference problems that occur in the schemes reported in the literature. The performance of the proposed QS-CD system is analyzed at different layers. First, we study the bit error probability (BEP) of the QS-CD system for both fixed and adaptive relaying at the partner. It is shown from the BEP performance that the QS-CD system can achieve diversity order of two. Then, a cross-layer communication system is developed by combing the proposed QS-CD system at the physical layer and the truncated stop-and- wait automatic repeat request (ARQ) at the data link layer. The performance of the cross-layer system is analyzed and compared with existing schemes in the literature for performance metrics at the data link layer and upper layers, i.e., frame error rate, packet loss rate, average packet delay, throughput, etc. In addition, the studies show that the proposed QS-CD-ARQ system outperforms existing schemes when it has a good partner. In this respect, the proposed system is fully utilizing the communication channel and less complex in terms of implementation when compared with the existing systems. Since the partner selection gives significant impact on the performance of the CD systems, partner selection algorithms (PSAs) are extensively analyzed for both static and mobile user network. In this case, each individual user would like to take advantage of cooperation by choosing a suitable partner. The objective of an individual user may conflict with the objective of the network. In this regard, we would like to introduce a PSA which tries to balance both users and network objectives by taking user mobility into consideration. The proposed PSA referred to as worst link first (WLF), to choose the best partner in cooperative communication systems. The WLF algorithm gives priority to the worst link user to choose its partner and to maximize the energy gain of the radio cell. It is easy to implement not only in centralized networks but also in distributed networks with or without the global knowledge of users in the network. The proposed WLF matching algorithm, being less complex than the optimal maximum weighted (MW) matching and the heuristic based Greedy matching algorithms, yields performance characteristics close to those of MW matching algorithm and better than the Greedy matching algorithm in both static and mobile user networks. Furthermore, the proposed matching algorithm provides around 10dB energy gain with optimal power allocation over a non-cooperative system which is equivalent to prolonging the cell phone battery recharge time by about ten times

    Spectrum sensing for cognitive radios: Algorithms, performance, and limitations

    Get PDF
    Inefficient use of radio spectrum is becoming a serious problem as more and more wireless systems are being developed to operate in crowded spectrum bands. Cognitive radio offers a novel solution to overcome the underutilization problem by allowing secondary usage of the spectrum resources along with high reliable communication. Spectrum sensing is a key enabler for cognitive radios. It identifies idle spectrum and provides awareness regarding the radio environment which are essential for the efficient secondary use of the spectrum and coexistence of different wireless systems. The focus of this thesis is on the local and cooperative spectrum sensing algorithms. Local sensing algorithms are proposed for detecting orthogonal frequency division multiplexing (OFDM) based primary user (PU) transmissions using their autocorrelation property. The proposed autocorrelation detectors are simple and computationally efficient. Later, the algorithms are extended to the case of cooperative sensing where multiple secondary users (SUs) collaborate to detect a PU transmission. For cooperation, each SU sends a local decision statistic such as log-likelihood ratio (LLR) to the fusion center (FC) which makes a final decision. Cooperative sensing algorithms are also proposed using sequential and censoring methods. Sequential detection minimizes the average detection time while censoring scheme improves the energy efficiency. The performances of the proposed algorithms are studied through rigorous theoretical analyses and extensive simulations. The distributions of the decision statistics at the SU and the test statistic at the FC are established conditioned on either hypothesis. Later, the effects of quantization and reporting channel errors are considered. Main aim in studying the effects of quantization and channel errors on the cooperative sensing is to provide a framework for the designers to choose the operating values of the number of quantization bits and the target bit error probability (BEP) for the reporting channel such that the performance loss caused by these non-idealities is negligible. Later a performance limitation in the form of BEP wall is established for the cooperative sensing schemes in the presence of reporting channel errors. The BEP wall phenomenon is important as it provides the feasible values for the reporting channel BEP used for designing communication schemes between the SUs and the FC

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Advanced receivers for distributed cooperation in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are rapidly deployable wireless communications systems, operating with minimal coordination in order to avoid spectral efficiency losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but the distributed nature of such protocols comes with an increased level of interference, whose impact is further amplified by the need to push the limits of energy and spectral efficiency. Hence, the impact of interference has to be mitigated through with the use PHY layer signal processing algorithms with reasonable computational complexity. Recent advances in iterative digital receiver design techniques exploit approximate Bayesian inference and derivative message passing techniques to improve the capabilities of well-established turbo detectors. In particular, expectation propagation (EP) is a flexible technique which offers attractive complexity-performance trade-offs in situations where conventional belief propagation is limited by computational complexity. Moreover, thanks to emerging techniques in deep learning, such iterative structures are cast into deep detection networks, where learning the algorithmic hyper-parameters further improves receiver performance. In this thesis, EP-based finite-impulse response decision feedback equalizers are designed, and they achieve significant improvements, especially in high spectral efficiency applications, over more conventional turbo-equalization techniques, while having the advantage of being asymptotically predictable. A framework for designing frequency-domain EP-based receivers is proposed, in order to obtain detection architectures with low computational complexity. This framework is theoretically and numerically analysed with a focus on channel equalization, and then it is also extended to handle detection for time-varying channels and multiple-antenna systems. The design of multiple-user detectors and the impact of channel estimation are also explored to understand the capabilities and limits of this framework. Finally, a finite-length performance prediction method is presented for carrying out link abstraction for the EP-based frequency domain equalizer. The impact of accurate physical layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs, thanks to a flexible MAC-level simulato

    Journal of Telecommunications and Information Technology, 2006, nr 1

    Get PDF
    kwartalni
    corecore