4,865 research outputs found

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform Shape

    Get PDF
    Light Detection And Ranging (LiDAR) in forested areas is used for constructing Digital Terrain Models (DTMs), estimating biomass carbon and timber volume and estimating foliage distribution as an indicator of tree growth and health. All of these purposes are hindered by the inability to distinguish the source of returns as foliage, stems, understorey and the ground except by their relative positions. The ability to separate these returns would improve all analyses significantly. Furthermore, waveform metrics providing information on foliage density could improve forest health and growth estimates. In this study, the potential to use waveform LiDAR was investigated. Aerial waveform LiDAR data were acquired for a New Zealand radiata pine plantation forest, and Leaf Area Density (LAD) was measured in the field. Waveform peaks with a good signal-to-noise ratio were analyzed and each described with a Gaussian peak height, half-height width, and an exponential decay constant. All parameters varied substantially across all surface types, ruling out the potential to determine source characteristics for individual returns, particularly those with a lower signal-to-noise ratio. However, pulses on the ground on average had a greater intensity, decay constant and a narrower peak than returns from coniferous foliage. When spatially averaged, canopy foliage density (measured as LAD) varied significantly, and was found to be most highly correlated with the volume-average exponential decay rate. A simple model based on the Beer-Lambert law is proposed to explain this relationship, and proposes waveform decay rates as a new metric that is less affected by shadowing than intensity-based metrics. This correlation began to fail when peaks with poorer curve fits were included

    Estimation of forest variables using airborne laser scanning

    Get PDF
    Airborne laser scanning can provide three-dimensional measurements of the forest canopy with high efficiency and precision. There are presently a large number of airborne laser scanning instruments in operation. The aims of the studies reported in this thesis were, to develop and validate methods for estimation of forest variables using laser data, and to investigate the influence of laser system parameters on the estimates. All studies were carried out in hemi-boreal forest at a test area in southwestern Sweden (lat. 58°30’N, long. 13°40’ E). Forest variables were estimated using regression models. On plot level, the Root Mean Square Error (RMSE) for mean tree height estimations ranged between 6% and 11% of the average value for different datasets and methods. The RMSE for stem volume estimations ranged between 19% and 26% of the average value for different datasets and methods. On stand level (area 0.64 ha), the RMSE was 3% and 11% of the average value for mean tree height and stem volume estimations, respectively. A simulation model was used to investigate the effect of different scanning angles on laser measurement of tree height and canopy closure. The effect of different scanning angles was different within different simulated forest types, e.g., different tree species. High resolution laser data were used for detection of individual trees. In total, 71% of the field measurements were detected representing 91% of the total stem volume. Height and crown diameter of the detected trees could be estimated with a RMSE of 0.63 m and 0.61 m, respectively. The magnitude of the height estimation errors was similar to what is usually achieved using field inventory. Using different laser footprint diameters (0.26 to 3.68 m) gave similar estimation accuracies. The tree species Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were discriminated at individual tree level with an accuracy of 95%. The results in this thesis show that airborne laser scanners are useful as forest inventory tools. Forest variables can be estimated on tree level, plot level and stand level with similar accuracies as traditional field inventories

    Characterization of a RS-LiDAR for 3D Perception

    Full text link
    High precision 3D LiDARs are still expensive and hard to acquire. This paper presents the characteristics of RS-LiDAR, a model of low-cost LiDAR with sufficient supplies, in comparison with VLP-16. The paper also provides a set of evaluations to analyze the characterizations and performances of LiDARs sensors. This work analyzes multiple properties, such as drift effects, distance effects, color effects and sensor orientation effects, in the context of 3D perception. By comparing with Velodyne LiDAR, we found RS-LiDAR as a cheaper and acquirable substitute of VLP-16 with similar efficiency.Comment: For ICRA201

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip
    • …
    corecore