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Abstract: Light Detection And Ranging (LiDAR) in forested areas is used for constructing 
Digital Terrain Models (DTMs), estimating biomass carbon and timber volume and 
estimating foliage distribution as an indicator of tree growth and health. All of these 
purposes are hindered by the inability to distinguish the source of returns as foliage, stems, 
understorey and the ground except by their relative positions. The ability to separate these 
returns would improve all analyses significantly. Furthermore, waveform metrics providing 
information on foliage density could improve forest health and growth estimates. In this 
study, the potential to use waveform LiDAR was investigated. Aerial waveform LiDAR 
data were acquired for a New Zealand radiata pine plantation forest, and Leaf Area Density 
(LAD) was measured in the field. Waveform peaks with a good signal-to-noise ratio were 
analyzed and each described with a Gaussian peak height, half-height width, and an 
exponential decay constant. All parameters varied substantially across all surface types, 
ruling out the potential to determine source characteristics for individual returns, 
particularly those with a lower signal-to-noise ratio. However, pulses on the ground on 
average had a greater intensity, decay constant and a narrower peak than returns from 
coniferous foliage. When spatially averaged, canopy foliage density (measured as LAD) 
varied significantly, and was found to be most highly correlated with the volume-average 
exponential decay rate. A simple model based on the Beer-Lambert law is proposed to 
explain this relationship, and proposes waveform decay rates as a new metric that is less 
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affected by shadowing than intensity-based metrics. This correlation began to fail when 
peaks with poorer curve fits were included. 

Keywords: waveform LiDAR; leaf area density; Gaussian fitting; deconvolution;  
Beer-Lambert law; LAD; Weiner deconvolution; forests 

 

1. Introduction 

Light Detection and Ranging (LiDAR) is a widely used active remote sensing method. The majority 
of applications of LiDAR use pulsed small-footprint laser light to determine the distance to a target 
with great precision. When laser beam reflections are positioned with respect to a known reference 
frame (typically using post-processed data from an integrated Global Positioning System and Inertial 
Measurement Unit, as well as range and scan angle measurements), 3-dimensional models of the target 
can be generated. For ground mapping applications, generally only one laser is used, with a 
wavelength that is reflected by the target and transmitted by the surrounding medium, so the output 
data are geometric but not spectral. Often LiDAR data are fused with multi-spectral imagery to provide 
additional spectral information, which may be used to identify features in the data such as land cover 
or object type. When the land cover is multi-layered (e.g., in forests), each pixel integrates all 
detectable reflected light from all layers, so discrimination of overlaying vertical layers with  
multi-spectral and hyper-spectral imagery is impossible. 

1.1. Potential Benefits of Identifying LiDAR Pulses for Forestry 

Within forested landscapes, it is useful to be able to determine which returns came from which 
layer. A layer will comprise a type of cover, whether ground, understorey, coniferous canopy, 
deciduous canopy etc. Often the layers will be vertical bands that may intermingle and overlap. 
Returns from the ground are useful for creating Digital Terrain Models (DTMs) which are used in 
forestry for road and harvest planning, erosion control and hydrology. Sithole and Vossleman [1] give 
an overview of filtering techniques for separating ground and non-ground returns, an updated version 
of which is in Meng [2]. Several of these techniques are implemented in commercial software. All 
techniques are predominately based on the geometric relationship of each return to the others, 
particularly the assumption that ground returns should be from a continuous surface below everything 
else. If a metric was available that could distinguish a ground return from a non-ground return on its 
own (such as color may distinguish a pixel of water from a pixel of trees in multi-spectral imagery), 
this filtering process would be simplified and the quality of DTMs improved. 

Similarly, several authors have used the vertical distribution of LiDAR returns to determine tree 
heights [3], timber volume [4,5] and biomass carbon [6,7]. The metrics employed in these studies 
depend on height above ground—so a quality DTM is essential—but also would benefit from the 
removal of understorey. Metrics based on height percentiles, for example, can be easily swayed if a 
large amount of understorey occurs in the height-band utilized in the metric. If returns from 
understorey could be differentiated from canopy returns, these studies would be greatly enhanced. 
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Understory itself contains biomass (and carbon), but its contribution is generally small whilst its high 
variability (compared to a monoculture plantation forest) means that it is much harder to quantify. It is 
this additional variability that has a negative effect on the accuracy of LiDAR biomass relationships 
for forested areas. As such, these relationships normally seek to remove the effects of understory, but 
the ‘perfect’ assessment of biomass would find a way to accurately include it. 

Some authors such as Reitberger [8] have identified returns believed to be from tree stems, again 
based on their position relative to others (i.e., forming a vertical column in this case). This requires 
sufficient stem returns to make the grouping, which in turn necessitates thin canopy, high laser-pulse 
densities and high scan angles off nadir, which cannot be relied on in all situations. If pulses from the 
stem could be identified in isolation, this discrimination could be much improved. 

Foliage is where photosynthesis occurs, and hence the amount of foliage has a close relationship to 
the rate of biomass increase [6]. Hence, foliage density is an important indicator of tree growth and 
health, and LiDAR has been used to determine average values of Leaf Area Index (LAI), the total 
surface area of foliage per horizontal unit area, over 30 m diameter field plots [9]. Other authors have 
noted that LAI affects the penetration of LiDAR into the canopy [10]. Many foliage diseases affect 
only small areas or height bands in the canopy, so ideally the variation of foliage density would be 
known by height in small regions. Leaf Area Density (LAD) is a more appropriate variable, defined as 
the one-dimensional total surface area of foliage per unit volume. If the foliage density were known 
with high spatial precision, this could yield specific information on tree health and vitality. 

1.2. Waveform LiDAR 

LiDAR return signals are a function over time determined by the transmitted waveform, the 
distance to the reflecting surface(s), the surface response, the spatial beam distribution and the 
response of the measurement system [11]. Waveform LiDAR systems digitize the backscattered laser 
echo with a set sampling period (typically around 1 ns)—thereby providing a complete record of 
received signal amplitude over time (often in undefined and uncalibrated “intensity” units). In contrast, 
discrete-return systems use hardware-based subsystems (e.g., a constant fraction discriminator and 
time interval meter) to extract and record ranges and intensities in real time for a few individual returns 
per transmitted pulse (typically less than 5).  

Discrete-return systems suffer from a sizable ‘blind spot’ following each detected return, during 
which no other returns can be detected [12]. This blind spot can be 1.2–3 m, and results from the time 
required for the discrete-return ranging electronics to record one return and reset to be able to record 
the next. Furthermore, while large transmitted pulse widths (~10 ns or greater in some commercial 
systems) tend to limit the vertical distribution information in both discrete-return and full-waveform 
systems, the effect on discrete-return systems can be greater, as they provide no capability to apply 
subsequent digital signal processing to remove the effects of the broad system response function. This 
reduces the quality of localized vertical foliage distribution information. 

A common use of waveform LiDAR is post-processing the waveform data to identify proximal peaks 
that would otherwise be treated as one [13], for example, Chauve et al. found 40–60% additional points 
in an alpine coniferous forest [14]. The most common approach is to approximate the waveform as a 
series of Gaussians, fitted by a non-linear least-squares approach [15,16], or expectation-maximization 
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[17]. Wagner et al. found that fitting Gaussian peaks to the data could account for 98% of waveform 
shapes, although this was over an urban environment and they note that Gaussians may not always be 
appropriate over vegetation [18]. Chauve et al. also noted that the waveform is often skewed, and that 
a Gaussian may not be appropriate in all cases [14]. 

In this study we investigate whether waveform shape can be used to distinguish returns from 
foliage, understorey and ground in a forest environment, and whether the foliage returns hold 
information on the local foliage density. Intensity based metrics—peak height and width—are trialed 
which are likely to be affected by occlusion, along with the waveform decay rate which is expected to 
be less affected by shadowing. Returns from foliage, wood and ground have been differentiated in 
terrestrial waveform LiDAR (such as in the ECHIDNA project, e.g., [19]), and on a larger scale ground 
and foliage returns have been differentiated with large footprint aerial waveform LiDAR (e.g., [20]). 

2. Method 

2.1. Data Collection 

Waveform LiDAR data were collected over a radiata pine (Pinus radiata) forest in New Zealand by 
New Zealand Aerial Mapping on 9 June 2007 with an Optech ALTM 3100EA LiDAR system and 
waveform digitizer with a sampling period of 1 ns. Using a 0.25 mrad beam divergence at a flying 
altitude of approximately 1,000 m (over rough terrain) produced a footprint diameter of around 0.25 m. 
An average of 8.5 reflected pulses per m2 were obtained over the sample plots. Whilst the conventional 
Optech ALTM 3100EA LiDAR system collected discrete return information, the waveform digitizer 
simultaneously recorded the waveform of the same laser pulses. Raw GPS data and discrete LiDAR 
information were processed with Optech’s proprietary data-extraction software REALM into a 
Corrected Sensor Data (CSD) file. The waveform data were measured at 1 ns intervals and provided as 
five swathes in Optech’s NDF binary format with an IDX index file. The CSD file was subsequently 
read by the authors (using Matlab) to obtain discrete return information, as well as positioning 
information that could be used to georeference each waveform sample in the NDF file using an 
adapted version of the Matlab code in [21]. 

This forest was selected because Beets et al. had previously measured radiata pine biomass and 
assessed understorey height in field plots within the forest [6]. Foliage density (expressed as LAD) was 
measured in 2 m height bands across ten 0.16 ha field plots by sampling representative trees. The plots 
were approximately square. From these data vertical regions could be generally described as pine 
foliage, understorey and ground. Each plot was planted with the same stocking in 1997, and had 
received the same silviculture. Five representative sample trees per plot were felled from 21 August to 
8 September 2006. The fact that these trees were felled prior to the LiDAR flight is unfortunate, but 
due to the large plot size (and number of trees) the overall effect was marginal. Tree crowns were 
weighed fresh in the field by 2 m height zone, measured from the base of each tree. Fifty needle 
fascicles were sampled randomly from each height zone and stored in polythene bags with water. 
Sample branches from each 2 m height zone were also weighed fresh in the field, and partially dried to 
aid with separation of needles from branches. Needles were oven dried to constant weight at 65 °C and 
weighed. Leaf area of the 50 fascicles per 2 m height zone was determined on an all-surfaces basis 
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Figure 2. Raw waveform data recorded from two pulses over open pasture and forest cover. 

 
These two observations are common, but do not unambiguously distinguish a return from forest 

cover from a return from pasture. Many forest waveform traces may yield only one peak, and in many 
cases the peak amplitude of the forest return may be greater than that from pasture. There is a general 
similarity between the peaks in both traces that is driven by the shape of the outgoing pulse. If we 
remove the dominance of the outgoing pulse from the return signal then more information can be 
learned about the target. Also of note in the figure is the almost exact similarity of the outgoing 
waveforms, and the similarly in width of the outgoing pulse and the return from pasture. It is odd that 
the return waveform in this case has a stronger intensity than the outgoing pulse (which if genuine 
would imply that extra energy were somehow added into the system), but this is in fact due to the way 
in which the outgoing pulse is sampled and the reflected and outgoing intensity units should not be 
considered equal. 

Jutzi and Stilla [11] described the return waveform y(t) as a convolution of the surface response 
v(x,y,z), the outgoing pulse o(t), the response of the measurement unit m(t), the spatial beam 
distribution p(x,y), and a background noise n(t). If the pulse is timed and we know the plane’s position 
and scan angle in three dimensions (i.e., we can describe x,y and z as a function of t) then we can 
describe v(x,y,z) as v(t).       (1) 

p(x,y) is approximately a Gaussian on a flat surface, however it is impossible to resolve horizontal 
detail within one single footprint. Thus we make the necessary assumption that our measurements of 
interest (e.g., foliage density) vary on a scale significantly greater than the footprint size. This allows 
the simplification that the illuminated surface is approximately homogeneous across the width of the 
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beam footprint, and consequentially we can ignore any bias caused by greater illumination at the centre 
of the beam and treat p(x,y) as a constant. Furthermore, comparison of the outgoing pulse o(t) with the 
return waveform y(t) for large flat surfaces (a pond on a windless day) shows that m(t) is negligible 
compared to o(t) [21]. This leaves us with         (2) 

which may be solved for the surface response v(t) by a Wiener deconvolution where we estimate g(t) 
to minimize the error in our estimation of v(t), so that 

       (3) 

The Weiner deconvolution filter can be used to find g(t), shown here in the frequency domain 

| |        (4) 

where S(f) is the mean power spectral density of the outgoing pulse o(t). N(f) is the power spectral 
density of the noise n(t). An estimate of the background noise n(t) is obtained from waveform sample 
values far away from any return. Equation (3) may then be solved to obtain , referred to as the 
deconvolved waveform. If the target were completely flat, orthogonal to the scan angle, solid and 
100% reflective, the “perfect” deconvolution would yield a delta function coincident with the start (not 
the peak) of the convolved waveform. This shift of the peak on the time axis could lead to incorrect 
range measurements unless the results were calibrated to a known reference height, although such 
calibrations are a standard part of any LiDAR data acquisition. However, vegetation is neither flat nor 
solid. Neither is it 100% reflective, so the deconvolved waveform will always have a finite width. 
Figure 3 shows the two example waveforms in Figure 2 in both deconvolved and original forms. In 
both cases, it is apparent that the deconvolved waveform is noisier than the original waveform, 
because noise is amplified in the deconvolution process. However, the peak is also noticeably less 
blurry, having removed (to the extent possible) the effects of the broad transmit pulse to obtain the 
estimate of the surface response. It is also apparent that our implementation of the Wiener filter 
introduces the aforementioned shift (i.e., the output signal is slightly advanced with respect to the 
input), but due to the fact that the target was not solid, flat or completely reflecting (as was the case 
also with the background noise), this peak has a finite width and is not shifted all the way to the start of 
the original peak (this ideal is closer represented in the return from pasture). This is because all the 
nanosecond samples of the transmit pulse would have been reflected from a range of depths, only a 
small proportion of which would have been from the very top of the target. The deconvolved 
waveform is a truer representation of the actual surface response. 

Once we have obtained a deconvolved waveform (using the outgoing waveform), this may be 
analyzed so that characteristic metrics may be recorded. The metrics employed in this study to describe 
each return are: height above ground, peak height, peak width (evaluated as a Gaussian half-height 
width) and the exponential decay constant of the return shape between the peak and the next local 
minima. This study aims to show that peak height and width will be affected by shadowing deep in the 
canopy (and not be a good discriminator), but that exponential decay rate will be less affected (see 
results and discussion). The method of obtaining these is: 
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(1) Georeference every 1 ns waveform sample to determine which waveforms (or part waveforms) 
fall into the field plots. 

(2) Determine a ground surface for the field plots. 
(3) Employ Gaussian fitting to describe each peak with a peak height and half-height width. 
(4) Employ exponential curve-fitting to determine the exponential decay rate of each peak. 
(5) Determine the above ground height of each peak (for comparison with field measured foliage 

data). 

Figure 3. Convolved and deconvolved forms of the waveforms in Figure 2 from pasture 
and from forest. 

 
(1) was achieved using the methods and code in Parrish [21], adapted for the New Zealand 

NZGD2000 coordinate system. The field plots were located using a high-grade, differentially-corrected 
GPS unit, and the selection of waveform samples simply consisted of any that fell into the vertical 
space above the field plots. 

(2) was achieved by using the discrete LiDAR data set for the area flown. The ground-filtering 
algorithm (GroundFilter.exe) in FUSION [24] was used to select only ground returns (based on the 
linear filtering method of Kraus and Pfeifer [25]). These ground returns were interpolated into a raster 
using FUSION’s GridSurfaceCreate.exe algorithm. 

(3) As we are interested in decay rates of waveform peaks in (4), we do not need to search for 
additional ‘hidden’ peaks as other authors have. Peaks that are hidden through close proximity to 
another or low peak amplitude will not have sufficient data points after the peak to give a good decay. 
As such, we only select peaks in the waveform data with a corresponding discrete return. Gaussians 
were fit using Matlab’s fminsearch function, a simplex search method given in [26]. This is a direct 
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search method that does not use numerical or analytic gradients. The number of Gaussians and a  
first-guess of their locations could be specified by the number and location of returns in the discrete 
datset. The peak height and half-height width of each Gaussian is recorded, as well as the R2 value  
of the fit. 

(4) In (3), the location of each peak to be analyzed will have been determined. An exponential curve 
fit of the type  was applied from the peak maximum to the following local minima (either 
before the end of the waveform or before the next peak). The exponential curve was determined, also 
using Matlab’s fminsearch algorithm, taking the peak maximum as a start point for C, and 0.2 as a start 
point for λ. The final value for λ is recorded along with the R2 value of the fit. 

(5) As this study is a proof of concept, only peaks that corresponded to a return in the discrete data 
set were analyzed (see step 3). Ground height was obtained by linear interpolation of the ground 
surface generated in (2) to the discrete return’s x, y coordinates. Height above ground was the discrete 
return height, minus the interpolated ground height. We made the assumption that the waveform 
peak was coincident with the discrete return, which is appropriate, as the ALTM discrete return data 
and waveform data were generated from the same input signal. Using the coordinates from the  
well-calibrated discrete return data eliminated small potential errors from georeferencing the 
waveform, as the ranging calculation was calibrated on the convolved peak, and not the translated peak 
observed in the deconvolution. Waveform LiDAR is known to give many more returns than discrete 
LiDAR, so by only selecting returns with a corresponding discrete return we are limiting our results to 
only the strongest peaks available. This should demonstrate any correlations most clearly, which may 
be hidden when including additional peaks with limited data due to close proximity to another peak or 
very low amplitudes. 

The net result of this analysis is an attribute table for each discrete return. Unlike standard discrete 
returns, which are described only by their coordinates and an intensity (excluding secondary 
processing such as classification), each return will also be assigned a Gaussian peak height, mid-height 
width, decay rate and height above ground. Additionally, the R2 value of both the Gaussian fit and the 
exponential curve fit is calculated relative to their recorded values. Our variable of interest—the 
vegetation type causing each reflection—is not known for each return, but is known to be a function of 
height. In each plot the ground existed at 0 m by default (±1 m to account for the 1 m × 1 m resolution 
of the DTM and inaccuracies in the filtering process), broadleaved understorey and ferns existed in the 
first 4 m above ground (as measured in the field), and radiata pine foliage existed above 4 m (except in 
one plot where a small amount was found down to 2 m). Figure 4 gives two examples of waveforms 
that have had the Gaussian and exponential curve fits performed. Note that the red line is the Gaussian 
curve fit, not the original convolved waveform, hence the reason why there is no shift in the peak. 

2.3. Metric Analysis 

As this study is a proof of concept, only the best peaks were selected, as poor peaks (with a low 
signal-to-noise ratio) are prone to poor curve fits and hence will mask any potential correlations. As a 
result of the amplification of background noise created through deconvolution, only waveforms with at 
least one intensity measurement greater than 25 (SNR > 2) were selected for analysis. After analysis, 
any peaks for which either the Gaussian fitting or the exponential curve-fitting yielded an R2 value of 
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less than 0.75 were excluded from the final results. If a distinguishing metric can be found for these 
peaks, then it can subsequently be tried on increasingly ambiguous peaks that are harder to extract 
from the background noise, to find the point at which the correlation is no longer tenable. Once all 
metrics were collected for all suitable peaks, they were each plotted against height in bivariate 
frequency distributions. These are effectively two-dimensional histograms, and show how the 
distribution of results for each metric varies with height. After checking for any height trends (which 
may be used to distinguish individual returns as foliage, understory or ground), the peaks in each 2 m 
height band were compared—as an average—against field sampled LAD. 

Figure 4. Deconvolved LiDAR data (blue) with multiple Gaussian fitting (red, 1 on the 
left, two on the right), and decay rates of each peak estimated (green). 
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3. Results and Discussion 

136,191 waveforms were incident over the ten 0.16 ha plots analyzed. 127,167 of these had an 
intensity greater than 25 (93%), in which 173,129 returns were identified and analyzed, giving 
approximately 1.4 returns per waveform. A further 121,051 of these were discarded, as the R2 values 
of either (or both) the Gaussian and exponential curve fits were less than 0.75 (Table 1). As this study 
is a proof of concept, only the cleanest, clearest peaks were used. If a metric of interest can be found to 
clearly relate peaks to their targets, then it can then be trialed on peaks with greater ambiguity. 

Table 1. Summary of number of returns analyzed for the ten field plots with leaf area density data. 

Plot 
Number of Waveforms with 

Peak Intensity > 25 
Number of 

Returns 
Number of Returns with Good Quality 

Fits and Intensity > 25 
Percentage 

Used 
1 12,558 11,616 4,570 28% 
2 16,150 14,939 5,608 27% 
3 12,305 11,261 4,942 33% 
4 11,332 10,286 4,207 29% 
5 12,326 11,075 4,541 31% 
6 13,810 13,130 5,488 32% 
7 12,687 11,992 4,598 27% 
8 14,849 14,210 4,847 25% 
9 15,862 15,145 8,746 45% 

10 14,312 13,513 4,531 24% 
Total 136,191 127,167 52,078 30% 

3.1. Gaussian Peak Height 

Figure 5 shows the Gaussian peak height vs. discrete return intensity for all plots. Although there is 
a small amount of variation, it is apparent that the discrete return intensity recorded by this unit is 
based on peak amplitude. The small amount of variation is due to Gaussian fitting being based on the 
deconvolved waveform, whereas the discrete return intensity is based on convolved data. 

Figure 6 shows how values for Gaussian peak height vary with height above ground as a bivariate 
frequency distribution, where color indicates frequency at that combination of height and intensity. 
Two major groupings are apparent—medium intensity returns 6–12 m above the ground, and higher 
intensity returns at ground height. Note that some returns may have a negative height above ground 
due to the coarser resolution of the DTM (1 m) and inaccuracies in the filtering process. Even so, these 
groupings show that ground returns generally have a higher intensity than coniferous canopy returns, 
which is a well-known result. Furthermore, there is a smaller number of higher intensity returns 
occurring around 2–4 m above the ground that are likely to be the broadleaved understorey present in 
the stand in that height band. Due to the larger, flatter surface, broadleaved plants are also known to 
give stronger returns than pine needles. Although Figure 6 shows that there is a trend for returns from 
the ground to have peak heights greater than returns from foliage, the distributions for each surface 
type overlap considerably. This means that whilst the average from a collection of pulses can be used 
to infer whether a volume is ‘ground’ or ‘foliage’, it cannot be used to assign more than a probability 
to each individual return. Furthermore, where volumes contain a mixture—such as foliage and stems, 
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or canopy and understorey—peak height will not be able to separate returns from each. The variation 
in peak intensity for returns from the same surface type is explained by the complexity and multitude 
of incident angles and paths that the pulse may take. For example, a return from a pulse with a high 
angle of incidence to the reflecting surface would be expected to have a lower intensity and wider peak 
than a return from a pulse that struck the same surface orthogonally. If all surfaces were horizontal 
then the angle of incidence would be the scan angle—for which no correlations were found against any 
of the derived metrics—however as few surfaces were truly horizontal, we cannot discount the effect 
of incidence angle. Similarly, a return from close to the ground is likely to come from a beam that has 
already been attenuated and perhaps already yielded a return or more. In this experiment, trying to 
account for previous returns did not improve the discriminating power of intensity, probably due to 
many smaller attenuation events that didn’t result in a return, and the fact that it appears that a strong 
reflector (such as the ground) can still yield a strong return even when the beam is heavily attenuated. 
The nature of the relationship between intensity, target characteristics and attenuation is too complex 
for a thorough investigation here, and could be better determined in controlled laboratory conditions 
(see Section 4). 

Figure 5. Peak height of Gaussian curves fitted to deconvolved waveform LiDAR vs. 
corresponding discrete return intensities recorded by the discrete-return LiDAR unit. 

 
 

  

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Gaussian peak height

D
is

cr
et

e 
re

tu
rn

 in
te

ns
ity



Remote Sens. 2012, 4                            
 

694

Figure 6. Bivariate frequency distribution of peak height of Gaussian curves fitted to 
deconvolved waveform LiDAR vs. height above ground. 

 

3.2. Gaussian Half-Height Width 

Figure 7 shows the bivariate frequency distribution for Gaussian half-height width vs. height above 
ground over all plots. There is an apparent trend for peaks from the canopy to be slightly wider, 
although returns in the 0–4 m band which is dominated by understorey show a wide range of widths. 
As in the case of peak height however, the distribution for canopy overlaps the distribution for ground. 
This means that individual pulses cannot be differentiated by width, but average values may be used 
over larger volumes. 

3.3. Pulse Decay Rate 

Figure 8 shows the bivariate frequency distribution for pulse decay rate vs. height above ground 
over all plots. There is a trend for decay rate to be highest (i.e., faster decay, lower transmissivity) on 
the ground, and less so for the understorey and even less for the foliage, implying that foliage is more 
likely to transmit light than the ground. These results correspond with the earlier finding that peaks 
relating to returns from the canopy were generally wider than those from the ground. Figure 9 shows a 
plot of half-height width vs. decay rate, confirming that the two are correlated variables. Neither peak 
height, nor half-height width, nor decay rate have shown conclusive separation between returns from 
foliage, ground or understorey. As it is impossible to know in this data which returns were from stems 
and which were from foliage, it is unknown whether any of these metrics can individually distinguish 
between them. Given that none of these metrics can conclusively distinguish individual returns from 
the ground from those from foliage, the chances are slim. 
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Figure 7. Bivariate frequency distribution of half-height width of Gaussian curves fitted to 
deconvolved waveform LiDAR vs. height above ground. 

 
Figure 8. Bivariate frequency distribution of decay rate of exponential curves fitted to 
deconvolved waveform LiDAR vs. height above ground. 
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Figure 9. Scatter plot of half-height width vs. decay rate for curve fits on deconvolved 
waveform LiDAR. 

 
3.4. Comparison with Foliage Density 

We cannot compare individual pulse metrics with LAD values as LAD was defined over a larger 
volume, but we can compare average LAD over a volume with average parameter values. Figure 10 
shows how LAD varied by height for the ten plots. Understorey was not included in the LAD 
measurements, although its height was noted and did not exceed 4 m. 

We will not investigate the LiDAR metric values below 4 m that will be affected by understorey. 
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sampling was not fair, as a return will only be registered if the pulse encounters sufficient material in 
one sample volume, thereby creating a tendency to overestimate LAD in more vegetated volumes. 
However, the fact that there is a moderate correlation between average decay rate and LAD is 
scientifically interesting. Note that as mentioned in Section 2.3, this correlation is only for the peaks 
with high intensities and good curve fits (R2 values > 0.75). It is interesting to see what happens to this 
correlation when we allow more peaks into the analysis. If we drop the R2 requirement for  
curve-fitting to >0.65, the correlation between the average decay rate and LAD drops to an R2 of 0.17, 
whilst the number of peaks analyzed rises from 52,078 to 80,957. If we drop the requirement that the 
waveforms analyzed have an intensity >25 and instead take all waveforms with an intensity >15 and 
curve-fitting R2 > 0.65, the R2 for average decay rate to LAD drops to 0.16. This demonstrates how 
sensitive the metrics are to curve-fitting quality, and justifies the subset of peaks analyzed in this study. 
So, although the relationships are weak and only visible with an optimum carefully selected subset of 
the data, the fact that a relationship between LAD and decay rate can be observed even with heavy 
caveats is interesting and points towards a new way of thinking about LiDAR returns. 

Figure 10. Variation of Leaf Area Density (LAD) vs. height for 10 sample plots in 2 m 
height bands 
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Figure 11. Comparison of the average value in a set of 1,600 m2 × 2 m sample plots for  
(a) intensity of discrete LiDAR returns, (b) peak height of deconvolved waveform LiDAR 
returns, (c) half-height width of deconvolved waveform LiDAR and (d) exponential decay 
rate of deconvolved waveform LiDAR returns, relative to the average field-measured leaf 
area density over the corresponding height band above ground. 

 

3.5. Models for Interpreting Waveform Shape 

There are two ways that waveform LiDAR of a vegetated area may be interpreted: 

1. The standard interpretation is as the result of a series of discrete ‘hard’ returns, such as may be 
achieved by well-separated layers of foliage. These supposed layers are of a thickness equal to 
or less than the return distance travelled by the laser pulse in one sampling period (0.15 m for  
1 ns sampling). 

2. As the result of transmission and reflectance from a volume of semi-transparent foliage which 
attenuates the radiation exponentially. 

Clearly, the discrete Gaussian interpretation becomes similar to the volumetric interpretation once 
the separation of the Gaussians is equal to or less than the sampling period. Previous authors have used 
Gaussian fitting to distinguish a small number of returns separated by significantly more than the 
sampling period [15–18]. These returns are normally characterised by their peak height and also 
occasionally by their width (whether standard deviation, half-height width etc.), which have been used 
to differentiate returns between trees in mixed species stands [16]. The radiata pine in this study—or 
any tree to the authors’ knowledge—can neither be accurately described as a series of thin,  
well-separated layers of 0.15 m of less in thickness, nor as a homogeneous, diffuse cloud of material. 
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Given that the beam footprint in most aerial LiDAR applications is typically ~0.2 m, a 1 ns sampling 
period will lead to each sample being the integrated response of a roughly cylindrical region of space 
~0.15 m tall and ~0.2 m in diameter. Thus, a lack of homogeneity at scales smaller than this (such as 
the scale of needles) is not relevant. If the tree could be thought of as a “gas” of needles and small 
elements ≪0.2 m then a semi-transparent gas model could be used as a first-order approximation. 
In this model the transmissivity (T) of the semi-transparent medium can be described by the  
Beer-Lambert Law 

       (5) 

where IT is the transmitted intensity, I0 is the initial intensity, α is the absorption coefficient and x is the 
distance travelled through the gas. At a depth x into the canopy, a constant proportion (R) of the 
incident light will be reflected. We assume Lambertian reflectance, and that this is further attenuated 
by the gas as it leaves. IR at the surface is then given by 

surface       (6) 

Thus, we see that if each canopy sample is of a constant density and distribution, it will have an 
absorption coefficient α, and as foliage density increases, so does α. This means that we can explain 
why an exponential decay in intensity for each return will be correlated with the foliage density. 
Although this is only a first-order approximation, it gives a conceptual model to explain the 
observations of this experiment and also those of Wagner [18] and Chauve [14], who note a skew to 
some returns over vegetation. Whether a robust relationship can be determined between LAD and 
decay constant which is applicable over a range of forests is beyond the scope of this study, and should 
be investigated in future studies.  

The benefit of using an exponential decay rate is that it is not affected by shadowing. Shadowing 
affects both peak height and peak width due to the reduction in irradiance incident on lower surfaces. 
This—along with the complex nature of the surfaces—contributes to the observed variation in values 
for the same surface with these metrics. Ideally, shadowing could be accounted for by the summation 
of all samples in a waveform prior to the peak. However, much of the actual attenuation will not lead 
to a reflected signal at the sensor distinguishable from the background noise. This problem could be 
solved by equipment that is more sensitive and perhaps a different frequency laser, but such changes 
come with other issues and are not currently in the public domain. In the absence of an intensity-based 
method to account for shadowing, decay rate gives valuable information that is not affected by it. In 
summary, this interpretation provides insight into our observation that waveform decay rate has the 
potential to determine foliage density when averaged over a local area, bypassing some of the issues of 
using variables based on pulse intensity. Furthermore, if LAD can be shown to be moderately 
correlated with other (independent) metrics selected for that species and site (such as Normalized 
Difference Vegetation Index from aerial imagery), then the inclusion of spatially-averaged decay rate 
in a multiple regression may enable very robust estimates. 

4. Conclusions 

The primary aim of this study was to investigate whether waveform shape could be used to identify 
the source of individual LiDAR returns from forested landscapes. Waveform shape was quantified by 
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means of various curve-fitting methods such as a peak height, half-height width and exponential decay 
rate, which were attributed to each return, significant enough to trigger the discrete-return sensing 
system. A subset of these with the best signal-to-noise ratio (SNR > 2) and curve fits (R2 > 0.75) were 
used to remove additional variability in the metrics, justified, as this study is a proof of concept at this 
stage. Due to the complexity of the surfaces and multitude of angles, textures and paths etc., each 
waveform shape metric showed more potential variation within a surface type than it did between 
surface types. This negates the possibility of identifying the source of individual returns. 

Three-dimensional spatial averages of these waveform metrics were shown to give indications of 
surface type over larger areas and volumes. For example, ground returns on average presented 
waveforms with higher peaks, shorter widths and faster decays. Foliage returns conversely averaged 
lower peaks, wider pulses and slower decays. Decay rate showed the best correlation with average 
Leaf Area Density (defined in 2 m height bands over a 0.16 ha plot), when the average value for all 
returns in each volume was obtained. A linear correlation with an R2 value of 0.37 was obtained. 
Although moderate, this correlation indicates that the spatially-averaged decay rate may be beneficial 
in estimating LAD, especially if it can be combined with other (independent) metrics in a multiple 
regression analysis. When less stringent criteria for selecting peaks were used, the strength of this 
correlation dropped. 

To explain the correlation between the exponential decay of returns and the LAD, a model was 
presented which approximates the canopy as a semi-transparent gas, and utilizes the Beer-Lambert 
Law to model the exponential decay of reflected intensity. This model has merit when used in 
conjunction with the standard interpretation of waveform LiDAR over vegetation, which explains the 
returns as a series of discrete layers leading to a one-dimensional Gaussian mixture. To further 
evaluate this model and to develop a robust correlation between foliage density and waveform decay 
rate, further testing is required. It may be advantageous to conduct this testing in a controlled 
environment, such as a laboratory, where small foliage samples may have LAD and occlusion 
measured precisely and then be scanned by LiDAR. This laboratory testing should also enable us to 
better quantify the extent of spatial averaging needed to an obtain optimal balance between the 
competing goals of accuracy and localization in our LAD estimates. 
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