1,110 research outputs found
Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California
In this paper we report chemically resolved measurements
of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In
situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local
methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by
ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (<1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NO_x enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site
Alternative sources of starting materials
Biomass is the source of renewable carbon that will allow to achieve the future development of our society. With the prospect of the fossil resources depletion, it is necessary to find new alternative sources of energy and raw materials. Chemistry will play a key role to design new materials from biomass which will reshape our way of living and consumption.Fil: Spanevello, Rolando Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Suarez, Alejandra Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentin
Intelligent approach to solvent substitution : the identification of a new class of levoglucosenone derivatives
With the increasing restriction and control of hazardous solvents, safer alternatives need to be identified. Here a contemporary approach to solvent selection and substitution is presented that offers a more scientific alternative to the simple “like-for-like” exchange. A new family of levoglucosenonederived compounds is proposed, modeled to determine their solvent properties, synthesized, and tested. These new molecules show promise as replacements for polar aprotic solvents that have chronic toxicity issues, such as dichloromethane, nitrobenzene, and N-methylpyrrolidinone. The success of this approach makes it possible for academia and industry to make calculated, intelligent choices for solvent substitution in the future
A new perspective in bio-refining : Levoglucosenone and cleaner lignin from waste biorefinery hydrolysis lignin by selective conversion of residual saccharides
An unexpected opportunity is reported to improve the sustainability of biorefineries whereby 8 wt% levoglucosenone (LGE) can be derived from unconverted saccharides in a lignin-rich biorefinery waste stream in a highly selective fashion (>90%). Additionally, in the process a purer lignin is obtained which can be used for further processing or materials applications. LGE is a valuable and versatile product with a plethora of applications
Cellulose recycling as a source of raw chirality
Modern organic chemistry requires easily obtainable chiral building blocks that show high chemical versatility for their application in the synthesis of enantiopure compounds. Biomass has been demonstrated to be a widely available raw material that represents the only abundant source of renewable organic carbon. Through the pyrolitic conversion of cellulose or cellulose-containing materials it is possible to produce levoglucosenone, a highly functionalized chiral structure. This compound has been innovatively used as a template for the synthesis of key intermediates of biologically active products and for the preparation of chiral auxiliaries, catalysts, and organocatalysts for their application in asymmetric synthesis.Fil: Biava, Hernan Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Spanevello, Rolando Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Suarez, Alejandra Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Mata, Ernesto Gabino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Mangione, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Corne, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Botta, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Giordano, Enrique David Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Giri, German Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Llompart, David Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentin
Synthesis of ureas in the bio-alternative solvent Cyrene
Cyrene as a bio-alternative solvent: a highly efficient, waste minimizing protocol for the synthesis of ureas from isocyanates and secondary amines in the bio-available solvent Cyrene is reported. This method eliminated the use of toxic solvents, such as DMF, and established a simple work-up procedure for removal of the Cyrene, which led to a 28-fold increase in molar efficiency versus industrial standard protocols
Litter Quality of Populus Species as Affected by Free-Air CO2
The effect of elevated CO2 and nitrogen fertilization on the molecular chemistry of litter of three Populus species and associated soil organic matter (SOM) was investigated by pyrolysis-gas chromatography/mass spectrometry. The results are based on 147 quantified organic compounds in 24 litter samples. Litter of P. euramerica was clearly different from that of P. nigra and P. alba. The latter two had higher contents of proteins, polysaccharides, and cutin/cutan, while the former had higher contents of phenols and benzofurans/pyrans. The difference between replications was at least as large as the effect of treatments, so that no systematic chemical changes were attributable to CO2 effect or N-fertilization effect. The chemistry of SOM under the various species and treatments did not show significant changes either. The low number of available replicates that is two was clearly insufficient to overcome the effect of spatial variation on litter chemistry and detect small differences in molecular litter chemistry
Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources
The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents
Pharmacological modulation of oncogenic Ras by natural products and their derivatives: renewed hope in the discovery of novel anti-Ras drugs
Oncogenic rat sarcoma (Ras) is linked to the most fatal cancers such as those of the pancreas, colon, and lung. Decades of research to discover an efficacious drug that can block oncogenic Ras signaling have yielded disappointing results; thus, Ras was considered “undruggable” until recently. Inhibitors that directly target Ras by binding to previously undiscovered pockets have been recently identified. Some of these molecules are either isolated from natural products or derived from natural compounds. In this review, we described the potential of these compounds and other inhibitors of Ras signaling in drugging Ras. We highlighted the modes of action of these compounds in suppressing signaling pathways activated by oncogenic Ras, such as mitogen-activated protein kinase (MAPK) signaling and the phosphoinositide-3-kinase (PI3K) pathways. The anti-Ras strategy of these compounds can be categorized into four main types: inhibition of Ras–effector interaction, interference of Ras membrane association, prevention of Ras–guanosine triphosphate (GTP) formation, and downregulation of Ras proteins. Another promising strategy that must be validated experimentally is enhancement of the intrinsic Ras–guanosine triphosphatase (GTPase) activity by small chemical entities. Among the inhibitors of Ras signaling that were reported thus far, salirasib and TLN-4601 have been tested for their clinical efficacy. Although both compounds passed phase I trials, they failed in their respective phase II trials. Therefore, new compounds of natural origin with relevant clinical activity against Ras-driven malignancies are urgently needed. Apart from salirasib and TLN-4601, some other compounds with a proven inhibitory effect on Ras signaling include derivatives of salirasib, sulindac, polyamine, andrographolide, lipstatin, levoglucosenone, rasfonin, and quercetin
Analytical Techniques as a Tool to Understand the Reaction Mechanism
Thermal decomposition of biomass samples and the major macromolecular constituents of lignocellulosic biomass are reviewed. Special emphasis has been placed on the results of the thermoanalytical methods and analytical pyrolysis. On the basis of the product distribution of the thermal decomposition, the possible major decomposition mechanisms are discussed. The influence of the inherent inorganic components of biomass on the thermal decomposition of cellulose, and lignin are demonstrated. Furthermore, the effect of the low temperature heat treatment, the torrefaction on the thermal conversions are summarized
- …
