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ABSTRACT  

Thermal decomposition of biomass samples and the major macromolecular constituents 

of lignocellulosic biomass are reviewed. Special emphasis has been placed on the results of 

the thermoanalytical methods and analytical pyrolysis. On the basis of the product 

distribution of the thermal decomposition, the possible major decomposition mechanisms are 

discussed. The influence of the inherent inorganic components of biomass on the thermal 

decomposition of cellulose, and lignin are demonstrated. Furthermore, the effect of the low 

temperature heat treatment, the torrefaction on the thermal conversions are summarized. 

 

Keywords: Biomass; Thermogravimetry; Analytical Pyrolysis; Gas chromatography/mass 

spectrometry; Cellulose; Lignin; Hemicellulose; Mechanism. 

 

3.1. INTRODUCTION 

Biomass, as a renewable energy source, can either be used directly via combustion to 

produce heat, or indirectly by converting it to various biofuels by thermal  conversion 

processes. Depending on the conditions of thermal treatment, pyrolysis, torrefaction, 

gasification, hydrothermal treatment are the most frequently used techniques. In order to 

produce various chemicals from biomass by thermal conversion methods, the composition of 

biomass and the thermal decomposition mechanisms should be determined.  

Biomass is a complex material which contains several natural polymers, extractable 

materials and inorganic compounds. In this chapter, we discuss the thermal decomposition of 

lignocellulosic biomass samples, since they are preferred  for energetic utilization. We do not 

deal with the protein-containing biomass, which are primarily used for food. Biomass 

samples are not soluble in conventional solvents therefore they cannot be studied by most of 

the conventional analytical techniques. Nevertheless, degradative methods can be used for the 

characterization of the composition and structure of biomass samples. For this purpose 

analytical techniques can be used, where small amount of samples are applied and therefore 

the probability of the secondary reactions are minimized. The analytical thermal methods can 

be classified into thermal analysis methods and pyrolytic techniques.  

Thermal analysis includes those thermal methods where certain physical properties of the 

materials are measured as they change with temperature or time. Several methods are 

commonly employed depending on the property which is measured. The most frequently 

used thermoanalytical techniques are the following: thermogravimetry where the mass is 

monitored, differential scanning calorimetry where the heat loss or heat consumption is 

measured and thermomechanical analysis where the dimension of the samples are observed. 

The thermoanalytical methods apply relatively low heating rates and the physical properties 

of the samples are monitored as a function of temperature or time. The applied atmosphere 

can be either inert or oxidative, even vacuum can be used in certain thermobalances.  

The analytical pyrolysis refers to a thermal decomposition method, where the samples 

are heated usually fast to a given temperature in inert atmosphere. Generally thermal 

decomposition products of organic materials are studied using flash pyrolysis. Some of the 

pyrolysis products are not stable therefore the analytical pyrolyzers are coupled on-line to a 



gas chromatograph (GC) or mass spectrometer (MS) to monitor the primary decomposition 

products. Nowadays the pyrolyzers are most commonly used with a GC/MS system, where 

the GC instrument separates the pyrolysis products and the qualitative and quantitative 

determinations of the individual products are carried out by the mass spectrometer.  

 

3.2. COMPOSITION OF LIGNOCELLULOSIC BIOMASS SAMPLES 

As it is well-known, cellulose, hemicellulose and lignin are the major natural polymeric 

components of the biomass samples [1]. Cellulose is a linear macromolecule of high 

molecular mass, which is composed of D-glucopyranose units linked with -(1-4)-O-bonds. 

Aggregation of cellulose chains within the microfibrils provides a crystalline structure. 

Cellulose microfibrils are embedded in a matrix of hemicelluloses and lignin forming the 

main components of the cell walls and lignocellulosic biomass in general.  

The nature of hemicellulose and lignin varies with the type of biomass. O-acetyl-4-O-

methylglucuronoxylan forms the main hemicellulose of the hardwoods. Hemicelluloses in 

softwoods are mainly galactoglucomannan, containing mannose/glucose/galactose residues in 

a ratio of 3/1/1, and glucomannan with mannose/glucose residues in a ratio of 3/1. In 

herbaceous biomass, arabinoxylans are the predominant hemicellulose polysaccharides. 

Hemicelluloses are amorphous, have a lower degree of polymerization than cellulose.  

Lignin is a randomly linked, amorphous, cross-linked polymer of phenolic monomers. 

The softwood lignin contains guaiacyl propane units; hardwood lignin, in addition to this, 

contains syringyl propane units. The lignin of herbaceous plants contains 

hydroxyphenylpropane units, too.  

Table 3.1 compares the chemical composition of a few biomass species [2]. Wood 

samples have high cellulose content and low ash content. Hardwoods contain more 

hemicelluloses and less lignin than softwoods. The composition of herbaceous plants varies 

in the amounts of macromolecular units, extractable materials and the inorganic content, too. 

 

3.3. THERMAL ANALYSIS 

3.3.1. Reaction Heat of the Biomass Decomposition  

Thermogravimetric analysis is the most frequently applied thermoanalytical method for 

the thermal decomposition studies of biomass.  A growing number of investigations have 

applied differential scanning calorimetry (DSC) and differential thermal analysis (DTA) for 

measuring the reaction heat of the decomposition due to the availability of combined 

TGA/DSC or TGA/DTA instruments. The thermal decompositions of cellulose [3] and 

hemicellulose [4] in inert atmosphere are endothermic reactions. Statheropoulos et al. [4] 

studied the thermal decomposition of pine needles by DSC and established that endotherm 

peaks could be attributed to the desorption of high volatility compounds, moisture, softening 

and/or melting of the waxy constituents of pine-needles; as well as to the degradation of 

hemicellulose and cellulose. Exotherm peaks could be attributed to the pyrolysis of lignin and 

char recombination. Faix et al. [5] studied the decomposition of milled wood lignins in inert 

atmosphere and exotherm reactions were also observed in the 200-400°C temperature range. 



Table 3.1. Proximate analysis of some biomass species. Data are taken from ref. 2 with the permission 

of Elsevier. 

 

Species 

 

Total 

ash 

(%) 

 

Solvent 

soluble 

(%) 

Water 

soluble 

(%) 

Lignin 

(%) 

Hemicellulose 

(%) 

Cellulose (%) 

Softwood 

 

0.4 

 

2.0 - 27.8 

 

24.0 

 

41.0 

 

Hardwood 

 

0.3 

 

3.1 - 19.5 

 

35.0 

 

39.0 

 

Wheat straw 

 

6.6 

 

3.7 7.4 16.7 

 

28.2 

 

39.9 

 

Rice straw 

 

16.1 

 

4.6 13.3 11.9 

 

24.5 

 

30.2 

 

Bagasse 1.6 

 

0.3 - 20.2 

 

38.5 

 

38.1 

 

3.3.2. Thermogravimetric Analysis of Biomass 

Thermogravimetric analysis (TGA) provides a mass change profile as a function of the 

sample temperature or analysis time, thus the thermal decomposition processes can be 

monitored. The TGA curves and the derivative thermogravimetric curves (DTG) give 

information about the thermal stability of the sample and the overall kinetic progress of the 

thermal decomposition. The thermal decomposition studies of biomass samples started 

several decades ago. Among the early publications, the pioneering work of F. Shafizadeh and 

his coworkers must be mentioned [2, 3, 6, 7]. They applied thermogravimetry and furnace 

pyrolysis and analyzed the volatile products off-line by various analytical techniques. The 

mechanisms of the primary and secondary reactions of thermal decomposition and 

combustion of cellulosic materials have been established [2, 6].  

Fig. 3.1 shows the instrumental setup of the thermogravimetric system used for the 

analyses of biomass samples described in this chapter. About 2-4 mg samples were placed 

into the platinum sample pan and the furnace was flushed with the carrier gas thoroughly 

before the experiments. Generally 10°C/min or 20°C/min linear heating rate was applied. For 

thermal decomposition studies argon was used as a flushing gas. The volatile decomposition 

products were analyzed on-line by a mass spectrometer.   

Fig. 3.2 presents the thermogravimetric curves of the three major macromolecular 

components of biomass in inert atmosphere. Avicel PH-105 is a microcrystalline cellulose 

representing similar crystalline structure as the biomass samples have (-cellulose) [1] . O-

acetyl-4-O-methyl-D-glucurono-xylan is a typical hardwood xylan, which was isolated from 

beech wood [8]. Milled wood lignin was also isolated from beech wood according to 

Björkman procedure [9]. As the DTG curves show, the carbohydrates decompose with a high 

decomposition rate in a rather small temperature interval. Cellulose produces a sharp DTG  



 
Figure 3.1. Thermogravimetry/mass spectrometry instrument. The thermobalance applied is a 

modified Perkin-Elmer TGS-2, while the mass spectrometer is a Hiden HAL 2/PIC instrument. 

 

 

 
Figure 3.2. Thermogravimetric curves of wood components in argon atmosphere using 10°C/min 

heating rate and 2-3 mg sample sizes. Open symbols, TGA curves; Closed symbols, DTG curves. 

 

peak and small amount of char residue. The xylan polymer decomposes at a lower 

temperature, which can be explained by the presence of thermolabile functional groups 



(acetyl groups), the amorphous structure and lower molecular mass. Lignin decomposes in a 

wide temperature range with a small decomposition rate and produces about 30% char 

residue due to its cross-linked aromatic structure.  

Fig. 3.3 illustrates the TG and DTG curves calculated from the curves of the 3 

components in the ratio of hemicellulose:cellulose:lignin=0.333:0.394:0.248 based on the 

composition of beech wood [1]. The extractive and inorganic contents were not taken into 

account. The thermogravimetric curves of beech wood sample differs significantly from the 

sum of the TG and DTG curves of the components, although the char yields are quite similar. 

The most considerable difference is that the decomposition of hemicellulose and the cellulose 

is not separated well and only a shoulder on the DTG curve indicates the presence of 

hemicellulose decomposition. Several reasons may explain the differences. The biomass 

samples contain inorganic compounds, which have strong influence on the decomposition 

mechanisms [10, 11] as will be discussed later. Furthermore, covalent chemical bonds exist 

between the macromolecules in the biomass [12], which might affect the thermal stability. 

The physical and chemical structure of the isolated components may differ from their original 

structure in the biomass, the molecular mass of the isolated compounds are probably smaller 

than the original one. 

 

 
Figure 3.3. Calculated and measured thermogravimetric curves of beech wood using 10°C/min 

heating rate in argon atmosphere. The curve was calculated from the measured components' curves 

(Fig.2). The amount of extracts and the inorganic content were neglected. 

 

 



Table 3.2. Thermogravimetric parameters of biomass samples. The samples were measured in a 

modified Perkin-Elmer TGS-2 thermobalance at a 20°C/min heating rate in argon atmosphere using 

2-4 mg sample sizes. 

 

Sample Tstart 

(extrapol) 

(°C) 

Tstart(1%) 

(°C) 

Tmax 

(°C) 

Tend(cel) 

(°C) 

DTGmax 

(%/s) 

Char 

yield 

(%) 

Avicel cellulose 300 290 352 382 0.755 4.1 

Whatman cellulose 330 300 379 410 0.708 6.4 

Hemicellulose 

(xylan) 

230 221 272 320 0.487 19 

Cotton wool 325 277 379 408 0.661 8.3 

Flax fiber 240 260 371 400 0.641 10.5 

Hemp 220 252 365 397 0.582 12.8 

Wheat straw 190 213 328 368 0.303 26.0 

Rape straw 190 199 333 376 0.253 13.7 

Eucalypt  

(wood and leaves) 

180 207 352 378 0.203 22.8 

Olive tree  

(wood and leaves) 

170 161 350 398 0.170 22.4 

Pine 240 218 379 413 0.306 16.1 

Birch 250 237 392 422 0.321 10.3 

Willow 190 207 377 408 0.272 16.8 

Poplar 190 210 370 402 0.281 17.3 

Black locust 190 195 369 403 0.281 16.7 

Beech wood 250 247 381 411 0.349 13.4 

MWL Beech 210 229 364 (560) 0.146 27.2 

MWL Spruce 190 198 416 (590) 0.109 35.6 

 

 

Table 3.2 summarizes the major thermogravimetric parameters of several biomass 

samples as well as cellulose, hemicellulose and lignin. The explanation of the used 

parameters is illustrated in Fig. 3.4. Two temperatures are used for the characterization of the 

beginning of the thermal decomposition: T1% marks the temperature belonging to 1% weight 

loss of the dry sample (from 150°C), Thc denotes the extrapolated temperature of the 

beginning of decomposition. The two temperature values can be quite different if the sample 

contains large amounts of extractable materials, which generally starts to evaporate at lower 

temperatures with low mass loss rate. Tc stands for the extrapolated temperature of the end of 

cellulose decomposition in case of the cellulosic samples; it denotes the extrapolated 

temperature of the end of lignin decomposition in the milled wood lignin (MWL) samples. 

Tpeak denotes the temperature of the maximal decomposition rate (DTGmax).  

Table 3.2 shows the thermogravimetric parameters of two cellulose samples. Whatman 

cellulose is manufactured from cotton linters having -cellulose content above 98%. Avicel  



 
Figure 3.4. The most important thermogravimetric parameters used for biomass samples in Table 3.2. 

 

is a microcrystalline -cellulose, but its molecular mass is smaller due to the partial acidic 

hydrolysis during the cleaning process. Apparently the lower molecular mass explains the 

lower thermal stability of Avicel cellulose. Cotton wool has similar thermal behavior as 

Whatman cellulose owing to their similar origin. Flax and hemp start to decompose at a lower 

temperature due to their hemicellulose content, but the maximal rate of decomposition is 

similar to cotton. The decomposition of the cellulose component in the wood samples takes 

place rather similarly with the maximal rate of decomposition occurring between 370 and 

390°C. The wood samples produce about 10-17% char residue, which can be explained partly 

by the presence of lignin, partly by the enhancement of charring of carbohydrates in the 

presence of inorganic components. The whole biomass samples produced even higher char 

yields. For example, the samples that contained tree branches with bark and leaves (eucalypt 

and olive tree) had char yields near 22%. The char yield of the herbaceous plants varies in a 

wide range which can be explained by the catalytic effect of the different inorganic content as 

will be discussed later. The biomass samples start to decompose at various temperatures due 

to their different extractive components. Eucalypt and olive tree samples begin to decompose 

at the lowest temperature because their oil content evaporates already above 150°C. 

 

3.3.3. Thermal Decomposition Products as Measured by Thermogravimetry/Mass 

spectrometry 

The volatile products of the thermal decomposition can be analyzed by several 

techniques. In earlier biomass literature the decomposition products were analyzed off-line by 

various methods, e.g., GC, IR, NMR, MS [10, 13]. However, some of the volatile products of 



biomass decomposition are not stable, and secondary reactions may occur during the off-line 

analysis. Coupled techniques provide immediate monitoring of the volatile products released 

during the thermogravimetric experiments. Thermogravimetry/mass spectrometry (TG/MS) 

[5, 14] and TG/FTIR [15] represent the most frequently applied coupled techniques in 

thermal analysis. Fig. 3.1. presents the TG/MS system used for monitoring the evolution of 

low molecular mass products during the thermogravimetric experiment. A portion of the 

volatile products was introduced into the ion source of the mass spectrometer through a 

heated glass-lined metal capillary and a valve. The quadrupole MS operated in electron 

impact mode at a 70 eV electron energy. 

Fig. 3.5. illustrates the thermogravimetric curves and the mass spectrometric evolution 

profiles of the main detected decomposition products of a hard wood and a herbaceous plant. 

Panels a and b show the evolution of the main permanent gases and water in the same scales 

from black locust wood and wheat straw. More gaseous products and water are released from 

the herbaceous plant than from the wood sample. On the other hand, wheat straw produces 

26% char residue including 5% ash, while black locust yields 14% char with only 0.5% ash. 

Wheat straw has 1.7%, whereas black locust contains only 0.1% potassium. As will be 

discussed later, the presence of K-ions promotes the formation of char and gaseous products. 

Furthermore, the decomposition of cellulose is shifted to lower temperatures due to the 

catalytic effect of K ions. Therefore the maximal rate of decomposition of wheat straw is at 

328°C, while it is at 369°C in case of black locust (Table 3.2). The thermal decomposition of 

hemicellulose is less influenced by the presence of inorganics, thus it is not separated well 

from the cellulose decomposition, when the cellulose decomposition is shifted to significantly 

lower temperature. 

As Fig. 3.5 a-b shows, some adsorbed water is released at about 100°C from the dried 

samples, but the majority of water is evolved during the major decomposition range. The 

carbohydrates and lignin contain various types of hydroxyl groups which may be released as 

water during heating. Similarly, carbon monoxide and carbon dioxide may be formed from 

the oxygen-containing functional groups. Methane produces a broad double peak at higher 

temperatures. The first methane peak at around 430°C can be attributed to the lignin 

decomposition, it may be derived from the methoxyl groups of lignin [16]. Black locust as a 

hard wood has more methoxyl groups as the herbaceous wheat straw, so the wood evolves 

more methane at lower temperature. However, the charring reactions are more pronounced in 

the wheat straw, therefore it produces higher methane peak from 450 to 700°C. The final 

charring process ends with the development of hydrogen from 550 to 900°C. 

Fig. 3.5 c-d presents the formation of a few fragment ions and two molecular ions. 

Formaldehyde can be formed from each macromolecular component of biomass. The 

molecular ion at m/z 60 represents acetic acid at lower temperature (about 300°C), which is 

released from the side groups of hemicellulose. However, m/z 60 can also be attributed to 

hydroxyacetaldehyde, which is released from cellulose at somewhat higher temperature. 

Methoxyl ions (m/z 31) can be formed in the mass spectrometer from hydroxyacetaldehyde 

and from methanol. A typical fragment ion of aldehydes and ketones is m/z 43, which is 

mostly released from cellulose. Hydrocarbon fragments can also be detected, they are also 

formed at higher temperature, where lignin decomposition and the charring process occur. 



 
Figure 3.5. Thermogravimetric and mass spectrometric evolution curves during TG/MS experiment of 

black locust (a, c, e) and wheat straw (b, d, f) in argon atmosphere using 20°C/min heating rate and 3-

4 mg sample sizes. The following MS signals were plotted: (a, b) m/z 2, 16, 18, 28, 44; (c, d) m/z 27, 

30, 31, 43, 60; (e, f) m/z 58, 74, 84, 96, 98. 

 

Fig. 3.5 e-f shows the evolution of a few oxo- and furan compounds. As it is well-known, 

the pyranose ring of carbohydrates can be transformed to furanose ring, thus furan-

derivatives are typical decomposition products of carbohydrates. These are mostly formed 

from cellulose, but furanaldehyde is also released from hemicellulose in a significant amount.  



The yields of these higher molecular mass compounds are higher during the decomposition of 

wood than from wheat straw. It should be noted that levoglucosan is a characteristic 

decomposition product of cellulose, and phenol derivatives are released during the thermal 

decomposition of lignin. However, they could not be detected by TG/MS because they were 

condensed in the transfer line between the TGA furnace and the MS due to their polarity and 

higher molecular mass. Nevertheless, these polar compounds can be monitored by on-line 

pyrolysis-gas chromatography. 

 

3.3.4. Reaction Kinetic Modeling Using Thermogravimetric Data 

The thermogravimetric curves show the rates of weight loss during the thermal 

decomposition of biomass samples, therefore they are related to the kinetics of these 

reactions. The first kinetic calculations were made on the TG curves measured at various 

isothermal temperatures. Generally first order kinetics were assumed, and an Arrhenius plot 

was used for calculating the activation energy, where the log of the normalized weight was 

plotted against time [6, 17]. In isothermal experiments, a considerable fraction of the sample 

may decompose while warming up to the required temperature and this may bias the results. 

Therefore it is more straightforward to use dynamic conditions. For the determination of the 

kinetics parameters, the knowledge of the reaction mechanism is crucial. However, even the 

thermal decomposition of cellulose occurs through several independent reactions. Kilzer and 

Broido [18] stated that the pyrolysis of cellulose involves three groups of processes: 

intramolecular dehydration to form anhydrocelluloses, depolymerization leading to 

levoglucosan evolution, fragmentation reactions producing gases and volatile compounds. It 

should be emphasized that each partial reaction may be the average of several parallel 

reactions. In spite of the complicated reaction mechanisms of the thermal decomposition of 

cellulose, generally first order kinetics are used for modeling indicating that one of the 

reactions of the complex reaction network is rate controlling. The least squares evaluation 

method is applied in the most sophisticated models, which generally results in activation 

energy E=200-240 kJ/mol and preexponential factor A=10
15

-10
17

 s
-1

 for cellulose 

decomposition [19-22]. However, much lower activation energies have also been reported 

(e.g., 140-150 kJ/mol) [23]. Várhegyi et al. emphasized [19] that low sample masses should 

be used (0.3-0.5mg) to avoid the heat transfer problems and minimize the secondary reactions 

during the diffusion of the volatile products. 

Fewer kinetics calculations have been carried out on the thermal decomposition of 

hemicelluloses than on cellulose pyrolysis due to the difficult isolation of hemicelluloses. A 

few studies are available concerning the chemical kinetics and products of pyrolysis of xylan 

[24-26], used as a model compound for hardwood hemicelluloses. However, the acetyl 

groups are split from the O-acetyl-4-O-methylglucoronoxylan molecules during the most 

frequently used isolation methods. Since the acetyl groups significantly modify the thermal 

stability of the molecules, the kinetic studies on xylan macromolecules do not represent 

completely the thermal decomposition of hardwood hemicelluloses. Di Blasi [26] obtained 

activation energies of 76 kJ/mol for volatile evolution and of 114-143 kJ/mol for char 

formation during isothermal pyrolysis of xylan. Várhegyi et al. [25] applied a successive 

reaction model for nonisothermal thermogravimetric experiments of xylan resulting in about 



195 kJ/mol and 95 kJ/mol activation energy for the two reaction steps. Branca et al. [27] 

studied the pyrolysis kinetics of glucomannan, the main component of softwood 

hemicelluloses. Isothermal kinetics were applied for the yield of volatile products and char, 

and activation energies between 52 and 96 kJ/mol were obtained.  

The kinetic description of lignin is more difficult than that of cellulose. Lignin 

decomposes in a wide temperature range with a low decomposition rate producing a wide and 

flat DTG curve. The cross-linked nature of lignin structure and the different thermal stability 

of the various functional groups lead to very diverse reactions. Therefore, the corresponding 

reaction mechanisms are too complex for the mathematical modeling. Várhegyi et al. [19] 

described the thermal decomposition of milled wood lignins by a formal approximation using 

a pseudo first order reaction and received extremely low activation energies of 34-65 kJ/mol.  

Numerous kinetic calculations can be found in the literature for the thermogravimetric 

experiments of biomass samples with very diverse results [28-34]. The kinetic models 

generally assume that the isothermal gas or liquid phase models can be applied for the 

dynamic experiments. Due to the complex composition of biomass materials, the TGA 

experiments of biomass materials are evaluated nowadays by the nonlinear method of least-

squares (LSQ), assuming more than one reaction. Lignocellulosic materials consist of three 

main macromolecular components: hemicellulose, cellulose and lignin. It is frequently 

supposed in the kinetic models that the thermal decomposition of the biomass components 

takes place independently from each other. The three-component mechanism with linear or 

nonlinear dependence on the species concentrations, for the volatile fractions of the pseudo-

components hemicellulose, cellulose and lignin, is widely applied [28-33] to describe the 

dynamic thermogravimetric curves of wood/biomass devolatilization. The first pseudo-

component is associated with the shoulder and the second one with the peak of the DTG 

curve, whereas the lignin pseudo-component decomposes slowly over a very broad range of 

temperatures. The calculated activation energies vary between 80 and 116 kJ/mol for 

hemicellulose, 195–286 kJ/mol for cellulose, and 18–65 kJ/mol for lignin. Nevertheless, 

Caballero et al. [35] concluded that some interactions must exist between the biomass 

components during the thermal decompositions because the simple addition of the kinetics of 

isolated compounds (hemicellulose, cellulose, lignin) cannot satisfactorily reproduce the 

kinetic behavior of the raw materials. Furthermore, the additive models are not able to 

explain the fact that higher heating rates result in the formation of less char from biomass 

samples. 

The assumption of a distribution of the reactivity of species frequently helps in the 

kinetic evaluation of the pyrolysis of complex organic samples. The distributed activation 

energy models (DAEM) have also been used for biomass kinetics [36-38]. The thermal 

decomposition has been described by three partial reactions assuming Gaussian distribution 

for the activation energies.  

The thermal decomposition of large particles of lignocellulosic fuels is interesting from 

the viewpoint of thermochemical conversion processes. Di Blasi et al. [39, 40] studied the 

effect of transport phenomena and heat radiation intensity on the process dynamics, 

macroscopic behavior, conversion, pyrolysis product yields of various biomass samples. This 

study provided fundamental information for reactor optimization when internal heat transfer 

is the controlling mechanism.  



 

3.4. ANALYTICAL PYROLYSIS  

3.4.1. Pyrolysis Techniques 

The principle of flash pyrolysis is the fast heating to a predetermined temperature and 

keeping the sample at the constant temperature for a given time. The pyrolysis is carried out 

in inert atmosphere, helium is used most frequently especially with mass spectrometric 

detections. The rapid heating of solid samples can be carried out by different techniques [41-

43]. The furnace-type pyrolyzer is heated to the given temperature continuously and the 

sample is introduced into the preheated zone rapidly. The resistively heated metal element 

utilizes mostly a coiled platinum filament with a quartz tube for solid samples or a platinum 

ribbon for soluble samples. Curie-point pyrolysis applies high frequency inductive heating of 

ferromagnetic wires or small sheets. The samples are placed on the wires from suspension or 

packed in the sheets, and they are pyrolyzed at the Curie temperature of the ferromagnetic 

alloys. Laser pyrolysis is used when vigorous degradation of the samples is necessary, but 

only small surface of the sample can be reached by the laser light.  

The volatile products of the pyrolysis usually are measured on-line by an analytical 

instrument. Two kinds of techniques are commonly applied. The pyrolysis unit can be 

coupled to a mass spectrometer or a Fourier transform infrared spectrometer, which monitor 

the spectra and the intensity of all the products. These procedures are very fast and suitable 

for fingerprinting studies and statistical pattern recognition methods of large number of 

samples. The other widely applied technique use the coupling of the pyrolysis unit with a gas 

chromatograph, which separates the volatile products. The detector can be a regular GC 

detector (e.g., flame ionization detector), an FTIR equipment or a mass spectrometer. These 

techniques are more time-consuming, but give a more detailed information about the 

individual compounds of the pyrolyzate. 

 

3.4.2. Pyrolysis of Macromolecular Biomass Constituents 

Formation of levoglucosan (1,6-anhydro--D-glucopyranose) during vacuum pyrolysis 

of cotton cellulose was already reported in 1918 by Pictet and Sarasin [44]. The yield of 

levoglucosan and other products strongly depends on the purity and physical properties of 

cellulose as well as on the conditions of pyrolysis. Vacuum pyrolysis can lead to as high as 

40-60% levoglucosan yield [2, 45]. Recently Kwon et al. [46] reported even 70% 

levoglucosan yield in a continuous-feed pyrolyzer at 450°C with rapid cooling under reduced 

pressure of air. According to Mamleev et al. [47], the optimal temperature for the production 

of maximum yield of levoglucosan is 310-340°C. Apparently this temperature is in 

agreement with the thermogravimetric results on cellulose decomposition [48]. The reaction 

rate of cellulose decomposition was shown to be inversely proportional to the degree of 

polymerization and related to the orientation and crystallinity during thermal decomposition 

in vacuum [49-51]. Levoglucosan appears to be produced from the less ordered regions.  

It was shown by Golova et al. [52] that 1,6-anhydroglucofuranose is also formed in the 

thermal decomposition of cellulose under vacuum, the yield being 3% based on cellulose. It 

has been concluded by Madorsky et al. [17] that the pyrolysis of cellulose in nitrogen 



atmosphere proceeds at a similar rate as under vacuum, but the product distribution is 

different: lower amount of tar and greater yield of the lighter fractions are formed under 

atmospheric pressure, which was explained by secondary reactions of the intermediate 

fragments.  

 
Figure 3.6. Total ion chromatograms of the pyrolysis products of Py-GC/MS experiments on (a) 

cotton wool; (b) O-acetyl-4-O-methyl-glucuronoxylan; and (c) beech milled wood lignin. Pyrolysis 

was carried out at 600°C for 20s in helium atmosphere. 

 

The total ion chromatogram of the pyrolysis products (pyrogram) of cotton cellulose is 

shown in Fig. 3.6 a. The pyrolysis was carried out at 600°C for 20 s in helium atmosphere 

and the products were analyzed on-line with GC/MS. The identification of the pyrolysis 

products has been carried out using the NIST mass spectral library as well as the 

chromatographic retention data and mass spectra collection of Faix and coworkers [53-56]. 

For the identification of a few additional compounds some other papers have been used [57-

62]. Table 3.3 lists the major products together with the most important mass spectrometric 

ions and molecular mass. As Fig. 3.6 a indicates, levoglucosan (1,6-anhydroglucopyranose) is 

the most important decomposition product of cellulose, and much smaller amount of 1,6-

anhydroglucofuranose is formed. A few anhydrosugar products can be derived from the  



Table 3.3. The main decomposition products of biomass samples during pyrolysis at 600°C, 20 s. 

Peak numbers refer to the peaks in Figs. 3.6 and 3.7. 

 

Peak 

No. 

Retention 

time (min) 

Compound Abundant ions 

(m/z) 

Molar 

mass Da 

1 2.28 Carbon dioxide  

+ methane 

44, 28, 16 

16, 15, 14 

44 

16 

2 2.35 Formaldehyde 29, 30, 28, 15 30 

3 2.46 Water 18, 17, 16 18 

4 2.55 Acetaldehyde 29, 44, 43, 26 44 

5 2.62 Acetone + 

methanol 

43, 58, 15, 27 

31, 32, 29, 15 

58 

32 

6 2.84 2-Propenal 27, 56, 55, 26 56 

7 2.92 Propanal-2-one 43, 29,15, 72 72 

8 3.58 2,3-Butanedione 43, 86, 15 86 

9 4.20 Hydroxyacetaldehyde 31, 29, 32, 60 60 

10 4.65 2-Butenal 41, 70, 39, 69 70 

11 5.06 Acetic acid 43, 45, 60 60 

12 5.80 Hydroxypropanone 43, 31, 74 74 

13 6.58 1,2-Dihydroxyethene 31, 42, 29, 60 60 

14 8.48 1,2-Ethanediol 31,33, 43, 62 62 

15 8.73 3-Hydroxypropanal 43, 73, 42, 74 74 

16 8.81 3-Butenal-2-one 84, 27, 29, 55 84 

17 8.95 (3H)-Furan-2-one 84, 55, 39, 70 84 

18 9.44 (2H)-Furan-3-one 84, 54, 26, 55 84 

19 9.49 3-Furanaldehyde 95, 96, 39, 67 96 

20 9.83 Butanedial 58, 29, 57, 43 86 

21 10.02 2-Hydroxy-butanal-3-one 43, 31, 29, 102 102 

22 10.25 2-Cyclopenten-1-one 82, 54, 53, 39 82 

23 10.31 2-Furanaldehyde 96, 95, 39, 29 96 

24 11.70 2-Furfuryl alcohol 98, 41, 81, 39 98 

25 12.68 2-Cyclopentene-1,4-dione 96, 42, 68, 54 96 

26 13.44 1,2-Cyclopentanedione 98, 55, 42, 69 98 

27 13.92 Dihydromethylfuranone 70, 42, 98, 39 98 

28 14.07 5-Methyl-2-furanaldehyde 110, 109, 53, 81 110 

29 14.15 Pyranone derivative 55, 86, 43, 56 114 

30 14.77 (5H)-Furan-2-one 55, 84, 27, 54 84 

31 15.34 -Lactone derivative 110, 85, 43, 39 110 

32 15.44 4-Hydroxy-5,6-dihydro-2H-pyran-2-one 114, 58, 29, 57 114 

33 16.01 1-Methyl-2-hydroxy-1-cyclopentene-3-one 112, 55, 69, 84 112 

34 16.94 Phenol 94, 66, 65, 39 94 

35 17.23 2-Methoxyphenol (Guaiacol) 109, 124, 81, 53 124 

36 18.10 2-Methylphenol 108, 107, 77, 79 108 

37 18.53 3,5-Dihydroxytoluene 124, 123, 95, 39 124 



38 18.79 Dihydromethylfuranone  69, 98, 41, 39 98 

39 18.95 4-Methylphenol 107, 108, 77, 79 108 

40 18.99 3-Methylphenol 108, 107, 79, 77 108 

41 19.70 4-Methylguaiacol 138, 123, 95, 77 138 

42 19.75 Anhydrosugar 44, 57, 43, 29  

43 20.02 2,6-Dimethylphenol 107, 122, 121, 77 122 

44 21.60 
(1R,5S)-1-hydroxy-3,6- 

dioxabicyclo[3.2.1]octan-2-one  
43, 41, 69, 116 144 

45 21.65 4-Ethylguaiacol 137, 152, 122, 91 152 

46 21.79 4-Hydroxy-3-methyl-(5H)-furanone 114, 56, 42, 84 114 

47 22.38 1,4:3,6-Dianhydro--D-glucopyranose 69, 57, 29, 98 144 

48 22.59 1,4-Anhydroarabinofuranose 57, 73, 29, 86 132 

49 22.81 3-Methoxy-1,2-benzenediol 140, 125, 97, 51 140 

50 22.87 4-Vinylguaiacol 150, 135, 107, 77 150 

51 22.50 2,3-Dihydrobenzofuran 120, 91, 119, 65 120 

52 23.40 4-Allylguaiacol (Eugenol) 164, 149, 103, 77 164 

53 23.78 5-Hydroxymethyl-2-furanaldehyde 97, 126, 41, 69 126 

54 23.93 1,2-Benzenediol (Cathecol) 110, 64, 81, 92 110 

55 24.04 2,6-Dimethoxyphenol (syringol) 154, 139, 96, 111 154 

56 24.50 Dihydro-4-hydroxy-(3H)-Furan-2-one 44, 43, 29, 74 102 

57 24.58 cis-Isoeugenol 164, 149, 77, 103 164 

58 24.71 3-Methyl-1,2-benzenediol 124, 78, 123, 39 124 

59 24.75 3,4-Dimethoxyphenol 154, 139, 111, 65 154 

60 25.16 
2-Hydroxymethyl-5-hydroxy-2,3-dihydro-

(4H)-pyran-4-one 
144, 87, 97, 29 144 

61 25.52 4-Methyl-1,2-benzenediol 124, 123, 78, 77 124 

62 25.64 Trans-isoeugenol  164, 149, 77, 103 164 

63 25.72 1,4-Anhydro--D-xylopyranose 57, 73, 29, 43 132 

64 25.95 4-Methylsyringol 168, 153, 125,107 168 

65 26.08 Vanillin 151, 152, 81, 109 152 

66 26.30 C3H3-guaiacol 162, 147, 91, 119 162 

67 27.27 4-Propylguaiacol 137,166, 122, 94 166 

68 27.39 Anhydrosugar 45, 73, 57, 42 132 

69 27.70 Acetoguaiacone  151, 166, 123, 108 166 

70 28.52 4-Vinylsyringol 180, 165, 137, 122 180 

71 28.70 Guaiacylacetone 137, 180, 122, 94 180 

72 28.90 Allylsyringol 194, 167, 91, 119 194 

73 29.24 1,6-Anhydro--D-galactopyranose 60, 57, 73, 29 162 

74 30.31 Anhydrosugar 43, 60, 73, 57  

75 30.72 Levoglucosan 60, 57, 73, 29 162 

76 30.91 trans-4-Propenylsyringol 194, 91, 179, 119 194 

77 31.01 Dihydroconiferyl alcohol 137, 182, 138, 122 182 

78 31.46 Syringaldehyde 182, 181, 167, 111 182 



79 31.51 Cis-coniferyl alcohol 137, 180, 124, 91 180 

80 31.69 Anhydrosugar 73, 57, 103, 60  

81 31.91 Anhydrosugar 43, 73, 60, 99  

82 32.24 4-Propylsyringol 167, 196, 168, 123 196 

83 33.30 1,6-Anhydro--D-glucofuranose 73, 69, 43, 44 162 

84 32.40 Anhydrosugar 45, 73, 69, 41  

85 32.57 Anhydrosugar 73, 71, 60, 87  

86 32.66 Acetosyringone 181,196, 153, 138 196 

87 32.93 Trans-coniferyl alcohol 137, 180, 124, 91 180 

88 33.27 Coniferyl aldehyde 178, 135, 147, 107 178 

89 33.40 Syringyl acetone 167, 210, 168, 123 210 

90 33.92 Propiosyringone 181, 210, 182, 153 210 

91 34.04 a-Oxypropiosyringone 181, 182, 153, 224 224 

92 34.18 4-(Oxoallyl)-syringol 181, 208, 55, 182 208 

93 35.47 Dihydrosynapyl alcohol 168, 167, 212, 153 212 

94 35.90 cis-Synapyl alcohol 210, 167, 154, 182 210 

95 37.30 trans-Synapyl alcohol 210, 167, 154, 182 210 

96 37.51 Synapyl aldehyde 208, 165, 137, 177 208 

 

 

glucopyranose units by dehydration, e.g., 1,4:3,6-dianhydro--D-glucopyranose. Several 

furan derivatives also evolve, which may originate from the glucofuranose structure through 

dehydration steps. The smaller molecular mass products are mostly aldehydes and ketones, 

which are formed by fragmentation of the sugar units. Hydroxyacetaldehyde represents the 

most typical smaller product.  

Fig. 3.6 b illustrates the pyrogram of O-acetyl-4-O-methylglucuronoxylan, the main 

hemicellulose component of hardwoods, which was isolated from beech wood [8]. Table 3.3 

includes the identification of the pyrolysis products of xylan, too. The main pyrolysis product 

is acetic acid, which is derived from the acetyl substituents on the xylose units. From the 

main xylan backbone, small amounts of monomer units with pyranose structure are formed 

by depolymerization (1,4-anhydro--D-xylopyranose) due to steric reasons. However the 

majority of the significant products are formed by dehydration reaction. Pyranone derivatives 

keep the original six-membered ring structure, 4-hydroxy-5,6-dihydro-2H-pyran-2-one is a 

very typical pyrolysis product of xylan. Furan derivatives (e.g., 2-furanaldehyde) are also 

important pyrolysis products of hardwood hemicellulose. Fragmentation of the saccharide 

rings also occurs yielding oxo-compounds (3-hydroxypropanal, propanal-2-one etc.). 

Lignin is the by-product of pulping (paper production) technology. The economic 

utilization of lignin is not solved, therefore numerous papers have been published on the 

possible thermal conversion and structural characterization of lignin [63-66]. Fig. 3.6 c 

presents the pyrogram of a milled wood lignin isolated from beech wood [63]. Table 3.3 

shows the most important lignin products, too. During fast pyrolysis, lignin produces mainly 

monomeric aromatic products with preserved aromatic methoxyl and hydroxyl groups. The 

aliphatic side chain have up to three carbon atoms containing hydroxyl and carbonyl groups 



as well as double bonds. Beech lignin has about the same amount of guaiacyl-type and 

syringyl-type monomeric units. During pyrolysis, beech milled wood lignin produces higher 

yield of syringyl-type products (e.g., 4-methylsyringol, syringol, syringaldehyde and synapyl 

aldehyde)  than guaiacyl-type monomeric products (e.g., 4-methylguaiacol, guaiacol, 4-

vinylguaiacol, vanillin, coniferyl aldehyde). Synapyl and coniferyl alcohols and aldehydes 

keep the original 3 aliphatic carbon atoms on the aromatic ring, thus they are markers of the 

original lignin structure.  

 

3.4.3. Pyrolysis of Whole Biomass Samples 

Hundreds of papers have been published on the analytical pyrolysis of various biomass 

samples for structural studies or for possible utilization purposes, only a few of them are cited 

here [42,67-72]. Typical pyrograms of a softwood, a hardwood and a herbaceous plant are 

illustrated in Fig. 3.7.  

 
Figure 3.7. Total ion chromatograms of the pyrolysis products of Py-GC/MS experiments on (a) spuce 

wood; (b) black locust wood; and (c) energy grass. Pyrolysis was carried out at 600°C for 20s in 

helium atmosphere. 

 



During pyrolysis of biomass samples, more than a hundred chemical compounds are 

formed, which is one of the main problems of the utilization of biooils. The identification of 

the most important products is listed in Table 3.3. In addition to a few gaseous products, 

levoglucosan represents the main decomposition product from the cellulose component of 

each biomass samples. Its intensity is much higher from the wood samples than from the 

herbaceous plant due to the lower inorganic content of wood, as will be discussed later. 

However, levoglucosan yield is lower from biomass samples in comparison with the pure 

cellulose taking into account the cellulose content of biomass. As shown in Fig. 3.7 a, spruce 

produces high yield of hydroxyacetaldehyde. Several other oxo-compounds and furan 

derivatives are released from each samples indicating the fragmentation of the sugar units. 

Quite a few anhydrosugars were detected, some of them were not identified. 1,4-anhydro--

D-xylopyranose is a depolymerization product of xylan, which is the main hemicellulose in 

hardwoods, but it is present in the energy grass, too. Spruce evolves relatively high yield of 

1,6-anhydro--D-galactopyranose, which is a characteristic depolimerization product of the 

softwood hemicelluloses. Dehydration of the sugar moieties of cellulose and hemicellulose 

leads to the formation of pyranone derivatives. 

Phenolic compounds dominate in the pyrogram after 16 min. retention time, indicating 

the presence of the lignin components of the biomass. Spruce contains only coniferyl 

monomeric units, hence it produces various methoxyphenolic (guaiacol) compounds. The 

highest molecular mass product of lignin origin is coniferylaldehyde. Significant amount of 

cathecol and alkylcathecols are also formed indicating the demethylation of the methoxyl 

groups at 600°C pyrolysis temperature. From black locust, higher yields of syringol 

(dimethoxyphenol) derivatives are released than guaiacol compounds similarly to the milled 

wood lignin of beech. Energy grass produces the highest yields of guaiacol derivatives 

followed by syringol compounds. Some phenol and methylphenols are also evolved from the 

so-called H-lignin moieties.  

 

3.5. REACTION MECHANISM OF THE THERMAL DECOMPOSITION 

3.5.1. Cellulose Decomposition 

Most of the proposed mechanisms for cellulose and biomass pyrolysis are based on 

hypotheses instead of unambiguous proofs. Nevertheless, consideration of the various 

alternatives provides an insight into the possible carbohydrate reactions. It is generally agreed 

[2, 18] that two competing reactions occur during the pyrolysis of cellulose: the first is a 

fragmentation reaction to generate char and light volatile products (including gases, water, 

aldehydes, ketones etc.) and the second is a depolymerization to yield primarily 

levoglucosan, as well as other anhydromonosaccharides. The first reaction pathway is more 

important at low temperatures and slow heating rates, while the second pathway dominates at 

higher temperatures and at higher heating rates. This model is a simplification of extremely 

complex chemical and physical phenomena, which means that a partial reaction in the 

scheme may correspond in reality to a group of reactions. Shafizadeh and co-workers [2, 6] 

as well as Broido and Nelson [73] have proposed a model for cellulose pyrolysis, in which 

the formation of an "active cellulose" is assumed to be the primary step before the above 

mentioned two steps. Applying prolonged thermal pretreatments of Avicel cellulose followed 



by thermogravimetric analysis, Várhegyi et al. [74] concluded that the experimental results 

are better represented with kinetic models which exclude the initiation reaction.  

The formation of the major volatile products can be explained by simplified reaction 

mechanisms. Pakhomov [75] suggested a free-radical mechanism for the release of 

levoglucosan during the thermal decomposition of cellulose in vacuum. It is not agreed in the 

literature, whether the initial scission occurs within the chain [75] or at the chain end [47]. 

Scheme 3-1 shows a free radical mechanism with the chain scission of the macromolecule.  

The free-radical peeling reactions involve initial cleavage of the oxygen bond at C-4 bond (-

(1-4) glycosidic bond), hydrogen transfer from the C-6 hydroxyl group to C-4, and the 

formation of an oxygen bridge between C-6 and C-1. This mechanism is supported by the 

fact that considerable amount of levoglucosan is evolved from starch, too, where similar 

radicals are formed after the cleavage of the -(1-4) glycosidic bonds [76]. Kilzer and Broido 

[18] proposed that 1,4-anhydro compound is formed as an intermediate and it is rearranged to 

1,6-anhydro-glucopyranose or 1,6-anhydro--D-glucofuranose according to whether the C-6 

hydroxyl group attacks the 1,4 or 1,5 ring of the intermediate compound.  

 
Scheme 3.1. Depolymerization mechanism of cellulose during pyrolysis. 

 



Mamleev et al. [47] suggested a two-level kinetic model for cellulose pyrolysis. 

According to the hypothesis, tar and volatile acids are released during the first 

transglycosylation step due to the decomposition of the non-reducing chain ends. The volatile 

acids catalyze various heterolytic reactions including the formation of light gases as a result 

of fragmentation and depolymerization by the acid-catalyzed -elimination. An argument 

against this hypothesis is  that very high yield of levoglucosan is released during vacuum 

pyrolysis, where there is no acid catalyst. 

Recently three mechanisms for levoglucosan formation during cellulose pyrolysis have 

been studied by Zhang et al. [77], which are the free-radical mechanism, glucose intermediate 

mechanism, and levoglucosan chain-end mechanism. Based on activation energy 

calculations, it was concluded that levoglucosan chain-end mechanism which happens via 

two transglycosylation steps is the most reasonable pathway from the three mechanisms for 

levoglucosan formation. 

Another major product of cellulose pyrolysis is hydroxyacetaldehyde (glycolaldehyde), 

which more likely forms directly from the cellulose chain [78] than from levoglucosan [2, 

79]. Richards [78] suggested a retro-Diels-Alder reaction mechanism for the elimination of 

hydroxyacetaldehyde after dehydration of a glucose segment in cellulose. According to this 

mechanisms, glycolaldehyde is predominantly derived from C5 and C6 segments of a 

monomer unit. as shown in Scheme 3-2. 

 

 
Scheme 3.2. Formation of hydroyacetaldehyde by reverse aldolization during cellulose pyrolysis. 

 

Arisz and Boon [80] studied the pyrolysis of cellulose derivatives and observed that the  

Ei-elimination reaction plays key role in those molecules where the 6-O-positions in the 

cellulose backbone are substituted. This reaction is suggested to occur during cellulose 

decomposition to a smaller degree (Scheme 3-3). It is confirmed by the low yield of pyranone 

derivatives in the pyrolyzate. On the other hand, high water yield suggest the dehydration of 

the sugar units to a high degree. Other dehydrated products are the furan derivatives, which 

adds to the water formation, too.  

 



 
Scheme 3.3. Formation of pyranone rings during cellulose pyrolysis. 

 

3.5.2. Hemicellulose Decomposition 

Less literature data are available for the hemicellulose decomposition due to the difficult 

isolation procedures of hemicelluloses. It is assumed that hemicellulose decomposes 

according to similar dissociation and fragmentation mechanisms as cellulose during 

pyrolysis. The monomeric building blocks of hemicellulose form anhydrosugars, which retain 

the configuration of the original saccharide units [59, 60,81]. The most common 

hemicellulose in softwoods is mannan, which contains mainly mannopyranose segments, but 

it has galactopyranose and glucopyranose units, too. During pyrolysis, the anhydro 

derivatives of the sugar units are formed. Xylan represents the major hemicellulose in 

hardwoods, which produces mostly 5,6-dihydro-4-hydroxy-2H-pyran-2-one in addition to 

1,4-anhydroxylopyranose (Scheme 3-4). Several common furanoic carbohydrate pyrolysis 

products are also obtained from hemicelluloses; Scheme 3-4 illustrates the possible formation 

route of 2-furanaldehyde. Recently Shen et al. [15] studied the pyrolysis of O-acetyl-4-O-

methylglucorono-xylan isolated from beech wood. The formation of furfural and 1,4-

anhydro-D-xylopyranose was attributed mainly to the xylan units. Due to the smaller stability 

of 1,4-anhydro-D-xylopyranose it decomposes by the rearrangement leading to the formation 

of furan derivatives. Acetic acid and carbon dioxide were assumed to be released from the 

primary decomposition of O-acetylxylan segments. The xylan unit is also the main precursor 

for the formation of the two-carbon, three-carbon fragments and gases (carbon monoxide, 

hydrogen and methane). The evolution of methanol is mainly ascribed to the primary 

reactions of 4-O-methylglucoronic acid unit, which could be further decomposed to almost 

all of the products generated from the other two units. 



 
Scheme 3.4. Dehydration reactions of xylan units during pyrolysis. 

 

3.5.3. Lignin Decomposition 

Due to the complexity of the lignin structure, it is difficult to understand its pyrolysis 

mechanisms. Therefore, several studies have been carried out to discover the primary 

reactions on lignin model compounds [82-87]. A comparison of the products from the 

pyrolysis of lignin, biomass, and the surface-immobilized model compounds provided 

evidence that the thermal degradation of lignin occurs principally by a free-radical reaction 

pathway [85]. It was clarified that the ether bond is prone to be cleaved easily [87]. Britt et al. 

[84] concluded that methoxyl substituents enhance the homolysis of the -O-4 linkage. The 

methoxyl-substituted phenoxy radicals undergo a complex series of reactions, which are 

dominated by intramolecular hydrogen abstraction, rearrangement, and -scission reactions.  

During the slow thermal decomposition of lignin - as it is the case in the TGA 

experiments - the cleavage of functional groups plays an important role leading to the 

evolution of low molecular mass products (20-25 % m/m) and the formation of char (25-40 

% m/m). Correlations have been found between the abundance of volatile products and the 

type and amount of functional groups [88] using lignin samples prepared by different 

isolation techniques. The terminal CH2OH groups decompose by the release of both water 

and formaldehyde as demonstrated by the relationship between the aliphatic OH-group 

content and the formaldehyde as well as the water evolution. The dependence of the methane 

yield on the methoxyl group content provided evidence that the scission of methoxyl groups 

results in the formation of methane as well as methanol.  

Beside the cleavage of the functional groups, the formation of monomeric or dimeric 

lignin products represent about 40-50% of the total pyrolysis yield. Similarly to the model 

compounds, generally the -4-O bonds are cleaved, but the aliphatic side groups are also 



partially or fully removed. Thus, numerous aromatic products, mostly phenolic compounds 

are evolved as indicated on the pyrogram of milled wood beech lignin (Fig. 3.6 c) and Table 

3.3. Recently Mu et al. reviewed the pyrolysis products and the possible mechanisms of 

lignin decomposition [89] focusing on the upgrading possibilities of the pyrolysis oil. 

 

3.5.4. Mechanisms of Biomass Pyrolysis 

Levoglucosan can be obtained from cellulose in yields from 20 to 70% by weight [3, 46]. 

However, from lignocellulosic biomass materials the yields of levoglucosan are less than 5%, 

although the cellulose content is about 40%. Nevertheless, it is generally assumed that the 

thermal decomposition of biomass samples occurs by parallel reactions of the degrading 

components. The presence of inorganic ions (mostly potassium) reduces the levoglucosan 

yield to a certain extent. However, the low yield of levoglucosan from inorganic-free biomass 

samples indicates that the presence of other components enhances the secondary reactions of 

the primary decomposition products. 

 

3.6. EFFECT OF INORGANIC MATERIALS ON THE  

DECOMPOSITION MECHANISM 

The biomass materials, in addition to the main macromolecular components, contain 

different amount of extractable materials (e.g., resins, fats, terpenes and flavonoids) as well as 

inorganic components. The extractive materials partly evaporate, partly decompose during 

the thermal decomposition, however they do not exert significant influence on the thermal 

decomposition mechanisms of the macromolecular components [90]. The inorganic content is 

generally determined as ash, which varies in a wide range depending on the type of biomass. 

Wood samples contain rather low inorganic content (0.5-1-5%), but the bark of wood has 2-

5% inorganic compounds [1]. The herbaceous biomass samples contain generally higher 

amount of inorganic compounds (about 4-16%). Calcium and potassium are the predominant 

cations, which are mostly found in carbonate, silicate, oxalate salts. Other elements are also 

found in biomass, such as magnesium, sodium, phosphorus, iron, aluminum and several trace 

elements. 

The early studies focused on the flame retardant effect of inorganic compounds on 

biomass materials during combustion [6, 10]. The flame retardant effect results primarily 

from the tendency of certain inorganic materials to lower the decomposition temperature of 

the substrate, which favors carbonization rather than depolymerization of the macromolecules 

resulting in higher char yield. Hence, less volatile materials are available for the gas phase 

combustion. During pyrolysis, the inherent inorganic components of biomass materials have 

significant influence on the decomposition mechanisms. Potassium is a key plant nutrient, 

whose concentration is the highest in the herbaceous plants. Of all the metals present in 

biomass, potassium has the greatest effect on the thermal decomposition mechanisms. 

Among the biomass components, cellulose is the most susceptible for the presence of 

inorganic ions during the thermal decomposition. Therefore, numerous studies have been 

carried out on the effect of alkali ions on the pyrolysis of cellulose [10, 48], lignocellulosic 

materials [91, 92] and model compounds [93]. Demineralized [94], cation-exchanged [11] 

and impregnated [91, 92, 95, 96] cellulose, wood and herbaceous biomass samples have been 



studied. It was concluded that the presence of potassium and sodium promote gas and char 

formation at the expense of the tar yield during cellulose pyrolysis. Especially the 

levoglucosan yield is reduced in the presence of alkali metal ions indicating that the 

depolymerization reactions are hindered, while the fragmentation reactions of the sugar 

moieties  to low molecular weight components (e.g., water, methane, carbon oxides, 

hydroxacetaldehyde) are enhanced [48, 93].  

It is well known that the catalytic effect depends on the amount of alkali ions since the 

herbaceous samples of high inorganic contents produce much higher char yield than the wood 

samples of low ash content [61, 97-100]. The effect of alkali ion concentration has been 

studied in detail on the thermal decomposition of hemp by Sebestyén et al. [101] Fig. 3.8. 

presents the effect of potassium and sodium content on a few thermogravimetric and mass 

spectrometric parameters of untreated, hot water washed, and alkali-treated hemp samples.  

 

 
Figure 3.8. Relationships between the TG/MS parameters of native, hot-water washed and alkaline-

treated hemp and the alkali ion contents (K
+
 + Na

+
) of the samples. (a) Temperature of the DTG peak 

maximum; (b) char yield; (c) integrated intensity of methane peak (m/z 15); (d) integrated intensity of 

water peak (m/z 18). Figure is taken from ref. 101 with the permission of Springer. 

 

The alkali ion content was determined using inductively coupled plasma-optical emission 

spectroscopy method. The changes in the parameters as a function of the alkali ion 

concentration is not linear; the steepest alteration in the TG/MS parameters can be observed 

in the 0–0.2 mmol/g concentration range of the alkali ions followed by a gradual decrease in 



the effect in the higher concentration range. The DTG peak of the cellulose constituent of 

hemp shifts to lower temperature in the case of alkali-containing samples. The temperature of 

the maximal decomposition rate (Tpeak) reduces from 380 to 320°C (Fig. 3.8 a), and the char 

yield (Fig. 3.8 b)  is doubled as the alkali ion concentration increases from 0 to 0.4 mmol/g. 

On the other hand, the yield of low molecular mass products increases significantly: methane 

evolution is almost doubled (Fig. 3.8 c) and the water yield shows about a sixfold increase 

(Fig. 3.8 d). Methane formation can be attributed to the charring process, while water is 

forming at lower temperatures by the scission of the hydroxyl functional groups. 

The influence of potassium on the cellulose decomposition mechanism is quite well 

understood, but the effect on the pyrolysis of other cell-wall components in biomass are much 

less established. Nowakowski et al. [93] studied the pyrolysis of oat spelt xylan, a typical 

hemicellulose, in the presence of potassium and found little effect on the thermogravimetric 

curves and the pyrolysis product distribution. It has been proposed that the negligible effect is 

due to the alkali metal content of the raw xylan, which is introduced during the isolation.  

A systematic study of the effect of cations on the thermal decomposition of lignins was 

performed by Jakab et. al. [16, 102, 103]. It was shown that the addition of sodium enhances 

dehydration, demethoxylation, decarboxylation, and char formation, whereas it decreases the 

yield of higher molecular mass volatiles and carbon monoxide formation. The presence of 

ZnCl2 has significant effect on the thermal decomposition of milled wood lignins as detected 

by TG/MS [16]. The evolution of water and formaldehyde shifts to 60-80°C lower 

temperature indicating a substantial alteration of the decomposition mechanisms in the 

presence of the Lewis acid. The addition of ZnCl2 to pine lignin isolated from a rotting log, 

reduced the relative abundance of coniferyl alcohol released, while the relative intensity of 

guaiacol and 4-methylguaiacol increased using pyrolysis-mass spectrometry with molecular-

beam sampling [66]. This finding supports the conclusion of Jakab et al. [16] that the 

terminal -CH2OH groups are prone to be cleaved in the presence of sodium or zinc ions. The 

effect of potassium on the lignin pyrolysis was confirmed by Nowakowski et al. [93], which 

was indicated by the increased char yield and a lower temperature decomposition in the 

presence of potassium.  

Various inorganic compounds can be added to biomass samples in order to enhance the 

yield of a certain product and reduce the number of the pyrolysis products [104, 105]. 

Catalytic conversion is discussed in a separate chapter. Here, only a few special reactions are 

mentioned. When cellulose pyrolysis is catalyzed by nanopowder titanium dioxide, aluminum 

oxide and aluminum titanate [57, 58, 106], a high yield of a chiral hydroxylactone ((1R,5S)-

1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one) is formed, which is suggested for the use in 

chiral syntheses.  

Mild acidic additives during pyrolysis can also be used for modifying the pyrolysis 

product distribution of carbohydrates. Shafizadeh and Chin [13] established that cellulose 

pyrolysis yielded mostly levoglucosan and only small amount of dehydration products (e.g., 

1,4:3,6-dianhydro--D-glucopyranose). When the pyrolysis of cellulose was carried out in 

the presence of acidic catalysts, a substantial amount of a dehydrated product, 

levoglucosenone were evolved. Strong acids lead to hydrolysis of carbohydrate therefore 

mild acids, can be used during catalytic pyrolysis. The highest yield of levoglucosenone was 

achieved with the use of phosphoric acid  [107, 108]. Levoglucosenone is an optically active 



compound suited for the synthesis of biologically active products, and it is a promising 

monomer for the chemical and pharmaceutical industry. 

Alkaline pretreatments may be used during thermal decomposition for modifying the 

reaction mechanisms. Alkaline activation during charcoal preparation from biomass enhances 

the production of nanoporous carbon materials [109]. 

 

3.7. EFFECT OF TORREFACTION ON THE COMPOSITION AND 

DECOMPOSITION MECHANISMS 

Torrefaction is a mild thermal pretreatment between 200 and 300°C for the conversion of 

biomass in an inert atmosphere. Although the low-temperature thermal pretreatments have 

been studied earlier [110-113], the amount of publications on torrefaction has been relatively 

small. However, the number of publications has increased rapidly in the last few years due to 

the recognition that the thermal pretreatment has economic importance in the development of 

efficient biomass conversion technologies. 

The utilization of biomass in energetic processes has several disadvantages due to the 

high oxygen content, low calorific value, hydrophilic nature and the high moisture content of 

biomass, which makes the process design and control more complicated. Furthermore, the 

agricultural production of biomass involves high logistics and transportation costs due to the 

low energy density of biomass. These disadvantages can be reduced by the torrefaction 

pretreatment. 

The purpose of the pretreatment from a chemical point of view is the removal of water 

and the acidic groups of hemicelluloses or the whole hemicellulose fraction with minor 

degradation of cellulose and lignin in the biomass. During the process, water and a part of the 

volatiles are released, causing a decrease in mass, but an increase in the energy density. A 

typical mass and energy balance for the torrefaction of woody biomass is that 70% of the 

mass is retained as a solid product, containing 90% of the initial energy content. The other 

30% of the mass is converted into torrefaction volatiles, which contains only 10% of the 

energy of the biomass [114]. The removal of moisture reduces the microbial activity, e.g., the 

likelihood of rotting is diminished due to the more hydrophobic character of torrified 

biomass, so the storage and transportation become easier. The grindability of torrefied 

biomass is significantly improved when torrefaction is performed at higher temperature 

[115]. 

The pyrolysis oil produced from untreated biomass contains many oxygenated 

compounds including various acids, which causes the instability of the biooil. The pyrolysis 

oil produced from biomass pretreated by torrefaction is more stable due to the removal of 

acidic groups during the pretreatment [116]. Several authors studied the composition of the 

biooil formed from torrified biomass [116-118]. Py-GC/MS analysis exhibited [117] that the 

yields of acetic acid and-other lightweight compounds were lower in pyrolysis of torrefied 

wood, while the yields of levoglucosan in torrefied biomass pyrolysis were obviously higher 

due to the increased cellulose content. The char yield is obviously higher from torrified 

biomass owing to the increased lignin content. At lower torrefaction severity, the moisture 

and the hemicellulose component (e.g., acetic acid, furanaldehyde) are devolatilized, and the 

cellulose and lignin start to decompose with increasing temperature and time. The presence of 



steam reduces the torrefaction temperature and/or time required for a given result, that is 

called wet torrefaction or hydrothermal treatment [119-121]. Apparently, water promotes the 

hydrolysis of acidic groups and hemicellulose molecules, thus enhancing the torrefaction rate. 

Various substrates have different reactivity in torrefaction similarly to the different 

thermal stability of biomass samples. Deciduous xylan-containing wood (beech and willow) 

and straw are more reactive in the torrefaction process than coniferous wood [111]. 
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