170 research outputs found

    Multi-Stream LDPC Decoder on GPU of Mobile Devices

    Get PDF
    Low-density parity check (LDPC) codes have been extensively applied in mobile communication systems due to their excellent error correcting capabilities. However, their broad adoption has been hindered by the high complexity of the LDPC decoder. Although to date, dedicated hardware has been used to implement low latency LDPC decoders, recent advancements in the architecture of mobile processors have made it possible to develop software solutions. In this paper, we propose a multi-stream LDPC decoder designed for a mobile device. The proposed decoder uses graphics processing unit (GPU) of a mobile device to achieve efficient real-time decoding. The proposed solution is implemented on an NVIDIA Tegra board as a system on a chip (SoC), where our results indicate that we can control the load on the central processing units through the multi-stream structure

    LDPC Decoding on GPU for Mobile Device

    Get PDF

    GPU Accelerated Scalable Parallel Decoding of LDPC Codes

    Get PDF
    This paper proposes a flexible low-density parity-check (LDPC) decoder which leverages graphic processor units (GPU) to provide high decoding throughput. LDPC codes are widely adopted by the new emerging standards for wireless communication systems and storage applications due to their near-capacity error correcting performance. To achieve high decoding throughput on GPU, we leverage the parallelism embedded in the check-node computation and variable-node computation and propose a parallel strategy of partitioning the decoding jobs among multi-processors in GPU. In addition, we propose a scalable multi-codeword decoding scheme to fully utilize the computation resources of GPU. Furthermore, we developed a novel adaptive performance-tuning method to make our decoder implementation more flexible and scalable. The experimental results show that our LDPC decoder is scalable and flexible, and the adaptive performance-tuning method can deliver the peak performance based on the GPU architecture.Renesas MobileSamsungNational Science Foundatio

    A Massively Parallel Implementation of QC-LDPC Decoder on GPU

    Get PDF
    The graphics processor unit (GPU) is able to provide a low-cost and flexible software-based multi-core architecture for high performance computing. However, it is still very challenging to efficiently map the real-world applications to GPU and fully utilize the computational power of GPU. As a case study, we present a GPU-based implementation of a real-world digital signal processing (DSP) application: low-density parity-check (LDPC) decoder. The paper shows the efforts we made to map the algorithm onto the massively parallel architecture of GPU and fully utilize GPU’s computational resources to significantly boost the performance. Moreover, several efficient data structures have been proposed to reduce the memory access latency and the memory bandwidth requirement. Experimental results show that the proposed GPU-based LDPC decoding accelerator can take advantage of the multi-core computational power provided by GPU and achieve high throughput up to 100.3Mbps.Renesas MobileTexas InstrumentsXilinxNational Science Foundatio

    Implementation of a 3GPP LTE Turbo Decoder Accelerator on GPU

    Get PDF
    This paper presents a 3GPP LTE compliant turbo decoder accelerator on GPU. The challenge of implementing a turbo decoder is finding an efficient mapping of the decoder algorithm on GPU, e.g. finding a good way to parallelize workload across cores and allocate and use fast on-die memory to improve throughput. In our implementation, we increase throughput through 1) distributing the decoding workload for a codeword across multiple cores, 2) decoding multiple codewords simultaneously to increase concurrency and 3) employing memory optimization techniques to reduce memory bandwidth requirements. In addition, we analyze how different MAP algorithm approximations affect both throughput and bit error rate (BER) performance of this decoder
    • …
    corecore