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A flexible software LDPC decoder that exploits data parallelism for simultaneous multicode words decoding on the mobile device
is proposed in this paper, supported by multithreading on OpenCL based graphics processing units. By dividing the check matrix
into several parts to make full use of both the local memory and private memory on GPU and properly modify the code capacity
each time, our implementation on a mobile phone shows throughputs above 100Mbps and delay is less than 1.6 millisecond in
decoding, which make high-speed communication like video calling possible. To realize efficient software LDPC decoding on the
mobile device, the LDPC decoding feature on communication baseband chip should be replaced to save the cost and make it easier
to upgrade decoder to be compatible with a variety of channel access schemes.

1. Introduction

Low Density Parity Check (LDPC) error correcting code is
a kind of linear block codes, proposed by Gallager in 1962
[1] and rediscovered by Mackay and Neal in 1996 [2]. It
takes its name from its sparse check matrix. LDPC codes
are capacity-approaching codes, which means that it allows
the noise threshold to be set very close to the Shannon
limit for a symmetric memoryless channel; thus, the practical
constructions of LDPC code exists.

Good performance of the LDPC code is at the cost of a
very large amount of calculation.DCPdecoding computation
has very high parallel computation. The current commercial
LDPC decoder is based on the hardware implementation,
which only allows several kinds of specific LDPC codes at
the same time and is difficult to upgrade. There are a large
number of studies using FPGA to realize the efficient LDCP
decoder [3, 4]. With the rapid development of the graphics
processing units (GPU) on the desktop, there are a lot of
researches using CUDA framework for LDPC decoding [5,
6]. The LDPC code is widely used in the fourth generation
of mobile telecommunications technology, which makes it
significant to develop efficient software LDPC decoding on
themobile device. At the same time, software LDPC code can
dynamically change the parameters, including code length,

code rate, and the number of iterations to quickly deal with
all kinds of network environment.

OpenComputing Language (OpenCL) [7] is a framework
for writing programs that execute across heterogeneous
platforms consisting of CPU, GPU, DSP, FPGA, and other
processors or hardware accelerators. This technical specifica-
tion was reviewed by the Khronosmembers and approved for
public release on 2008. ComputeUnifiedDevice Architecture
(CUDA) [8] also enables developers to develop parallel
computing program onGPU at the desktop. OpenCL appears
later, but it supports more scenarios. With the rapid devel-
opment of mobile devices, many mobile devices especially
mobile phone began to have their own high-performance
GPU chips. Some vendors such as Qualcomm, Imagination
PowerVR, ARM, and Vivante are beginning to support the
OpenCL on their mobile GPU [9], which make developing
parallel computing programonmobile devices based onGPU
easier. In this article, we tried to develop a LDPC decoder
on the mobile GPU based on the OpenCL. Nevertheless,
the global memory is limited on a mobile GPU; therefore,
the performance is not as good as on the desktop GPU. We
improve the decoding through making full use of the local
memory of each computing unit and the private memory of
each processing unit. At the same time, we properly reduce
the number of threads per code word and add code-words
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in decoding process, and better performance is obtained.
In our experiments, as the best result in the decoder, the
throughput reached 160Mbps, which can satisfy the current
mobile wireless communication in many cases, and delay
time is less than 2 milliseconds (ms), which can satisfy many
real-time applications like video calling.

2. MSA for LDPC Decoding

Belief propagation (BP) algorithm is a kind of important
message passing algorithm, often used in the field of artificial
intelligence [9]. Algorithm between each node transfers the
belief information. For example, the belief information from
bit node BN

𝑛
to check node CN

𝑚
depends on the observation

of BN
𝑛
and all the check nodes BN

𝑛
connected with, except

CN
𝑚
. Similarly, the belief information from check node CN

𝑚

to bit node BN
𝑛
depends on the observation of CN

𝑚
and

all the bit nodes CN
𝑚
connected with, except BN

𝑛
. As a BP

algorithm, the Min Sum Algorithm (MSA) is a very efficient
LDPC decoding algorithm [10]. It is based on the belief
propagation between nodes connected as indicated by the
Tanner graph [11] edges. Figure 1 shows the Tanner graph
of a particular 4 × 8 H matrix. MSA, proposed by Gallager,
operates in the logarithmic probabilistic domain.

LDPC code is a special form of linear (𝑁,𝐾) block
code, defined by sparse binary parity check H matrices of
dimension𝑀 × 𝑁, while𝑀 = 𝑁 − 𝐾. We assume that the
channel is an additive white Gaussian noise (AWGN) channel
with the mean 0 and the variance 𝜎2. BPSK modulation
maps a code-word c = (𝑐

1
, 𝑐
2
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sequence is y = (𝑦
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), with 𝑦
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of receiving 𝑦
𝑛
, the logarithmic a priori probability of 𝑥
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is

𝐿𝑝
0

𝑛
. MSA is as shown in Figure 2.
Before entering the loop iteration, we use the received

sequence y to initialize the prior probabilities of BN
𝑛
as

follows:
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In this algorithm, we do not compute the posterior
probabilities of BN

𝑛
and CN

𝑚
directly; instead, we compute

the message transferring between the bit nodes and check
nodes as well as the posterior probabilities before hard
decoding.

In the step of updating message CN
𝑚

to BN
𝑛
, for 𝑖th

iteration, accessing H in row-major order, 𝐿𝑟𝑖
𝑚𝑛

as the
message sent from CN

𝑚
to BN

𝑛
is updated according to any

bit nodes connected to CN
𝑚
in Tanner graph, except the BN

𝑛
.

The update process, called minimum step, is as follows:
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Using the H matrix and Tanner graph in Figure 1, for
instance, 𝐿𝑟𝑖

0,0
is updated by BN

1
and BN

2
, as in Figure 3,

𝑟
𝑖

0,0
= 𝑓(𝐿𝑞

𝑖−1

1,0
, 𝐿𝑞
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2,0
).

The posterior probabilities of BN
𝑛
is updated by the prior

probabilities of BN
𝑛
and all the check nodes connected to

BN
𝑛
:
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Similarly, in the step of updating message BN
𝑛
to CN

𝑚
,

for 𝑖th iteration, 𝐿𝑞𝑖
𝑛𝑚
, as the message sent from BN

𝑛
to CN

𝑚

is updated according to any check nodes connected to BN
𝑛
in

Tanner graph, except the CN
𝑚
. The update process is called

sum step.
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Using the Tanner graph in Figure 1, for instance, 𝐿𝑞𝑖
0,0

is
updated by CN

2
, as in Figure 4, 𝐿𝑞𝑖

0,0
= 𝑓(𝐿𝑟

𝑖

2,0
).

Actually, the steps of updating 𝐿𝑝𝑖
𝑛
and 𝐿𝑞𝑖

𝑛𝑚
can be

exchanged. If we update 𝐿𝑝𝑖
𝑛
first, the result of 𝐿𝑝𝑖

𝑛
can be used

to update 𝐿𝑞𝑖
𝑛𝑚
, which reduces the repeated computation.

The final hard decoding is performed at the end of an
iteration.

𝑐
𝑖

𝑛
=

{

{

{

1 if 𝐿𝑝𝑖
𝑛
< 0

0 if 𝐿𝑝𝑖
𝑛
> 0.

(5)

The iteration procedure is stopped if the decoded word c
verifies all parity check equations cH𝑇 = 0, or the maximum
iteration is reached.

The implementation of decoder is achieved by a flood
scheduling algorithm [12]. It guarantees that the bit nodes
would not interfere with each other in the update step and
when updating check nodes, check nodes will not interfere
with each other too. Using this principle allows the true
parallel execution of MSA for LDPC decoding based on the
stream-based computing method.

3. OpenCL for Mobile GPU

ModernGPU is based onultra high parallel computing ability
and programmable pipeline. Stream processor of GPU is
able to do general-purpose computation [13]. GPU is more
efficient than CPU floating point performance especially
when we deal with the single instruction multiple data
(SIMD) and the completion of compute-intensive tasks, in
which data processing operation needs far more time than
the data scheduling and data transmission [14].

Unlike the dedicated GPU for desktop computers, a
mobile GPU is typically integrated into an application pro-
cessor, which also includes a multicore CPU, an image pro-
cessing engine, DSPs, and other accelerators [15]. Recently,
modern mobile GPUs such as the Qualcomm Adreno
GPU [16], the Imagination PowerVR GPU, ARM Mali, and
GPGPU on Vivante tend to integrate more compute units in
a chip. Mobile GPUs have gained general-purpose parallel
computing capability thanks to the multicore architecture
and emerging frameworks such as OpenCL, and they are
likely to offer flexibility similar to vendor specific solutions
designed for desktop computers, such as CUDA of Nvidia.
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Figure 1: A 4 × 8Hmatrix and its Tanner graph representation.
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OpenCL is a programming framework designed for
heterogeneous computing across various platforms [17]. In
OpenCL, a host processor (typically a CPU) manages the
OpenCL context and is able to offload parallel tasks to several
compute devices (for instance, GPU).

The parallel jobs can be divided into work-groups, and
each of them consists ofmanywork-itemswhich are the basic
processing units to execute a kernel in parallel.

CN0 CN1 CN2 CN3

q00 r20

BN0 BN1 BN2 BN3 BN4 BN5 BN6 BN7

Figure 4: Example for updating 𝐿𝑞𝑖
0,0
, the message from BN

0
to

CN
0
.

OpenCLdefines a hierarchicalmemorymodel containing
a large global memory but with long latency and a small but
fast local memory which can be shared by work-items in the
same work-group; what is more, each work-item has its own
memory, which is not shared with other items and is fastest
accessing.
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To efficiently and fully utilize the limited computation
resources on a mobile processor for better performance, we
partition the tasks between CPU and GPU and explore the
algorithmic parallelism, and memory access optimization
needs to be carefully considered.

On embedded platform, to handle various tasks is becom-
ing a trend. OpenCL specification describes a subset of the
OpenCL specification for handheld and embedded platforms.

The OpenCL embedded profile has some restrictions; for
instance, there are optional support for 3D images and no
support for 64-bit integers and no support for 64-bit integers.
The details of the OpenCL embedded profile can be found in
Khronos’s website [17].

Despite these specification restrictions, it is possible to
use OpenCL to accelerate the program on themobile devices.
The compute-intensive computation on the mobile device is
transferred to the GPU or other devices supporting OpenCL;
not only these tasks can perform even more efficiently, but
also CPU can handle more tasks that it is good at. Actually,
LDPC decoding is a kind of traditional compute-intensive
computation.

4. Parallel MSA LDPC Decoding on
Mobile GPU

MSA is an intensive processing, which should be processed
in a high-performance specific computing engine, or in a
highly parallel programmable device. On the mobile device,
the GPU is a good choice. This general model, supported by
GPU using OpenCL, executes kernels in parallel on several
multiprocessors. Each processor is composed by several cores
that dispatch multiple threads. In this section, a parallel
processing to save the information of matrix H into work-
items is showed. In order to save the private memory,
each work-item only keeps the compressed information that
related to its own computation. After that, the specific parallel
algorithm in OpenCL kernel is introduced. Given an (𝑁,𝐾)
LDPC code, it is important to manage the computation to
reduce the expenditure in parallel programming. Instead of
using𝑀×𝑤

𝑐
work-items (𝑤

𝑐
is themaximum columnweight

of matrixH), the model uses𝑀×1work-items in each work-
group, and each work-item updates the message about one
check node, which means𝑀 work-items work for𝑀 check
nodes, respectively.

4.1. Compact Representation of the Tanner Graph. TheTanner
graph of a LPDC code is defined as H. We propose it
in two separate data structures, namely, 𝐻BN and 𝐻CN.
This is because one iteration of the LDPC decoder can be
decomposed into horizontal and vertical processing, which
means we update message from CN

𝑛
to BN

𝑚
and message

from BN
𝑚
to CN

𝑛
, respectively.

The data structure used in the horizontal step is defined as
𝐻BN. It is generated by scanning the matrixH in a row-major
order and mapping only the bit nodes’ edges associated with
nonnull elements inH used by a single check node equation
in the same row. Algorithm 1 describes this procedure in
detail for a matrix having 𝑀 rows and 𝑁 columns. 𝐻BN
is saved in the private memory. Because each work-item

(1) as the work-item 𝑘 in a work-group: do
(2) 𝑚 = 𝑘

(3) for all BN
𝑛
(columns in𝐻

𝑚𝑛
): do

(4) if 𝐻
𝑚𝑛
== 1 then

(5) 𝐻BN[𝑖𝑑𝑥++] = 𝑛

Algorithm 1: Generating compact𝐻BN from matrixH.

(1) as the work-item 𝑘 in a work-group: do
(2) for offset = from 0 to𝑁/𝑀 − 1: do
(3) 𝑛 = 𝑘 × 𝑁/𝑀 + offset
(4) for all BN

𝑛
(columns in𝐻

𝑚𝑛
): do

(5) if 𝐻
𝑚𝑛
== 1 then

(6) 𝐻CN[𝑖𝑑𝑥++] = 𝑛

Algorithm 2: Generating compact𝐻CN from matrixH.

updates the message in the whole row, 𝐻BN is not necessary
to be accessed by any other work-items.

The𝐻CN data structure is used in the vertical processing
step. It can be defined as a sequential representation of the
edges associated with nonnull value in H. It is generated
by scanning the H matrix in a column-major order. 𝐻CN is
also saved in the private memory. Because each work-item
updates the message in the neighbor 𝑁/𝑀 rows, 𝐻CN is not
necessary to be accessed by other work-items too.

4.2. Programming the MSA on the OpenCL Grid. Each work-
group contains𝑀work-items that represent threads. Instead
of the whole matrix H or 𝐻BN, each work-item can save the
necessary part of information of𝐻BN in the private memory,
which make access to perform the update faster. Again, the
same principle applies to the update of 𝐿𝑞𝑖

𝑛𝑚
messages.

According to LDPC code length, the CPU on mobile do
allocate memory in GPU, including the global memory for
storing the check matrix H, input data, output data, and the
local memory for saving themessage data sent from bit nodes
to check nodes, marked as 𝐿𝑟𝑖

𝑚𝑛
and from check nodes to the

bit nodes, marked as 𝐿𝑞𝑖
𝑛𝑚

(Algorithm 3).
In step (2), the compact 𝐻BN and 𝐻CN are generated in

private memory by Algorithms 1 and 2.
The same as the normal MSA algorithm, the loop exe-

cution from step (3) will end until the output code word is
current or it reaches the maximum loop times.

It executes a horizontal processing, a vertical processing,
and a synchronization for all threads in steps (5)–(9). Gener-
ally, all threads should be synchronized after the horizontal
and vertical processing, but in this algorithm, every work-
item takes charge of its own check node, and 𝐿𝑟𝑖

𝑚𝑛
data is

not shared with other work-items, so it is able to cancel
the synchronization after horizontal processing to improve
performance. 𝐿𝑞𝑖

𝑛𝑚
data is still shared with all work-items, so

the synchronization after vertical processing is retained.
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(1) Initialize the work-group size (or number of work-item per work-group).
(2) Generating compact𝐻BN,𝐻CN from matrixH
(3) while (cH𝑇 ̸= 0 ∩ 𝑖 < 𝐼)
(4) as the work-item 𝑘 on an𝑀 work-group: do
(5) for all𝐻BN: do
(6) 𝑚 = 𝑘

(7) update the message sent from BN
𝑛
to CN

𝑚

(8) update the message sent from CN
𝑚
to BN

𝑛

(9) Synchronize all threads
(10) for offset = 0 to𝑁/𝑀 − 1: do
(11) 𝑛 = 𝑘 × 𝑁/𝑀 + offset
(12) for all𝐻CN[offset]: do
(13) update the posterior probabilities of BN

𝑛

(14) Synchronize all threads
(15) perform hard decoding

Algorithm 3: MSA kernel executing on the GPU grid.

After the synchronization, it calculates the posterior
probabilities of BN

𝑛
and every work-item deals with𝑁/𝑀 bit

nodes as in steps (10)–(13). After the second synchronization,
it performs the hard decoding by posterior probabilities,
according to the method described in Section 2.

True parallel execution is conducted and the overall
processing time required to decode a code word can be
significantly reduced as a result, as it will be seen in the next
section. More data parallelism can be exploited by decoding
several code words simultaneously, but it was not considered
in this work.

5. Implementation and Experimental Results

The experimental setup to evaluate the performance of the
proposed parallel LDPC decoder on the GPU consists of
a PowerVR G6200 with 256MB global memory and 4KB
local memory and was programmed using the C language
and the OpenCL programming interface (version 1.1). In
this algorithm, each code word is decoded in a work-group.
Because of the limited local memory, only small LDPC code
can be used in this test mobile phone. However, the work-
group number can be large due to the relatively large global
memory on the GPU.

To decode a batch of code words, whose original size
is 1Mbit, the variation in performance is minimal and in
Figure 5 we show only the best results achieved. As a 144 ×
576 matrix, the work-items per work-group are equal to their
row number, which means we use 144 work-items per work-
group and 1000 work-groups in this experiment.

The decoding times reported in Figure 5 define global
processing times, including data transmission time and
decoding time. The decoding time increases along with
the increase of iterations. They have a linear relation. The
computation capacity of GPU is fully used. The throughput
decreases as iterations increasewhen iterations increasewhen
the size of data for decoding remains the same.

On the mobile device we attach as much importance to
the delay as the throughput. Figure 6 shows the decoding
delay when the speed is from 10Kbps to 100Mbps. With the
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Figure 5: LDPC decoding times on the GPU and corresponding
throughput using MSA.

speed exponential increase, the delay increases but slowly.
Actually, the size of data for decoding on the GPU in a
decoding cycle is too small that some capacity ofGPU iswaste
and the parallel effect is not obvious with low speed.

It is obvious that the delay increases when code words
for GPU decoding increase. However, the time of a decoding
cycle, which is the most important part of the delay, increases
but slowly thanks to the more fully use of the computation
capacity. The mean time for a code word decreases in higher
speed. Thus, it can be applied for some high-speed mobile
services, like large file transmission, and delay-sensitive
services like video calling.

6. Conclusion

This paper proposes amulticodeword parallel LDPCdecoder
using a GPU on the mobile device running OpenCL. LDPC
is widely used in the fourth generation of mobile telecommu-
nications technology, so it is significant to realize high-speed
LDPC decoding on the mobile devices.
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Figure 6: Decoding delay time in when the speed is from 10Kbps
to 100Mbps.

For an instance, popular video calling software, Skype,
has its bandwidth requirements noticed on its official website
[18]. The bandwidth required by Skype depends on the type
of calls. The minimum speeds required for normal screen
sharing video calling, high-quality video calling, and HD
video calling are 0.3Mbps, 0.5Mbps, and 1.5Mbps. In the
experiment above the decoding delay is 0.84ms, 0.86ms, and
0.98ms in Figure 6. The HD video calling has less than 1ms
delay. It can meet its requirements apparently.

With the software realization of LDPC decoding on
mobile devices, LDPC can dynamically change the parame-
ters, including code length, code rate, and the number of iter-
ations. All of them can be fast dynamic switched on OpenCL
device, which can quickly deal with all kinds of network envi-
ronment. With the bad network the code rate can be reduced
to improve the ability of error correction, while the code
rate can be improved when the network is fine. Compared
with the traditional way of hardware decoding, our proposed
decoding algorithm based on the software implementation
of decoding on the mobile GPU is more efficient, for it can
switch at any time according to actual environment.
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