
RESEARCH Open Access

Parallel LDPC decoding using CUDA and OpenMP
Joo-Yul Park and Ki-Seok Chung*

Abstract

Digital mobile communication technologies, such as next generation mobile communication and mobile TV, are
rapidly advancing. Hardware designs to provide baseband processing of new protocol standards are being actively
attempted, because of concurrently emerging multiple standards and diverse needs on device functions, hardware-
only implementation may have reached a limit. To overcome this challenge, digital communication system designs
are adopting software solutions that use central processing units or graphics processing units (GPUs) to implement
communication protocols. In this article we propose a parallel software implementation of low density parity check
decoding algorithms, and we use a multi-core processor and a GPU to achieve both flexibility and high
performance. Specifically, we use OpenMP for parallelizing software on a multi-core processor and Compute
Unified Device Architecture (CUDA) for parallel software running on a GPU. We process information on H-matrices
using OpenMP pragmas on a multi-core processor and execute decoding algorithms in parallel using CUDA on a
GPU. We evaluated the performance of the proposed implementation with respect to two different code rates for
the China Multimedia Mobile Broadcasting (CMMB) standard, and we verified that the proposed implementation
satisfies the CMMB bandwidth requirement.

Keywords: LDPC, decoder, parallel processing, CUDA, graphic processing unit

1. Introduction
Today, wireless devices transmit and receive high rate
data in real-time. The need to provide high transmission
rates with reliability is increasing, in order to offer var-
ious multimedia services with 4G mobile communica-
tion systems. Typical data transmission requirements of
4G mobile communication systems are for 100 Mbps in
mobile circumstances and for 1 Gbps in a stationary
state [1]. Therefore, powerful correcting codes are
becoming indispensable.
The low density parity check (LDPC) code is one of

the strongest error correcting codes; it is a linear block
code originally devised by Gallager in 1960s [2]. How-
ever, it was impossible to implement the code in hard-
ware that was available at that time. About 30 years
later, the LDPC code was reviewed by Mackay and Neal
[3,4]. They rediscovered the excellent properties of the
code and suggested its current feasibility, thanks to the
development of communication and integrated circuit
technologies. Recently Chung and Richardson [5]
showed that the LDPC code can approach the Shannon

limit to within 0.0045 dB. The LDPC code has a smaller
minimum distance than the Turbo code, which was
regarded as the best channel coding technique before
the LDPC started to draw attention. Hence, with almost
no error floor issues, it shows very good bit error rate
curves. Furthermore, iterative LDPC decoding schemes
based on the sum-product algorithm (SPA) can fully be
parallelized, leading to high-speed decoding [5]. For
these reasons, LDPC coding is widely regarded as a very
attractive coding technique for high-speed 4G wireless
communications.
LDPC codes are used in many standards, and they

support multiple data rates for each standard. However,
it is very challenging to design decoder hardware that
supports various standards and multiple data rates.
Recently, software defined radio (SDR) [6] baseband
processing has emerged as a promising technology that
can provide a cost-effective, flexible alternative by imple-
menting a wide variety of wireless protocols in software.
The physical layer baseband processing generally
requires very high bandwidth and thus high processing
power. Thus, multi-core processors are often employed
in modern, embedded communication devices [7,8].
Also, GPU is often adopted to achieve high computa-
tional power [9]. Wide deployment of multi-core

* Correspondence: kchung@hanyang.ac.kr
Department of Electronics, Computer & Communication Engineering,
Hanyang University, Seoul, Korea

Park and Chung EURASIP Journal on Wireless Communications and Networking 2011, 2011:172
http://jwcn.eurasipjournals.com/content/2011/1/172

© 2011 Park and Chung; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207045794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kchung@hanyang.ac.kr
http://creativecommons.org/licenses/by/2.0

processors and rapid advances in GPU performance has
led to active studies in designing LDPC decoders using
GPUs [10-14]. For example, a recent study proposed a
technique to utilize GPU to run SPA and described a
way to access LLR data [11]. A related study proposed a
method for LDPC decoding using Compute Unified
Device Architecture (CUDA) [13]. They showed that a
GPU could reduce decoding time dramatically.
In this article, we extend this parallelization further in

such a way that various standards and code rates can be
supported seamlessly. We propose a design which
employs both a central processing unit (CPU) and a gra-
phics processing unit (GPU). To support various code
rates, the host multi-core CPU reads the H-matrix, and,
using OpenMP, it generates address patterns which help
the GPU to effectively execute the LDPC decoding in
parallel. The LDPC decoding algorithm is written in
CUDA [15], which is a parallel computing language
developed by NVIDIA, and the CUDA program is exe-
cuted by the GPU.
The rest of this article is organized as follows. In Sec-

tion 2, we review LDPC decoding algorithms and paral-
lelization techniques using CUDA. In Section 3, we
present the memory structure for CUDA, an address
generation method for LDPC decoding, and existing
parallelization techniques. In Section 4, the proposed
software implementation and performance evaluation
results are presented. Section 5 concludes this article.

2. Background
2.1 Review of LDPC decoding algorithms
The LDPC code is a linear block code with a very sparse
parity check matrix called H-matrix. The rows and col-
umns of an H-matrix denote parity check codes and
symbols, respectively. LDPC codes can be represented
by a Tanner graph which is a bipartite graph in which
the sides represent check nodes and bit nodes, respec-
tively. Thus, check nodes correspond to the rows of the
H-matrix, and bit nodes correspond to the columns of
the H-matrix. For example, when the (i, j) element of an
H-matrix is ‘1’, the ith check node is connected to the
jth bit node of the equivalent Tanner graph. Figures 1
and 2 illustrate an H-matrix and the equivalent Tanner
graph for (8, 4) LDPC codes.

Most practical LDPC decoders use soft-decisions,
because soft-decision decoders typically outperform
hard-decision ones. A soft-decision decoding scheme is
carried out, based on the concept of belief propagation,
by passing messages, which contain the amount of belief
for a value being between 0 and 1, between adjacent
check nodes and bit nodes. Based on the delivered mes-
sages, each node attempts to decode its own value. If
the decoded value turns out to contain error, the decod-
ing process is repeated for a predefined number of
times. Typically, there are two ways to deliver messages
in LDPC decoding. One is to use probabilities, and the
other is to use log-likelihood ratios (LLRs). In general,
using LLRs is favored since that allows us to replace
expensive multiplication operations with inexpensive
addition operations.

2.2 Parallelization of LDPC decoding
As explained in Section 2.1, an LDPC decoding algo-
rithm is capable of correcting errors by repeatedly com-
puting and exchanging messages. The amount of
computation depends on the size of the H-matrix. How-
ever, recently published standards reveal a growing
trend that the length of codewords is getting longer as
the amount of data transfer is increasing [1]. By the
same token, the size of the H-matrix is increasing. For a
recent standard, DVB-T2 [16], the length of the code-
word is 64,800 bits or 16,200 bits. For China Multime-
dia Mobile Broadcasting (CMMB) [17], the length is
9,126 bits. The huge size causes both decoding com-
plexity and decoding time to increase. Therefore, it is
crucial to distribute the computation load evenly to
multiple cores and to parallelize the computation
efficiently.

0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

H

Figure 1 An example of LDPC H matrix.

B0

B1

B2

B3

B4

B5

B6

B7

C0

C1

C2

C3

Bit
Nodes

Check
Nodes

Figure 2 An example of Tanner graph.

Park and Chung EURASIP Journal on Wireless Communications and Networking 2011, 2011:172
http://jwcn.eurasipjournals.com/content/2011/1/172

Page 2 of 8

LDPC decoding consists of four general operations:
initialization, check node update, bit node update, and
parity check. Examining the algorithm reveals that the
check node update can be done in parallel, since the
rows are uncorrelated with each other. Also, the bit
node update on each column can be processed in paral-
lel, because an LDPC decoding algorithm has indepen-
dent memory accesses among the four types of
operations. For example, in the H-matrix in Figure 3,
check node operations can process four rows in parallel,
and bit node operations can process eight columns
concurrently.
This article has three main technical contributions.

First, we propose an efficient and flexible technique
which can be applied to various protocols and target
multi-core platforms, since we propose a solution which
employs both CPUs and GPUs. We also introduce an
efficient technique to reduce the memory requirement
significantly. Next, we propose parallelization techniques
for not only check and bit node update operations, but
also parity check operations, which will be described in
detail in Section 3.

2.3 CUDA programming
CUDA is a GPU software development kit proposed by
David Kirk and Mark Harris. One major advantage of
CUDA is that it is an extension of the standard C pro-
gramming language. Hence, those who are familiar with
the C/C++ programming language can learn how to
program in CUDA relatively easily. Also, CUDA is cap-
able of fully utilizing the fast-improving GPU processing
power. Further, NVIDIA hardware engineers actively
reflect scientists’ opinions as they develop the next gen-
eration of CUDA and GPU. For instance, support for
double precision computation, error correction capabil-
ity, and increased shared memory may not be crucial for
graphics processing in game applications, but they are
important for many scientific and engineering applica-
tions. These features have been added in recent versions
of CUDA and GPU.

Figure 4 shows the architecture of NVIDIA’s
8800GTX. There are 16 multiprocessors, and each mul-
tiprocessor has 8 single precision thread processors
(SPs). Therefore, the total number of SPs is 128. Each
SP can process a block of data with a thread allocation
in parallel. However, it is not possible for the CPU and
the GPU to share memory space. Thus, the GPU must
make a copy of the shared data to its own memory
space in advance. If the CPU wants data stored in the
memory of the GPU, a similar copy operation must take
place. These copy operations incur significant overhead.
Figure 5 shows the relation between a block and a

thread in the GPU. A kernel function is executed for
one thread at a time. For example, if there were 12
threads in Block (1,1), and there were 6 blocks in a grid,
then the kernel function would be executed 72 times.
When a function is invoked, the thread and the block
index are identified by the thread_idx and block_idx
variables, respectively [18,19].
2.4 OpenMP
OpenMP is a set of application program interfaces (APIs)
for parallelization of C/C++ or Fortran programs in a
shared memory multiprocessing environment. OpenMP
has gained lots of attention lately as multi-core systems
are being widely deployed in many embedded platforms.
Recently, version 2.5 was released. OpenMP is a paralleli-
zation method based on compiler directives, in which a
directive will tell the compiler which part of the program
should be parallelized, by generating multiple threads.
Many commercial and noncommercial compilers support
OpenMP directives, and thus, we can utilize OpenMP in
many existing platforms [20].
OpenMP’s parallelization model is based on a fork-

join model. Starting with only the master thread,

th0 th1 th2 th3 th4 th5 th6 th7

th0

th1

th2

th3

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

C0

C1

C2

C3

B0 B1 B2 B3 B4 B5 B6 B7

H =

Figure 3 Parallelization of LDPC decoding.

SP SP
SP SP
SP SP
SP SP

Shared
Memory

Multiprocessor

Cache
Registers

Global Memory

SP SP
SP SP
SP SP
SP SP

Shared
Memory

Multiprocessor

Cache
Registers

SP SP
SP SP
SP SP
SP SP

Shared
Memory

Multiprocessor

Cache
Registers

...

CUDA

Embedded
System Main

MemoryCPU

Figure 4 GPU architecture.

Park and Chung EURASIP Journal on Wireless Communications and Networking 2011, 2011:172
http://jwcn.eurasipjournals.com/content/2011/1/172

Page 3 of 8

additional slave threads are forked on demand. All
threads except for the master one are terminated when
execution for a parallel region ends. In this article, we
use OpenMP pragmas to parallelize address generation
computations. Since only the new address is transferred
to the CUDA memory, the memory copy overhead is
minimal.(Figure 6)

3. Proposed LDPC decoder
As described above, when the size of H-matrices
increases, the amount of computation grows rapidly.
This makes it difficult to achieve satisfactory perfor-
mance in either software- or hardware-only implementa-
tions that attempt to support multiple standards and
data rates. Therefore, we propose a novel parallel soft-
ware implementation of LDPC decoding algorithms that
are based on OpenMP and CUDA programming. We

will show that the proposed design is a cost-effective
and flexible LDPC decoder which satisfies the through-
put requirement for various H-matrices and multiple
code rates. First, we will show the overall software struc-
ture, and next we will explain the parallelization techni-
ques that we propose. (Figure 7)
3.1 Architecture of the proposed LDPC decoder
The overall structure of the proposed LDPC decoder is
as follows. We assume that the target platform consists
of a single host multi-core processor which can run C
codes with OpenMP pragmas and a GPU which can run
CUDA codes. To support multiple standards and data
rates, multiple H-matrices are stored as files. The host
CPU reads the H-matrix for a given standard and sig-
nal-to-noise ratio (SNR) constraint. The host CPU then
generates an address table of data processed in parallel
by the GPU. Generation of the address table is paralle-
lized by OpenMP pragmas. Next, generated address
information is transferred to the memory in the GPU.
This copy operation takes place only if there is a change
in standard, SNR constraint, or code rate.
When signals are received, the host CPU delivers

them to the GPU. The GPU executes the proposed
LDPC decoding software in parallel. Upon completion
of the decoding, decoded bits are transferred to the host
CPU. A CUDA API called “CUDA Copy” is used to
exchange data between the host and the GPU. The copy

Block(0,0) Block(1,0) Block(2,0)

Block(0,1) Block(1,1) Block(2,1)

Grid

Thread(0,0)

Block(1,1)
Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Figure 5 Grid of thread blocks.

Parallel Regions

Master
Thread

Figure 6 Parallel and serial regions.

H Matrix File Read File : 1/ 2 Code
Rate(4608x9216)

File : 3/ 4 Code
Rate(6912x9216)Address Generate

Cuda Copy
(Only Address)

Signal Input

Cuda Copy
(Input Signal) Initial

Check Node

Bit Node

Parity CheckCuda Copy
(Decode Bit)

OpenMP
Parallel
Cuda

Parallel

N.K
O.K

Figure 7 Proposed LDPC decoding flow.

Park and Chung EURASIP Journal on Wireless Communications and Networking 2011, 2011:172
http://jwcn.eurasipjournals.com/content/2011/1/172

Page 4 of 8

overhead may be significant, so it is crucial to minimize
it. It should be noted that in our implementation this
copy operation takes place only for generated address
transfers, received signal transfers, decoded bit transfers,
and configuration (standard, code rates, etc.) changes.
Therefore, the copy overhead is not large in our
implementation.
3.2 One-dimensional address generation for parallelization
Function 1. New address generator
1: {New address :}
#pragma omp parallel for private(i, j)
shared(v_nodes, c_nodes) schedule(static)
2: for i Check Node Num
3: for j weight of check Node
4: for k weight of bit Node

if(v_nodes[c_nodes[i].index[j]].index[k] = = i
{

c_nodes[i].order[j] = k;
break;

}

5: end for
6: end for
7: end for
We will explain how we generate addresses for CUDA

parallelization, using the H-matrix in Figure 1. The H-
matrix is stored in a file as a two-dimensional array
which contains bit node positions that are necessary for
the check node update operation. The first table in
Figure 8 shows an example. Since the positions of the
LLR values of Bit Node 1 for Check Node 0 and Check
Node 1 are different, the bit node order is determined
by reading the H-matrix information. We minimize the
execution time for this by parallelizing the operation
using OpenMP. We use an Intel Quad-Core processor

as the host CPU, and the following algorithm with four
threads may be used.
The position of an LLR value is stored in the form of (x,
y) where x is the position of a bit node and y indicates
that it is the (y + 1)th 1 (0 ≤ y ≤ (degree - 1)) of the
same bit node. To make it more convenient to paralle-
lize the execution and reduce the memory access time,
this (x, y) information is rearranged as a one-dimen-
sional array, as shown at the bottom of Figure 8. The
position of the LLR value for (x, y) in the one-dimen-
sional array which is the address for check node compu-
tation is easily computed as follows:

Laddr = x×Wb + y (1)

where Wb is the degree of bit nodes.
By using this method, when CUDA parallelizes the

decoding process, the position of LLR values is obtained
by reading memory instead of computing a new address.
This improves execution time.
Figure 9 shows the positions of check nodes which are

necessary for bit node update operations. Using a similar
method to compute Laddr, Zaddr, which is the position
of bit node (x, y) in the one-dimensional array, is com-
puted as follows:

Zaddr = x×Wc + y (2)

where x is the position of a check node, and y indi-
cates that it is the (y + 1)th 1 (0 ≤ y ≤ (degree - 1)) of
the same check node and Wc is the degree of check
nodes. Using this one-dimensional address arrangement,
the number of memory accesses is minimized in all of
the operations of check node updates, bit node updates,
initialization, and parity checks.

3.3 Parallel LDPC decoding by GPU
LDPC decoding consists of four parts as shown in
Figure 10. The first part is that received LLR values are
copied into the location of 1’s in the H-matrix. Then,

1,0 3,0 4,0 7,0

0,0 1,1 2,0 5,0

2,1 5,1 6,0 7,1

0,1 3,1 4,1 6,1

C0

C1

C2

C3

Laddr =

1 3 4 7

0 1 2 5

2 5 6 7

0 3 4 6

C0

C1

C2

C3

2 6 8 14 0 3 4 10 5 11 12 15 1 7 9 13

Figure 8 One-dimensional address generation for parallelization
(check node).

B0 B1 B2 B3 B4 B5 B6 B7

1,0 0,0 0,2 1,3

3,0 1,1 3,2 2,1

1,2 0,1 2,2 0,3

2,0 3,1 3,3 2,3

Zaddr =

B0 B1 B2 B3 B4 B5 B6 B7

1 0 0 1

3 1 3 2

1 0 2 0

2 3 3 2

4 12 0 5 6 8 1 13 2 14 7 9 10 15 3 11

Figure 9 One-dimensional address generation for parallelization
(bit node).

Park and Chung EURASIP Journal on Wireless Communications and Networking 2011, 2011:172
http://jwcn.eurasipjournals.com/content/2011/1/172

Page 5 of 8

check node update operations and bit node update
operations are carried out. Lastly, parity check opera-
tions are conducted.
Kernel 1. Initialization kernel
1: {Initilization :}

xIndex = blockIdx.x × blocksize × Wb + threadIdx.x ×Wb

Index = blockIdx.x × blocksize + threadIdx.x

2: for i weight of bit Node

Memory[Zaddr[xIndex + i]] = Init[Index]

3: end for
Kernel 2. Check node update kernel
1: {Check Node Update :}

xIndex = blockIdx.x × blocksize × Wc + threadIdx.x ×Wc

2: for i weight of Check Node

Memory[xIndex + i] = CheckNode Comp[xIndex + i]

3: end for
Kernel 3. Bit node update kernel
1: {Bit Node Update :}

xIndex = blockIdx.x × blocksize × Wb + threadIdx.x ×Wb

Index = blockIdx.x × blocksize + threadIdx.x

2: for i weight of bit Node

Memory[Zaddr[xIndex + i]] = BitNode Comp[Zaddr[xIndex + i]]

3: end for
4: Decode[Index] = BitNode Comp
Kernel 4. Parity check kernel

1: {Parity Check :}

xIndex = blockIdx.x × blocksize × Wc + threadIdx.x ×Wc

Index = blockIdx.x × blocksize + threadIdx.x

2: for i weight of Check Node

check = Decode[int (Laddr[xIndex + i]/Wb)] + check

3: end for

check = int (check%2)

The first initialization step is carried out with a pre-
generated Zaddr. When the number of signals received
equals the number of bit nodes, each received value is
copied into the position indicated by Zaddr. This task
for the H-matrix in Figure 1 can be processed in parallel
using eight threads, if we use the GPU in Figure 4.
Second, a check node update operation is conducted

after generating as many threads as the number of
check nodes. Each thread sequentially reads values from
the memory as many times as the degree of check
nodes from the memory, and it updates the values and
stores them back to the same locations from which they
were read.
Third, the bit node update is conducted after generat-

ing as many threads as the number of bit nodes. The
stored data in memory are arranged in such a way that
a check node update operation can effectively be carried
out. Therefore, for bit node updates, each thread reads
as many values as the degree of bit nodes, using Zaddr.
Using the input values, bit node updates and determina-
tion of a decode bit are conducted. Updated values are
stored back to the same locations from which they were
read.
Last, parity check operations are parallelized for each

check node. A parity check operation is intended to
check that all the checking results are 0; this is done
using the addresses in Laddr. When an address from
Laddr is divided by the degree of the bit node, we
obtain the position of the decode bit for parity check
operations.

4. Performance results
Performance evaluation results of the proposed LDPC
decoding implementation are presented in this section.
H-matrices for the CMMB standard, which is currently
used in Digital Multimedia Broadcasting in China, are
used for performance evaluation. The length of the
codeword in the CMMB standard is 9,216 bits, and two
code rates, 1/2 and 3/4, are supported [17].
The execution platform was composed of Intel i5 750

(a Quad-Core CPU with 2.6 GHz) as the host CPU,
with 4 GB of DDR3 RAM, Windows XP ServicePack 3
(32 bit). MS Visual Studio 2005 was used as the C

B6 (th6) B7 (th7)B0 (th0) B1 (th1) B2 (th2) B3 (th3) …

10 15 3 114 12 0 5 6 8 1 13Zaddr

C0B1 C0B3 C0B4 C0B7 C1B0 C1B1 C1B2 C1B5 C3B0 C3B3Memory

C0 (th0) C1 (th1) C3 (th3)

Init0 Init1 Init2 Init3 Init7

4 12 0 5 6 8 1 13 10 15…Zaddr

Data 0 Data 1 Data 2 Data 3 Data 6Decode
Bit

3 11

C3B4 C3B6

Data 7

Init6
1

2

3

…

…

…

…

Init
Value

2 6 8 14 0 3 4 10 9 13Laddr … 1 7

Parity Check0 (th0) Parity Check1 (th1) Parity Check3 (th3)4 …

Figure 10 Proposed LDPC decoding flow.

Park and Chung EURASIP Journal on Wireless Communications and Networking 2011, 2011:172
http://jwcn.eurasipjournals.com/content/2011/1/172

Page 6 of 8

compiler. The GPU consisted of NVIDIA GT 8800, 512
MB of memory, and CUDA v2.3.
To optimize the GPU performance, the best block size

must be determined. Table 1 summarizes the perfor-
mance evaluation results for various block sizes. From
this evaluation, we determined that the optimal block
size was 64 (threads per block).
To evaluate the performance of the proposed design,

we compared the performance of three cases: (1) where
no parallelization technique was applied, (2) where only
parallelization utilizing OpenMP was applied, and (3)
where both OpenMP and CUDA were utilized. Report
times are the latencies to take decoding 10,000 frames
for each SNR value.
Table 2 shows that when both OpenMP and CUDA

were utilized, we achieved a speedup of 22 over the case
in which no parallelization was applied. When the itera-
tion count increased with low SNR values, the speedup
became greater. This is mainly because of the fact that
as the iteration count increases, the amount of check
and bit nodes’ operation will increase. Thus, more paral-
lelization can be done, and accordingly the speedup will
become bigger. The effective SNR must be greater than
1.5 dB for the CMMB. Hence, the iteration count is
typically greater than 20. When we iterated 20 times,

the decoding performance was 2.046 Mbps, which satis-
fies the CMMB standard.
Table 3 summarizes the performance for a code rate

3/4 of the CMMB. As the code rate increased, LDPC
decoding was successfully finished with at least 2.5 dB.
To satisfy the CMMB performance requirement, more
than 300 frames per second must be processed. Our
results verify that signal reception with at least 3 dB will
satisfy this requirement.
To show that our method is satisfactory for multiple

standards, we implemented an LDPC decoder for DVB-
S2 with a code rate of 2/5; Table 4 summaries the
results. DVB-S2 is a standard for European satellite
broadcasting. The H-matrix has 16,200 bits of code
words and 9,720 bits of an information word. Table 4
shows that for an SNR of 1, we achieved a speedup of
24.5.
Table 5 compares our performance with those of

recently reported [11,13]. The H-matrix in our decoding
is about twice the size of those previously reported
[11,13], which suggests that the performance of our pro-
posed decoder is excellent.

Table 1 LDPC decoding time (second) versus block size
(CMMB 1/2, frame 10,000)

SNR Block size

8 16 32 64 128 256 Avg. iter. num

1 224.5 170.0 146.3 142.3 142.6 149.2 93.3

1.5 45.8 37.1 30.8 29.6 30.5 31.5 18.0

2 2.7 22.4 18.9 18.0 18.8 19.5 10.3

2.5 21.3 17.5 14.8 14.2 14.8 15.2 7.5

3 17.6 14.5 12.5 12.0 12.5 12.8 5.9

3.5 15.3 12.8 10.9 10.6 11.0 11.3 4.9

4 13.5 11.3 9.8 9.6 9.8 10.0 4.1

Total 365.9 285.5 244.0 236.3 240.0 249.6

Table 3 LDPC decoding time (second) versus SNR value
(CMMB 3/4, frame 10,000)

SNR CUDA & OpenMP Normal Only OpenMP Avg. iter. num

2.5 98.9 2907.1 850.0 29.4

3 23.3 428.9 130.0 18.4

3.5 17.1 270.2 87.2 15.8

4 15.6 197.7 68.2 12.7

4.5 15.2 153.8 57.0 10.1

5 13.1 123.4 45.7 9.4

5.5 12.6 102.0 39.2 8.1

6 14.4 91.0 37.9 6.3

6.5 11.5 70.1 30.5 6.1

7 9.7 55.2 26.3 5.7

Table 2 LDPC decoding time (second) versus SNR value
(CMMB 1/2, frame 10,000)

SNR CUDA & OpenMP Normal Only OpenMP Avg. iter. num

1.5 29.6 656.4 198.7 18.0

2 18.0 354.9 112.5 10.3

2.5 14.2 248.6 81.0 7.5

3 12.0 189.3 64.3 5.9

3.5 10.6 150.6 60.1 4.9

4 9.6 122.6 42.6 4.1

4.5 8.7 100.2 35.9 3.4

5 8.2 85.5 31.3 3.0

5.5 7.5 71.0 26.9 2.6

6 6.9 59.8 23.4 2.2

Table 4 LDPC decoding time (second) versus SNR value
(DVB-S2 short 2/5, frame 1,000,000)

SNR CUDA & OpenMP Normal Only OpenMP Avg. iter. num

1 85.6 2097.5 616.9 26.5

1.5 59.3 1370.2 403.0 17.9

2 47.1 1013.5 307.1 13.5

2.5 40.6 788.0 246.3 107

3 35.3 646.6 208.6 8.8

3.5 30.0 533.9 172.2 7.3

4 27.5 447.9 149.3 6.2

4.5 25.7 382.2 127.4 5.3

5 24.7 325.9 108.6 4.6

5.5 22.3 283.6 97.8 4.0

6 23.6 245.4 87.6 3.5

6.5 21.5 217.6 80.6 3.1

Park and Chung EURASIP Journal on Wireless Communications and Networking 2011, 2011:172
http://jwcn.eurasipjournals.com/content/2011/1/172

Page 7 of 8

5. Conclusion
Owing to the multiple standards and diverse device
function needs of current digital communications, hard-
ware-only implementations may not be cost-effective.
Instead, software implementations of communication
protocols using CPUs or GPUs are rapidly being
adopted in digital communication system designs. In
this article, we have described a software design that
implements parallel processing of LDPC decoding algo-
rithms. In our proposal, we use a combination of a
multi-core processor and a GPU to achieve both flexibil-
ity and high performance. Specifically, we use OpenMP
for parallelizing software on a multi-core processor and
CUDA for parallel software running on a GPU. Test
results show that our parallel software implementation
of LDPC algorithms satisfies the CMMB performance
and bandwidth requirements.

Acknowledgements
This research was supported by the MKE (The Ministry of Knowledge
Economy), Korea, under the ITRC(Information Technology Research Center)
support program supervised by the NIPA (National IT Industry Promotion
Agency) (NIPA-2011-C1090-1100-0010).

Competing interests
The authors declare that they have no competing interests.

Received: 19 April 2011 Accepted: 17 November 2011
Published: 17 November 2011

References
1. Standardization Roadmap for IT839 StrategyVer. (2007)
2. R Gallager, Low-Density Parity Check Codes (MIT Press, Cambridge, MA, 1963)
3. D MacKay, R Neal, Near Shannon limit performance of low density parity

check codes. IEE Electron Lett. 32(18), 1645–1646 (1996). doi:10.1049/
el:19961141

4. D MacKay, Good error-correcting codes based on very sparse matrices. IEEE
Trans Inf Theory 45(2), 399–431 (1999). doi:10.1109/18.748992

5. SY Chung, GD Forney Jr, TJ Richardson, R Urbanke, On the design of low-
density parity-check codes within 0.0045dB of the Shannon limit. IEEE
Commun Lett. 5, 58–60 (2001). doi:10.1109/4234.905935

6. SDR Forum, http://www.wirelessinnovation.org/
7. L Sousa, S Momcilovic, V Silva, G Falcão, Multi-core platforms for signal

processing: source and channel coding. IEEE Press Multimedia Expo,
1805–1808 (2009)

8. P Kollig, C Osborne, T Henriksson, Heterogeneous multi-core platform for
consumer multimedia applications. Date Conference, 1254–1259 (2009)

9. CH(K) van Berkel, Multi-core for mobile phones. Date Conference, 1260–1265
(2009)

10. G Falcão, L Sousa, V Silva, Massive parallel LDPC decoding on GPU. 13th
ACM SIGPLAN, 83–90 (2008)

11. G Falcão, S Yamagiwa, L Sousa, V Silva, Parallel LDPC decoding on GPUs
using a stream-based computing approach. J Comput Sci Technol. 24(5),
913–924 (2009). doi:10.1007/s11390-009-9266-8

12. G Falcão, L Sousa, V Silva, How GPUs can outperform ASICs for fast LDPC
decoding. Proceedings of the 23rd international conference on
Supercomputing, 390–399 (2009)

13. S Wang, C S, Q Wu, A parallel decoding algorithm of LDPC codes using
CUDA. Signals, Systems and Computers, 2008 42nd Asilomar Conference,
171–175 (2008)

14. H Ji, J Cho, W Sung, Massively parallel implementation of cyclic LDPC codes
on a general purpose graphics processing unit. Signal Processing Systems,
SiPS 2009, 285–290 (2009)

15. S Lin, DJ Costello Jr, in Error Control Coding, 2nd edn. (Prentice Hall, 2004)
16. ETSI EN 302 307, Digital Video Broadcasting (DVB), Second generation

framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband
satellite applications.

17. GY/T 220.1-2006, Mobile Multimedia Broadcasting Part1.
18. NVIDIA CUDA Development Tools 2.3, Getting Started (July 2009)
19. NVIDIA CUDA C Programming Best Practices Guide, Optimization (July 2009)
20. B Chapman, G Jost, R van der Pas, in Using OpenMP Portable Shared

Memory Parallel Programming (The MIT Press, 2007)

doi:10.1186/1687-1499-2011-172
Cite this article as: Park and Chung: Parallel LDPC decoding using CUDA
and OpenMP. EURASIP Journal on Wireless Communications and Networking
2011 2011:172.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Table 5 LDPC decoding time speed up (edges/row = 6)

Proposed algorithm [11] [13]

Speed up 22 1.5 6

Park and Chung EURASIP Journal on Wireless Communications and Networking 2011, 2011:172
http://jwcn.eurasipjournals.com/content/2011/1/172

Page 8 of 8

http://www.wirelessinnovation.org/
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Background
	2.1 Review of LDPC decoding algorithms
	2.2 Parallelization of LDPC decoding
	2.3 CUDA programming
	2.4 OpenMP

	3. Proposed LDPC decoder
	3.1 Architecture of the proposed LDPC decoder
	3.2 One-dimensional address generation for parallelization

	3.3 Parallel LDPC decoding by GPU

	4. Performance results
	5. Conclusion
	Acknowledgements
	Competing interests
	References

