7 research outputs found

    L-Convex Polyominoes are Recognizable in Real Time by 2D Cellular Automata

    Full text link
    A polyomino is said to be L-convex if any two of its cells are connected by a 4-connected inner path that changes direction at most once. The 2-dimensional language representing such polyominoes has been recently proved to be recognizable by tiling systems by S. Brocchi, A. Frosini, R. Pinzani and S. Rinaldi. In an attempt to compare recognition power of tiling systems and cellular automata, we have proved that this language can be recognized by 2-dimensional cellular automata working on the von Neumann neighborhood in real time. Although the construction uses a characterization of L-convex polyominoes that is similar to the one used for tiling systems, the real time constraint which has no equivalent in terms of tilings requires the use of techniques that are specific to cellular automata

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    Sublinear-Time Cellular Automata and Connections to Complexity Theory

    Get PDF
    Im Gebiet des verteilten Rechnens werden Modelle untersucht, in denen sich mehrere Berechnungseinheiten koordinieren, um zusammen ein gemeinsames Ziel zu erreichen, wobei sie aber nur über begrenzte Ressourcen verfügen — sei diese Zeit-, Platz- oder Kommunikationskapazitäten. Das Hauptuntersuchungsobjekt dieser Dissertation ist das wohl einfachste solche Modell überhaupt: (eindimensionale) Zellularautomaten. Unser Ziel ist es, einen besseren Überblick über die Fähigkeiten und Einschränkungen des Modells und ihrer Varianten zu erlangen in dem Fall, dass die gesamte Bearbeitungszeit deutlich kleiner als die Größe der Eingabe ist (d. h. Sublinear-Zeit). Wir führen unsere Analyse von dem Standpunkt der Komplexitätstheorie und stellen dabei auch Bezüge zwischen Zellularautomaten und anderen Gebieten wie verteiltes Rechnen und Streaming-Algorithmen her. Sublinear-Zeit Zellularautomaten. Ein Zellularautomat (ZA) besteht aus identischen Zellen, die entlang einer Linie aneinandergereiht sind. Jede Zelle ist im Wesentlichen eine sehr primitive Berechnungseinheit (nämlich ein deterministischer endlicher Automat), die mit deren beiden Nachbarn interagieren kann. Die Berechnung entsteht durch die Aktualisierung der Zustände der Zellen gemäß derselben Zustandsüberführungsfunktion, die gleichzeitig überall im Automaten angewendet wird. Die von uns betrachteten Varianten sind unter anderem schrumpfende ZAs, die (gewissermaßen) dynamisch rekonfigurierbar sind, sowie eine probabilistische Variante, in der jede Zelle mit Zugriff auf eine faire Münze ausgestattet ist. Trotz überragendem Interesse an Linear- und Real-Zeit-ZAs scheint der Fall von Sublinear-Zeit im Großen und Ganzen von der wissenschaftlichen Gemeinschaft vernachlässigt worden zu sein. Wir arbeiten die überschaubare Anzahl an Vorarbeiten zu dem Thema auf, die vorhanden ist, und entwickeln die daraus stammenden Techniken weiter, sodass deren Spektrum an Anwendungsmöglichkeiten wesentlich breiter wird. Durch diese Bemühungen entsteht unter anderem ein Zeithierarchiesatz für das deterministische Modell. Außerdem übertragen wir Techniken zum Beweis unterer Schranken aus der Komplexitätstheorie auf das Modell der schrumpfenden ZAs und entwickeln neue Techniken, die auf probabilistische Sublinear-Zeit-ZAs zugeschnitten sind. Ein Bezug zu Härte-Magnifizierung. Ein Bezug zu Komplexitätstheorie, die wir im Laufe unserer Untersuchungen herstellen, ist ein Satz über Härte-Magnifizierung (engl. hardness magnification) für schrumpfende ZAs. Hier bezieht sich Härte-Magnifizierung auf eine Reihe neuerer Arbeiten, die bezeugen, dass selbst geringfügig nicht-triviale untere Schranken sehr beeindruckende Konsequenzen in der Komplexitätstheorie haben können. Unser Satz ist eine Abwandlung eines neuen Ergebnisses von McKay, Murray und Williams (STOC, 2019) für Streaming-Algorithmen. Wie wir zeigen kann die Aussage dabei genauso in Bezug auf schrumpfende ZAs formuliert werden, was sie auch beweisbar verstärkt. Eine Verbindung zu Sliding-Window Algorithmen. Wir verknüpfen das verteilte Zellularautomatenmodell mit dem sequenziellen Streaming-Algorithmen-Modell. Wie wir zeigen, können (gewisse Varianten von) ZAs von Streaming-Algorithmen simuliert werden, die bestimmten Lokalitätseinschränkungen unterliegen. Konkret ist der aktuelle Zustand des Algorithmus vollkommen bestimmt durch den Inhalt eines Fensters fester Größe, das wenige letzte Symbole enthält, die vom Algorithmus verarbeitet worden sind. Dementsprechend nennen wir diese eingeschränkte Form eines Streaming-Algorithmus einen Sliding-Window-Algorithmus. Wir zeigen, dass Sliding-Window-Algorithmen ZAs sehr effizient simulieren können und insbesondere in einer solchen Art und Weise, dass deren Platzkomplexität eng mit der Zeitkomplexität des simulierten ZA verbunden ist. Derandomisierungsergebnisse. Wir zeigen Derandomisierungsergebnisse für das Modell von Sliding-Window-Algorithmen, die Zufall aus einer binären Zufallsquelle beziehen. Dazu stützen wir uns auf die robuste Maschinerie von Branching-Programmen, die den gängigen Ansatz zur Derandomisierung von Platz-beschränkten Maschinen in der Komplexitätstheorie darstellen. Als eine Anwendung stellen sich Derandomisierungsergebnisse für probabilistische Sublinear-Zeit-ZAs heraus, die durch die oben genannten Verknüpfung erlangt werden. Vorhersageproblem für Pilz-Sandhaufen. Ein letztes Problem, das wir behandeln und das auch einen Bezug zu Sublinear-Zeitkomplexität im Rahmen von Zellularautomaten hat (obwohl nicht zu Sublinear-Zeit-Zellularautomaten selber), ist das Vorhersageproblem für Sandhaufen-Zellularautomaten. Diese Automaten sind basierend auf zweidimensionalen ZAs definiert und modellieren einen deterministischen Prozess, in dem sich Partikel (in der Regel denkt man an Sandkörnern) durch den Raum verbreiten. Das Vorhersageproblem fragt ob, gegeben eine Zellennummer yy und eine initiale Konfiguration für den Sandhaufen, die Zelle mit Nummer yy irgendwann vor einer gewissen Zeitschranke einen von Null verschiedenen Zustand erreichen wird. Die Komplexität dieses mindestens zwei Jahrzehnte alten Vorhersageproblems ist für zweidimensionelle Sandhaufen bemerkenswerterweise nach wie vor offen. Wir lösen diese Frage im Wesentlichen für eine neue Variante von Sandhaufen namens Pilz-Sandhaufen, die von Goles u. a. (Phys. Lett. A, 2020) vorgeschlagen worden ist. Unser Ergebnis ist besonders relevant, weil es innovative Erkenntnisse und neue Techniken liefert, die für die Lösung des offenen Problems im allgemeinen Fall von hoher Relevanz sein könnten

    Subject Index Volumes 1–200

    Get PDF

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Proceedings of the tenth international conference Models in developing mathematics education: September 11 - 17, 2009, Dresden, Saxony, Germany

    Get PDF
    This volume contains the papers presented at the International Conference on “Models in Developing Mathematics Education” held from September 11-17, 2009 at The University of Applied Sciences, Dresden, Germany. The Conference was organized jointly by The University of Applied Sciences and The Mathematics Education into the 21st Century Project - a non-commercial international educational project founded in 1986. The Mathematics Education into the 21st Century Project is dedicated to the improvement of mathematics education world-wide through the publication and dissemination of innovative ideas. Many prominent mathematics educators have supported and contributed to the project, including the late Hans Freudental, Andrejs Dunkels and Hilary Shuard, as well as Bruce Meserve and Marilyn Suydam, Alan Osborne and Margaret Kasten, Mogens Niss, Tibor Nemetz, Ubi D’Ambrosio, Brian Wilson, Tatsuro Miwa, Henry Pollack, Werner Blum, Roberto Baldino, Waclaw Zawadowski, and many others throughout the world. Information on our project and its future work can be found on Our Project Home Page http://math.unipa.it/~grim/21project.htm It has been our pleasure to edit all of the papers for these Proceedings. Not all papers are about research in mathematics education, a number of them report on innovative experiences in the classroom and on new technology. We believe that “mathematics education” is fundamentally a “practicum” and in order to be “successful” all new materials, new ideas and new research must be tested and implemented in the classroom, the real “chalk face” of our discipline, and of our profession as mathematics educators. These Proceedings begin with a Plenary Paper and then the contributions of the Principal Authors in alphabetical name order. We sincerely thank all of the contributors for their time and creative effort. It is clear from the variety and quality of the papers that the conference has attracted many innovative mathematics educators from around the world. These Proceedings will therefore be useful in reviewing past work and looking ahead to the future
    corecore