246 research outputs found

    NEP: A Module for the Parallel Solution of Nonlinear Eigenvalue Problems in SLEPc

    Full text link
    [EN] SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. Over the past few years, we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems can be defined by means of a matrix-valued function that depends nonlinearly on a single scalar parameter. We do not consider the particular case of polynomial eigenvalue problems (which are implemented in a different module in SLEPc) and focus here on rational eigenvalue problems and other general nonlinear eigenproblems involving square roots or any other nonlinear function. The article discusses how the NEP module has been designed to fit the needs of applications and provides a description of the available solvers, including some implementation details such as parallelization. Several test problems coming from real applications are used to evaluate the performance and reliability of the solvers.This work was partially funded by the Spanish Agencia Estatal de Investigacion AEI http://ciencia.gob.es under grants TIN2016-75985-P AEI and PID2019-107379RB-I00 AEI (including European Commission FEDER funds).Campos, C.; Roman, JE. (2021). NEP: A Module for the Parallel Solution of Nonlinear Eigenvalue Problems in SLEPc. ACM Transactions on Mathematical Software. 47(3):1-29. https://doi.org/10.1145/3447544S12947

    Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices

    Get PDF
    In this dissertation, we study iterative methods for computing eigenvalues and exponentials of large matrices. These types of computational problems arise in a large number of applications, including mathematical models in economics, physical and biological processes. Although numerical methods for computing eigenvalues and matrix exponentials have been well studied in the literature, there is a lack of analysis in inexact iterative methods for eigenvalue computation and certain variants of the Krylov subspace methods for approximating the matrix exponentials. In this work, we proposed an inexact inverse subspace iteration method that generalizes the inexact inverse iteration for computing multiple and clustered eigenvalues of a generalized eigenvalue problem. Compared with other methods, the inexact inverse subspace iteration method is generally more robust. Convergence analysis showed that the linear convergence rate of the exact case is preserved. The second part of the work is to present an inverse Lanczos method to approximate the product of a matrix exponential and a vector. This is proposed to allow use of larger time step in a time-propagation scheme for solving linear initial value problems. Error analysis is given for the inverse Lanczos method, the standard Lanczos method as well as the shift-and-invert Lanczos method. The analysis demonstrates different behaviors of these variants and helps in choosing which variant to use in practice
    • …
    corecore