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Summary

This thesis is concerned with the modeling of electronic properties of nano-scale
devices. In particular the computational aspects of calculating the transmission
and current-voltage characteristics of Landauer-Büttiker two-probe systems are
in focus. To begin with, the main existing methods are described in detail and
benchmarked. These are the Green’s function method and the wave function
matching method. The methods are subsequently combined in a hybrid scheme
in order to benefit from a common formalism.

The most time demanding stages of common electronic transport calcula-
tions are identified. For systems of more than about a hundred atoms, two
specific tasks stand out; the evaluation of self-energy matrices to describe the
coupling between the electrodes and the device, and the solution of the central
region Schrödinger equation either by matrix inverse of by solving a system of
linear equations. In this work the objective is to develop new efficient algorithms
for these tasks in order to model nano-scale systems of larger size in the future.
The starting point of the new methods is the combined formalism of the Green’s
function and wave function matching methods.

The first new algorithm described is for the calculation of the block tridi-
agonal matrix inverse of a block tridiagonal matrix in O(N) operations. This
algorithm also leads to an optimal evaluation of the frequently used Caroli trans-
mission formula. A modified wave function matching scheme is then developed
which allows for a significant reduction in the cost of the self-energy matrix
calculations when combined with an iterative eigensolver. Finally, such an it-
erative eigensolver is developed and implemented based of a shift-and-invert
Krylov subspace approach. The method is applied to a selection of nano-scale
systems and speed-ups of up to an order of magnitude are achieved.
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Resumé

Denne afhandling omhandler modellering af de elektroniske egenskaber for kom-
ponenter af nano-størrelse. Specifikt de numeriske aspekter i at beregne trans-
mission af elektroner og sammenhængen mellem strøm og spændingsforskel
for Landauer-Büttiker to-elektrode-systemer er i fokus. Til at begynde med
beskrives de vigtigste eksisterende metoder. Disse metoder kaldes for Green’s-
function-metoden og wave-function-matching-metoden. Det vises hvordan man
sammenføjer formalismerne til en fordelagtig hybrid.

De mest tidskrævende skridt for en almindelig beregning af elektrontransport
identificeres. For systemer med mere end ca 100 atomer, er det specielt to bereg-
ningstunge opgaver der træder frem; beregningen af selv-energi-matricer, der
beskriver koblingen mellem elektroderne og komponenten i midten, og løsnin-
gen til Schrödingerligningen for komponentdelen, i form af en matrix-invertering
eller en løsning af et linært system. I denne afhandling er målet, at udvikle nye
og effektive algoritmer for disse to opgaver, med henblik p̊a at kunne modellere
større nano-systemer i fremtiden. Udgangspunktet for de nye algoritmer, er
den kombinerede formalisme for Green’s-function- og wave-function-matching-
metoderne.

Den første ny algoritme der beskrives er til beregning af den blok-tridiagonale
del af den inverse af en blok-tridiagonal matrix, hvilket gøres i O(N) komplek-
sitet. Denne algoritme leder ogs̊a direkte til en optimal udregning af trans-
missionen via Caroli’s formel. Dernæst udvikles en modificeret wave-function-
matching-metode, som giver anledning til betydeligt hurtigere beregninger af
selv-energi-matricerne, hvis den kombineres med en iterativ egenværdiløser. Til
sidst udvikles og implementeres en s̊adan egenværdiløser, baseret p̊a en shift-
and-invert Krylov underrumsmetode. Metoden anvendes p̊a et udvalg af forskel-
lige nano-systemer, hvorved der opn̊as besparelser i beregningstiderne p̊a op til
en størrelsesorden.
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Chapter 1

Introduction

Over the last few decades, the fundamental techniques for integrating elemen-
tary circuits on a chip have undergone dramatic advances. This has had a
tremendous impact on the technology around us, our everyday lives, and on
the computational sciences so that, for example, the calculations performed in
the current thesis have become possible. Today, the feature size of integrated
circuits are of the order of 100 nm. In the near future this order will most
likely approach 10 nm and lead to yet more powerful computers. Unavoidably,
the continuation of this trend, well known as Moore’s law, will reach a domain
where the feature size becomes comparable to the wave length of the electrons
in the circuits. In that case, quantum mechanical effects can arise and the clas-
sical Ohm’s law of electronic transport breaks down. On the other hand, such
quantum effects are not necessarily harmful if we have the basic understanding
of them, as they can be used to design radically new types of electronic compo-
nents. The development and manufacturing of such components at the scale of
nanometers is the key aspect and idea of nano-technology.

Besides technological prospects, nano-scale devices also offer a convenient
platform to explore the fundamental physics of electrons in solids and molecules.
In this ongoing journey of understanding the nature of materials, researchers
around the world have developed many theories, among which the density func-
tional theory (DFT) has emerged as one of the most powerful tools. This theory,
which in its modern version dates back to the seminal work by Kohn and his
collaborators in the mid-1960s, has been the most prominent contributer to the
rising field of computational materials science. In this field, the basic properties
of atomic configurations are investigated from first principles by using numerical
simulations, which are often quite expensive. Consequently, such computational
approaches depend equally on both state-of-the-art computer hardware and ef-
ficient numerical algorithms in order to be successful.

One of the most active areas of computational materials research in recent
years, yet also one of the numerically most costly, is the combination of DFT
with modern theories of quantum transport in the attempt to study electronic
transport through nano-scale devices under external bias. Among the variety
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of schemes developed, a special place is occupied by the application of the non-
equilibrium Green’s function (NEGF) method within the DFT approach. This
particular approach is by far the most widely used method, and, with some
appropriate approximations and optimized algorithms, NEGF-DFT has become
a cost-effective first-principles method and has reproduced a variety of ground-
state properties within a few percentage of error compared with experimental
data. However, for the vast majority of interesting cases, the sizes of the nano-
scale systems considered in calculations have been much smaller than realistic
experimental configurations. Usually the number of atoms is no more than a
few hundred. The reason for this is in general a lack of sufficient computational
resources and/or efficiently implemented numerical algorithms.

In this thesis, we develop new computational methods for the modeling of
the transport properties of nano-scale devices. The purpose of this is to treat
systems with thousands of atoms and thus reduce the gab between simulations
and realistic present day experiments. A typical example of such a large system,
which is modeled in the current thesis, is shown on the cover page. It consists
of a semi-conducting carbon nanotube (CNT) positioned on Lithium metallic
surfaces at each end and next to an arrangement of three gates. This particular
configuration is of interest as a field-effect transistor (FET). The entire system
contains 1760 atoms and hence represents an immense computational task using
standard first principles methods, even on a high performance computing plat-
form. In order to obtain the electronic structure, current-voltage characteristics,
and other important properties of such systems, we have implemented optimiza-
tions and novel algorithms for the computationally most expensive stages of the
calculation. In the most favorable cases, the developed algorithms are up to an
order of magnitude faster than existing methods.

The current thesis presents the work related to the development and com-
putational aspects of our new algorithms, which has lead to the publication of
three scientific papers. Specifically, my contributions to this work include:

• Formulation and implementation of a framework to combine the Green’s
function method and the wave function matching method in practical
calculations (Chapter 3).

• Co-development of a new inversion algorithm to obtain the block tridi-
agonal Green’s function matrix. Co-development of a faster transmission
calculation in the Green’s function method (Chapter 4/PAPER 1).

• Development and implementation of a modified wave function matching
method which is computationally very efficient (Chapter 5/PAPER 2).

• Development and implementation of a Krylov subspace method for the
calculation of self-energy matrices (Chapter 6/PAPER 3).

• The study of band-to-band tunneling in a carbon nanotube based FET
device of 14 nm in length and more than 1500 atoms (Section 6.4).
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1.1 Units, notation, and key linear algebra

Unless otherwise specified or explicitly not the case, we will use Hartree atomic
units (me = ~ = e = 1) throughout this text.

The general principles used for notation in this thesis is as follows. Scalars
are written as ordinary Roman letters, e.g., x, y, a,A, etc. Integer variables are
predominantly given in italic, i, j, k, etc.. Vectors are denoted by lower case
bold face characters, x,y,a,b, etc., and matrices as bold face capital letters
X,Y,A,B, etc. To index elements of vectors we use the notation ai = [a]i and
similarly Aii = [A]i,i and Ai,j = [A]i,j for matrices. Finally, a particular block
(i, j) of a matrix A that has block structure is denoted by Ai,j (see below).

We use several identities and relations linear algebra in this thesis. Two of
these, which are of central importance and used repeatedly in most chapters,
will be stated here for convenience:

• Matrix inverse: For any full-rank square matrix A with a 2 × 2 block
structure,

A =

(
A11 A12

A21 A22

)
, (1.1)

one can obtain the inverse matrix also of 2 × 2 block form, given by [1]

A−1 =

(
A−1

11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

)
, (1.2)

where S = A22 − A21A
−1
11 A12 is the so-called Schur complement block.

• Block Gaussian elimination: Generalizing the 2 × 2 block inverse op-
eration to general block tri-diagonal form, eliminating the lower blocks of
the augmented matrix (A|I) can be written [1]





A11 A12 I

A21
. . .

. . . I
. . .

. . . An−1,n
. . .

A†
n−1,n An,n I




(1.3)

∼





A′
11 A12 I

A′
22

. . . J2,1 I

. . . An−1,n

...
. . .

. . .

A′
n,n Jn,1 · · · Jn,n−1 I




, (1.4)

where A′
11 = A11 and

A′
ii = Aii − Ai,i−1(A

′
i−1,i−1)

−1Ai−1,i, i > 1 (1.5)
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Jij = −Ai,i−1(A
′
i−1,i−1)

−1Ji−1,j , i > 1, j > i, (1.6)

which gives the inverse of the nth row as [A−1]n,j = Jn,j , 1 ≤ j < n and
[A−1]n,n = (A′

n,n)−1.

In the following, we will refer to the second procedure listed here as a downwards
block Gaussian elimination “sweep”.

1.2 Outline

This thesis is divided into 7 chapters, 3 appendices and the bibliography. It is
organized as follows. In Chap. 2, we introduce DFT which forms the starting
point and theoretical foundation of our computational methods. In Chap. 3, we
discuss the state-of-the-art modeling of electronic transport from a numerical
point of view based on the Landauer picture of quantum transport in weakly
interacting phase coherent systems. In Chap. 4, we describe possible compu-
tational optimizations within the Green’s function method. In Chap. 5, we
develop the formalism for a more efficient implementation of the wave function
matching method. In Chap. 6, we describe a Krylov subspace algorithm for the
very fast evaluation of self-energy matrices within the formalism of the previous
chapter. In Chap. 7, we give a short conclusion and outlook.



Chapter 2

Preliminary concepts:

elements from solid state

physics

In order to make the reader minimally familiar with the important concepts and
approximations that underly the numerical calculation of electronic transport,
we will begin this thesis from the point of view of solid state physicists. The
goal is to convey in few words how the stationary quantum mechanical prop-
erties of nano-scale structures can be found from the self-consitent solution of
an eigenvalue problem and a Poisson problem. In addition, we also wish to
demonstrate that the solution can be obtained in a numerical calculation on a
standard computer, in a matter of minutes, if the structures are relatively small
or bulk-like. We refer the reader to the excellent text books by Ashcroft and
Mermin [2], Martin [3], and Datta [4] for more detailed presentations.

2.1 Electronic structure calculations

Nano-scale devices usually consist of thousands of atoms which, in turn, contains
equally many nuclei and possibly a much larger number of electrons. Nuclei
and electrons interact with each other and mutually among themselves. These
interactions establishes the structure and electronic configuration of the system
and must be properly described by the many-particle Schrödinger’s equation

ĤΨ(r1, . . . , rN ; {Rm}) = EΨ(r1, . . . , rN ; {Rm}), (2.1)

where ri are the positions of the N electrons, {Rm} is the set of nuclei coordi-
nates which is assumed fixed in space (Born-Oppenheimer approximation), and
the many-particle Hamiltonian operator is defined as

Ĥ = −1

2

∑

i

∇2
i +

∑

i<j

1

|ri − rj |
+
∑

i

Vext(ri; {Rm}), (2.2)
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composed of terms for the kinetic energy, the electron-electron interaction, and
an external potential, which in this description accommodates the influence of
the electron-nucleus and nucleus-nucleus interactions. The nuclei equilibrium
positions can be found by minimizing the total energy E with respect to {Rm}.

2.1.1 Density-functional theory

An unfortunate aspect of the above formulation is that the many-particle wave
function Ψ provides the complete knowledge of the stationary properties of the
system, but is numerically infeasible to compute for more than a few particles
[5]. It is therefore more practical to consider the one-body electron density,

n(r) = N

∫
dr2 · · ·

∫
drN |Ψ(r, r2, . . . , rN ; {Rm})|2, (2.3)

as the central quantity of interest. The number of degrees of freedom is then
reduced from 3N to 3 if Ψ is not explicitly evaluated. Moreover, the Hohenberg-
Kohn theorems [6] prove that all ground state properties of the many-particle
system can be calculated from the unique ground state density n(r) that corre-
sponds to the non-degenerate ground state energy E0 = minE[n(r)].

2.1.2 Kohn-Sham equations

Kohn and Sham [7, 8] came up with a clever approach to minimize the energy
functional E[n(r)] and obtain the desired ground state density n(r) by solving
a set of one-particle eigenvalue equations, given by

[
− 1

2
∇2 + veff(r)

]
ψi(r) = ǫiψi(r), (2.4)

veff(r) = VH(r) + Vxc(r) + Vext(r), (2.5)

n(r) =

N∑

i=1

|ψi(r)|2, (2.6)

VH(r) =

∫
n(r′)

|r− r′| dr′, Vxc(r) =
δExc[n(r)]

δn(r)
, (2.7)

in a self-consistent manner. The trick is to split the complicated electron-
electron interactions into the averaged effect of the other electrons (the Hartree
potential term VH(r) of veff) and the rest (the exchange-correlation (XC) term
Vxc(r) of veff). Note also that the eigenfunctions ψi(r) and energies ǫi in these
equations are merely auxiliary and do not have any strict physical meaning [8].
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2.1.3 Local density approximation

The Kohn-Sham self-consistent procedure is remarkably efficient from a compu-
tational point of view [3]. To be exact, however, it requires the correct exchange-
correlation functional Exc[n(r)] and this is not available in practice. Additional
approximations has to be done, for which there exists a variety of schemes [9]
with details beyond the scope of this short introduction. Here we mention only
the simplest, the local density approximation (LDA), which is used in all calcu-
lations of the current work. With this approximation, the exchange-correlation

energy per electron for a uniform electron gas, ǫn0
xc ≡ Exc(n0)

n0
, is extrapolated to

an inhomogeneous distribution, i.e,

ELDA
xc [n(r)] =

∫
n(r)ǫn0

xc

(
n(r)

)
dr. (2.8)

Efficient parameterizations have been developed for the ELDA
xc functional [10, 11].

2.1.4 Pseudopotential approximation

The main difficulty in electronic structure calculations is to treat the effects
of the electron-electron interactions. However, since the inner-shell electrons,
localized around each atom, often interact only weakly with the inner-shell elec-
trons of other atoms, it is convenient to assume these electrons to be frozen. As
such, they act much like the nuclei in being treated as an external potential so
that we have the Kohn-Sham equations for the valence electrons alone.

Although this leads to a significant reduction in the number of electrons to be
handled, another problem remains: The valence states ψi(r) are rapidly varying
in the core region, which is hard to represent numerically. In order to improve on
this, the external potential for the nuclei plus core electrons (terms in Vext) may
be replaced by a smooth, non-singular potential known as a pseudopotential.

The most frequently used pseudopotential is the norm-conserved pseudopo-
tential developed by Hamann, Schlüter and Chiang [12, 13]. The pseudo-wave
functions ψps

i (r) that are obtained with these pseudopotentials have no nodes
and coincides with the correct ψi(r) outside the inner-shell radius rc. In addi-
tion, the pseudopotential eigenvalues ǫps

i are made to agree with the all-electron
eigenvalues ǫi, and the charge inside rc (i.e, the norm

∫ rc

0
r2|ϕl(r)|2 dr, where

ϕl(r) is the radial component of ψi(r)) is conserved. Efficient parameterization
methods have been derived by Troullier and Martins [14].

2.1.5 Basis sets

The final requisite in order to solve the Kohn-Sham equations in practice is
to represent the electronic wave functions ψi(r) (here the “ps” superscript is
implied) in an efficient manner. In general, one chooses between a real space
grid, a plane wave basis, or a real space basis. Several factors decide the best
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choice of basis, including ease of implementation, accuracy, and the type of
system [3].

In grid-based methods, the wave function is represented on a mesh of points
in real space, which makes them inherently simple to program, as many opera-
tions are easier in real space. For example, if ψi(r) is explicitly given on a grid,
then the calculation of the density in Eq. (2.6) is simply summing the squares
at each point. It is also possible to employ the wide selection of well-established
numerical methods for second-order differential equations: finite element, finite
difference, multigrid, wavelets, etc. The accuracy is then easily set by means of
the grid spacing. As grid-based methods are not used in this work, we will not
consider this further. A recent review has been written by Beck [15].

The plane-wave basis, e.g., ψi(r) =
∑

k ci,ke
−ık·r, where k are the wave

vectors, is localized in reciprocal k-space, and is ideal for studying crystals or
other systems with periodic boundary conditions because the sum in the basis
expansion can be limited to a set of reciprocal lattice vectors [2]. It is then
fairly simple to implement and has an accuracy which can be controlled in a
systematic fashion by specifying a cutoff value |k| < kcutoff . However, typically a
relatively large number of basis functions is needed to achieve good accuracy [16].
Although the plane-wave basis is not put to practical use in our calculations,
we will revisit the formalism in the discussion on k-point sampling in Sec. 2.1.7.

In our computations, we will use a basis of functions {φj} which are local-
ized in real space, i.e., on each atom as ψi(r) =

∑
j ci,jφj(r − Rm) for atom

m. This choice gives us the freedom to select the basis functions so as to look
much like our expected wave function, meaning, in principle, that we can rep-
resent the wave function accurately with just a few terms. Many choices are
available, most based on Gaussians or discretized functions. In our case, we will
employ linear combinations of atomic orbitals (LCAO), which can be written
as φlmn(r) = φln(r)Ylm(r̂), where Ylm are spherical harmonics and φln(r) is
the radial dependence, commonly tabulated and stored on disk [17]. In general,
there will be several orbitals (labeled by n) with the same angular momentum
(labeled by l,m), but different radial dependence. This is conventionally called
a multiple-ζ basis [3]. We will only use the single–ζ (SZ) and, on a few occasions,
the double–ζ (DZ) basis in the numerical examples of this thesis.

2.1.6 Localization

It is important to mention, that the real space basis functions φlmn(r) are given
only local support, i.e., they are zero beyond a certain radius. This allows for
sparse representations of the Hamiltonian and overlap matrices (see Sec. 3.1.4)
since the overlap between orbitals is limited to a few neighboring atoms. Such
an approximation is well founded in the general principle of nearsightedness, as
coined by Kohn [18], and makes it possible to compute the Hamiltonian and
subsequently solve the Kohn-Sham equations in O(Nbasis) operations, so-called
linear scaling [19]. The drawback is, that these methods are relatively difficult
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to implement and there is no systematic procedure to control the accuracy [3].
We note that the DFT scheme in the atk program used as part of this thesis,

is not a linear scaling implementation [20]. However, we still benefit highly from
localization and the subsequent structure of the Hamiltonian in our calculations
of electronic transport, see Chap. 3.

2.1.7 k-point sampling and bands

A final aspect of the KS equations is of fundamental importance: If the potential
veff(r) is periodic, then the solutions ψi to the KS eigenproblem in Eq. (2.4) can
be expressed as so-called Bloch wave functions. This is for example the case
for the bulk electrodes considered in this thesis, having translational symmetry
veff(r) = veff(r + T) for some spatial vector T in the direction of transport.

A Bloch wave, or Bloch mode, consists of the product of a plane wave enve-
lope function eı̂k·r and a periodic function, written as

ψi,k(r) = eı̂k·rui,k(r), (2.9)

where k is the wave vector and uk(r) = uk(r + T) has the same periodicity as
the potential. The result that the eigenfunctions can be written in this form is
called Bloch’s theorem [2]. Inserting Eq. (2.9) into Eq. (2.4) allows us to write

ĤKS(k)ui,k(r) = ǫi,kui,k(r), (2.10)

where the Kohn-Sham Hamiltonian operator

ĤKS(k) = e−ı̂k·r
[
− 1

2
∇2 + veff(r)

]
eı̂k·r = −1

2
(∇ + ı̂k)2 + veff(r) (2.11)

becomes explicitly k dependent. Furthermore, since uk(r) is periodic, one can
arive at the Fourier series

ψi,k(r) =
∑

G

ci,k+Ge
ı̂(k+G)·r, (2.12)

where the sum is over vectors G belonging to the reciprocal bulk lattice, the
dual of the real-space lattice [3]. Although k is arbitrary, we see that adding
a reciprocal lattice vector G to k simply shuffles the sum in Eq. (2.12). As a
result, ψi,k(r) can always be characterized by a wave vector k inside a “unit cell”
of the reciprocal lattice, the so-called Brillouin zone (BZ). The corresponding
energy eigenvalues ǫi,k may also be found separately for each k. Because the
discrete energies associated with the indices i vary continuously with k we speak
of an energy band (or energy gab where there are no solutions for any k).

From the expressions above we see that the Hamiltonian and other k de-
pendent quantities may be obtained as an average value “per unit cell” from an
integral of the form [3]

f̄ =
1

ΩBZ

∫

BZ

dkf(k), (2.13)



10 Preliminary concepts: elements from solid state physics

where f is a general function of k. Since adjacent k-points results in almost
identical f(k) values, the integral can be computed by summing values for the
integrand at a limited number of k-points in the BZ. Using symmetry it is easy
to show that a number of k-points are equivalent (high-symmetry points) and
this reduces the number of required evaluations of f(k) even further. We end
up with a finite sum over a grid of k-points,

f̄ =
∑

k

wkf(k), (2.14)

where wk are appropriate weights. The optimal choice of the k-points or sam-
pling is often found as a balance between accuracy and efficiency. In general, for
metallic systems the k-point grids should be quite dense due to a complex shape
of the Fermi surface in metals [3]. In contrast, insulators and semi-conductors
require relatively few k-points to sample.

In the calculations of this work, we will employ the k-point sampling scheme
developed by Monkhorst and Pack [21]. This scheme applies a regular grid as
(Nx̂, Nŷ, Nẑ) shifted by one-half of the grid spacing. At times we also adopt
the so-called Γ-point approximation (see, e.g., the transmission calculations in
Sec. 3.5) for which only the k = 0 point of the BZ is considered. For details on
the validity of this approximation see for example Ref. [22].

2.2 Numerical implementation: the atk program

We will end this introductory chapter by discussing the necessary computational
steps needed for the numerical solution of the KS equations (2.4)–(2.6). At the
same time this serves as a description of the implementation in the atk program.

2.2.1 Self-consistent procedure

It is apparent from the KS expressions, that the eigenvalue equations in Eq. (2.4)
depend on their own solutions {ψi} through the effective potential that depends
on the density n(r). This then corresponds to a non-linear eigenvalue problem
which must be solved self-consistently. An appropriate flow-diagram to do this
is presented in Fig. 2.1 in the manner it is implemented in the atk program.

We now briefly outline each step of this self-consistent procedure (a detailed
description can be found on the official website [23]). The key computational
objects stored in an iteration are the density n(r), the Hamiltonian matrix H,
and the single-particle wave functions ψi. From the outset, the representations
of these objects are given in the LCAO basis {φj} mentioned above (we use
compact index notation j ≡ {Ilmn} to designate the basis orbitals). Subse-
quently, they will be given by relatively small ∼ O(Nel) matrices and vectors,
labeled as n, H, and ci, respectively, in the following.
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Choose initial density n

?
Calculate veff [n]

?
Construct H from veff

?
Solve KS eigenvalue problem
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Compute new density n′
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Is n = n′ ?
No

Yes
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Mix density:

n := βn′ + (1 − β)n

�

?
Stop

Figure 2.1: Schematic flow-diagram for the self-consistent KS procedure.

Initial density

It is common to begin the self-consistent procedure by specifying the initial den-
sity. If no a priori knowledge is available about the final density, a natural choice
is simply to sum the densities of neutral atoms: n(r) =

∑
m natom(r−Rm). Al-

ternatively, a better guess at the final density may be available based on a
previous solution of the KS equations. In particular, if the atomic configuration
is unchanged (e.g, if only the device voltage or gate voltage settings are different,
as is the case in Sec. 5.7) with respect to an earlier result, then there is much
to gain from storing and reusing the electronic densities.

The atk program converges if possible no matter what the quality of the
initial density, however, the steps required are much less with a good guess.

Calculate veff(r) from the density

The first term in Eq. (2.5), the Hartree potential VH(r) =
∫ n(r′)

|r−r′| dr′, is much

too expensive to compute by direct numerical integration. Therefore, we evalu-
ate it by solving the Poisson equation ∇2VH(r) = −4πn(r) on a uniform spatial
grid with suitable boundary conditions on the surface S. From the pool of tech-
niques [1] to solve the Poisson equation, we employ the multigrid (MG) method
[24] and the fast Fourier transform (FFT) [25], depending on the boundary
conditions. For bulk systems and supercell systems large enough not to inter-
act with its images, we may use periodic boundary conditions and the FFT.
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Otherwise, we use MG when Dirichlet (VH|S = 0) or Neumann (∇VH|S = 0)
boundary conditions are specified. It is possible to select appropriate boundary
conditions separately for each spatial dimension of the Poisson problem. The
details of having the proper boundary conditions for open transport problems
is elaborately described in Ref. [26].

The calculation of the XC term Vxc(r) can be implemented according to the
parameterization listed in App. C of Perdew and Zunger [11], i.e., its value
at a specific point r is computed from a short polynomial expression in rs =
( 3
4πn(r) )

1/3 having different coefficients for rs ≥ 1 (low density limit) and rs < 1

(high density limit). Again, it suffices to do this for a uniform spatial grid.

Last, we need to evaluate the norm-conserved pseudopotential Vps(r). We
use the non-local Kleinman-Bylander (KB) form [27] in the way devised by
the SIESTA method [17]. With this approach the pseudopotential is separated

into local and non-local parts Vps(r) =
∑

I V
ps,local
I (r−RI)+

∑
I V̂

ps,KB
I , where

V̂ ps,KB
I is the KB projection operator. Tables for efficient calculations have been

pretabulated and are widely available on the internet (atk reads the unified
pseudopotential file (UPF) format) [28]. Since Vps(r) is independent on n and
unchanged throughout the self-consistent loop, it need only be evaluated once.

Constructing the Hamiltonian matrix

Expanding the KS wave functions ψi in the non-orthogonal LCAO basis {φj},
turns Eq. (2.4) into a generalized eigenvalue problem Hc = ESc, where the
Hamiltonian and overlap matrix elements are given by the integrals

Hij =

∫
drφ∗i (r − RI)

[
− 1

2
∇2 + veff(r)

]
φj(r − RJ), (2.15)

Sij =

∫
drφ∗i (r − RI)φj(r − RJ), (2.16)

and c are the eigenvectors holding the expansion coefficients. Here orbitals i
and j are assumed to be localized on atoms I and J , respectively (we use the
notation φ∗i for generality, despite the fact that our basis functions are real in
practice). Moreover, the effective potential veff contains both local and non-
local pseudopotential terms given in the KB form above. One should employ
specialized techniques to evaluate the matrix element integrals in an efficient
manner, as found in the literature [3, 17].

Solve KS eigenvalue problem

For small systems, H and S will be small, dense matrices of size N×N , where N
is the total number of orbitals in the LCAO basis. In such cases it is appropriate
to employ traditional dense eigensolvers to solve Hc = ESc, e.g., the lapack
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routines dsygv/zhegv [29].1 This is in contrast to the plane-wave approaches
which gives large-scale sparse eigenproblems that are more favorably solved by
iterative methods [16]. For larger systems, one would expect a certain level of
sparsity and block structure also in the minimal LCAO basis (see Sec. 3.1.4),
but this is not utilized in the atk eigensolver (although this can be done, see
[19] and references therein). The reason is that all main systems considered in
this thesis are two-probe systems setup for transport calculations. As shown in
the next chapter, solving the KS eigenvalue problem in these cases is done by
splitting it into three parts, two small periodic electrode problems, which are
efficiently solved by the dense eigensolver, and one large central problem, solved
as a Green’s function problem, i.e., G = (H − ǫS)−1. We show in Chap. 3 how
to utilize the block sparsity of H and S for the matrix inverse in this formalism.

Compute the new density

From the KS eigenfunctions ci we are able to evaluate the corresponding ground
state density by filling the Nel lowest states: n(r) = 2

∑N
i=1 ni|ψi(r)|2, where

ni are occupation numbers (0 for empty states, and 1 for filled states) and
the factor of two accounts for spin degeneracy. In practice, the calculation is
performed by first computing the density matrix D, defined as

Dij = cjdiag{n1, . . . , nN}c†i , (2.17)

and then the new electronic density on a grid from the expression

n(r) = 2

N∑

i,j=1

φ∗i (r − RI)Dijφj(r − RJ). (2.18)

Since only a small number of basis orbitals are nonzero at a given grid point, the
calculation of the density in Eq. (2.18) can be performed in O(N) operations,
once D is known. The weighted outer product in Eq. (2.17), however, has
complexity O(N3). One therefore has to use special techniques which takes
localization and the nearsightedness principle into account to make this step
linearly scaling [17, 19]. Again, atk does not implement order-N algorithms for
small molecular and bulk systems, and we will not discuss them further here.

Achieving self-consistency

The previous step completes the self-consistent cycle. In practice, the procedure
then represents a fixed point iteration F to find the electronic density n such
that n = F [n]. Unfortunately, if we directly apply the new density n′ from one
iteration as input in the next, the procedure will be unstable. The simplest

1dsygv is not applicable in a general setting since two-probe systems and/or k-point sam-
pling produces complex Hamiltonian matrices, see Sec. 2.1.7.
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cure for this is to mix the previous density n with only a fraction β of the new
density n′ to produce the input for the next iteration: n := βn′ + (1 − β)n.

The simple linear mixing is reasonable stable as long as only a very small β
is used. However, this makes the convergence quite slow [3]. We will therefore
apply the more sophisticated mixing scheme developed by Pulay [30], which
generally accelerates the convergence quite significantly, and can reach conver-
gence in cases where linear mixing cannot. The input density for the k + 1th
iteration is constructed using the input and output densities of a number K of
former cycles, implemented in the following way:

n
(k+1)
in = βn

(k)
out + (1 − β)n

(k)
in , (2.19)

n
(k)
in =

K∑

i=1

αin
(k−K+i)
in , n

(k)
out =

K∑

i=1

αin
(k−K+i)
out , (2.20)

where the values of αi are obtained by consecutively minimizing the distance

between n
(k)
in and n

(k)
out. Most self-consistent procedures usually converges faster

and more smoothly if more previous cycles are used in the mixing. Using K
of the order 10 to 20 is generally recommended [23], in particular for systems
that converge poorly. In addition, finding the optimal value of the fraction
β for a particular system can be tricky, and is largely based on experience.
For electrically insulated systems, larger values of the mixing parameter can be
used (up to 0.5). For metallic systems, the value should usually be around 0.1,
whereas two-probe systems in particular might require a lower value (0.01) [23].

2.2.2 Benchmarks

To round off the discussion of the numerical implementation, let us look at some
simple benchmark runs for the atk program. These benchmarks can give an
impression of actual time required for a DFT simulation and the computational
expense of the different steps of the self-consistent procedure.

As mentioned, we will apply the self-consistent cycle illustrated in Fig. 2.1
in this work only for the relatively small electrode parts of two-probe systems.
A modified cycle, described in the next chapter, is used for the larger central
region parts. We here consider the relatively small example systems shown
in Fig. 2.2, corresponding to three different hydrogenated diamond molecules,
three different semi-conducting carbon nanotubes, both of growing sizes, and
three different metals. In all cases, we represent the computational objects in
a minimal single–ζ (SZ) basis, except for the gold electrodes, where single–ζ–
polarized (DZP) is used. We apply periodic boundary conditions by taking
advantage of the supercell method. For the molecules, this means that the
simulation box has vacuum regions big enough in all dimensions to neglect
interaction between repeated images. For the CNTs and metals, this is equally
the case for the x̂ and ŷ dimensions, while for the ẑ direction the system is
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C2H6
C16H24 C54H54

CNT(2, 1)
CNT(4, 2)

CNT(8, 4)

Li(100)

Al(100)
Au(111)

Figure 2.2: Example systems: Hydrogenated diamond molecules C2H6, C16H24,
and C54H54; semi-conducting CNT(2, 1), CNT(4, 2), and CNT(8, 4) electrodes;
bcc-lithium, fcc-aluminium, and fcc-gold metallic electrodes.



16 Preliminary concepts: elements from solid state physics

Table 2.1: CPU-times in seconds for calculating the self-consistent electronic
density with the atk program for the example systems given in Fig. 2.2. The
system type, the k-point sampling of the Monkhorst type, the number of atoms,
and the number of iterations are indicated in columns 2-5.

System Type k-points Atoms Iterations CPU
C2H6 Molecule - 8 11 64.2

C16H24 Molecule - 40 12 701.4
C54H54 Molecule - 108 11 2675.6

CNT(2,1) Semi-conductor (1,1,100) 28 11 183.5
CNT(4,2) Semi-conductor (1,1,100) 56 8 448.0
CNT(8,4) Semi-conductor (1,1,100) 112 8 2103.7
Li(100) Metal (1,1,100) 8 3 39.3
Al(100) Metal (1,1,100) 18 10 198.0
Au(111) Metal (1,1,100) 27 16 1357.6

periodic from the outset (for an accurate description we use 100 k-points along
ẑ to sample the Brillouin zone). The Pulay mixing scheme is applied with
β = 0.1 and 6 previous history steps taken into account.

Our benchmarking results for obtaining a converged density and Hamiltonian
matrix are displayed in Table 2.1. The measured total CPU-times are listed in
the last column. Also the number of iterations of the self-consistent procedure,
the number of atoms treated, and the k-point samplings are indicated for each
system. All systems converge to a tolerance of ||n−n′||2 < 10−4Rydberg/Bohr

3

in 3–16 iterations. Even the most time consuming calculations take less than
45 minutes on a single CPU (we do not parallelize over k-points in these bench-
marks, although this is possible) and will be insignificant in comparison with
the total expense of the two-probe systems considered later in this thesis.

Still, it is quite informative to consider the current benchmark calculations
in more detail. Therefore the CPU-times per iteration for the individual steps
of the self-consistent procedure for the first six of the benchmark systems are
presented in a semi-logarithmic plot in Fig. 2.3. We will comment here only on
the main conclusions to be drawn:

• First, we can see that the initial density and Pulay mixing steps takes
negligible time in all calculations.

• Second, it is apparent that the calculation of veff and, in particular, the
O(N logN) scaling of the FFT Poisson solver, is the most costly step for
the molecules, but with the construction of H a close second.

• Third, since the eigenvalue solution and the computation of the new den-
sity have the highest computational complexity O(N3), they tend to be-
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Figure 2.3: Benchmark results for the self-consistent cycle implemented in the
atk program. The measured CPU-times per iteration for the different steps of
the self-consistent cycle are shown on a logarithmic axis.

come more and more dominating as the number of atoms increases. For
larger systems, these steps will quickly become the overall bottle-neck (see
Ref. [20]). This is already the case for the CNT systems because they are
sampled at many k-points in each cycle.

All in all, we can conclude that the atk program scales as O(N logN) for small
molecules (N <∼ 100) and as O(N3) for large molecules and k-point sampled
periodic bulk/electrode systems.
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Chapter 3

Modeling of quantum

transport through nano-scale

devices

The purpose of this chapter is to present the computational aspects of modeling
electronic transport in nano-scale devices. From a physical starting point, an
accurate quantum mechanical model of these devices should have the ability to
capture the following fundamental effects [4]:

• Electron wave interference.

• Quantum mechanical tunneling.

• Discrete energy levels due to confinement in 2D and 3D device geometries.

• Scattering processes (electron-phonon, electron-electron).

The first three effects can be accommodated most simply in the Landauer-
Büttiker transport theory in conjunction with the solution of the electronic
Schrödinger’s equation, which was discussed in Chap. 2. Therefore, we begin
the following presentation with a discussion of the phase-coherent1 Landauer-
Büttiker formalism. The fourth effect requires, in general, the NEGF formalism,
or equivalent theories, to account for energy, momentum and phase relaxation
due to inelastic scattering processes. However, if we are interested in electronic
transport at low temperatures and apply only a small voltage across the device,
the effects of inelastic scattering at the nano-scale can be neglected.

For simplicity, and since it also reflects the conditions of many experiments
well, we will consider only this low-temperature-low-bias regime. In our case,
the use of either the Landauer-Büttiker approach or the NEGF method then

1 The terminology “phase-coherent” refers to a deterministic evolution of both the ampli-
tude and phase of ψi,k(r) as given in Eq. (2.9). As explained below, the electron wave function
evolves phase-coherently only in the case of elastic scattering.
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becomes a matter of taste, since they are consequently equivalent. We will
present both methods in this chapter, first the Green’s function method relying
of Caroli’s formula for the transmission coefficient, and subsequently the wave
function matching method, which explicitly determines the transmission and re-
flection probabilities of the Landauer-Büttiker theory. We will also combine the
two methods in an attempt to make a fast hybrid approach. The chapter ends
with benchmark timings of all the methods and a short comparison discussion.

3.1 Landauer-Büttiker formalism

A transparent quantum mechanical formulation of the electronic transport in
small conductors was first proposed in 1957 by Landauer [31], who suggested a
simple formula which established the relation between the transmission proba-
bility of the electron and the electronic conductance in one-dimensional struc-
tures. Landauer’s idea was later generalized by Büttiker [32] to the case of
multi-channel-multi-probe devices. Since then, most theoretical work on elec-
tronic transport at the nano-scale has been based on this formalism (see Ref. [4]
and references therein) and it also represents the theoretical foundation for the
computational methods used in the current thesis.

3.1.1 Phase-coherent transport of electrons

If one applies an electric field in the form of a potential difference V to a metal
or a semi-conductor, the electrons in the vicinity of the Fermi level will be accel-
erated. While moving, the electrons scatter from possible impurities or lattice
vibrations (phonons), and, if the scattering is inelastic, they may loose some of
their acquired momentum. As a result, when the material is long enough, the
process of repeated acceleration and inelastic scattering carries the electrons in
the direction of the electric field with an equilibrium drift speed, producing a
drift current I. The equation that describes this situation is the well-known
Ohm’s law: V = RI, where R is the resistance caused by the scatterers, which
is proportional to the length of the device. The law governs for example the
case of the standard resistor shown in the left part of Fig. 3.1.

In this thesis we consider very small devices, where it can be assumed that
there are no impurity scatterers. More precisely, the mean free path that an
electron moves on average before it has lost its original momentum (10− 50 nm
for metallic bulks at room temperature [33]) is longer than, or at the same scale
as, the length of the device, see right part of Fig. 3.1. The electrons can then
penetrate a bulk system without being scattered, and the electric resistance
becomes independent of the length of a material. This type of conduction is
called ballistic transport of electrons.

Unfortunately, since we will not deal with ideal bulk conductors only, but
rather a device of a given atomic configuration, the transport will not be per-
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∼ 1 cm ∼ 1 nm

Figure 3.1: Macroscopic and nano-scale electronic devices: a standard 2.6 MΩ
resistor and the Al–C7–Al nano-scale analogue.

fectly ballistic. In our nano-scale systems, quantum mechanical length scales
have to be taken into account, i.e., the de Broglie wave length at the Fermi
level (“electron wave length”) and the phase-relaxation length. The latter is the
average length an electron wave can propagate before inelastic collisions destroy
its original phase. It is typically longer than the mean free path mentioned
above. When a device is smaller than the phase-relaxation length, the electron
waves can interfere. Furthermore, when the cross section of the device becomes
as small as the electron wave length (for example, 0.52 nm for gold [33]) the
energy levels become quantized, which means that electrons can pass through
the system only via specific energy levels. Both these true quantum mechanical
phenomena have a large influence on the electronic transport properties.2

In the following, we will consider quantum transport only in the form of
phase-coherent electrons in nano-scale atomic devices.

3.1.2 The Landauer picture

The simplest model of quantum transport through devices is in terms of single-
electron wave functions scattered by a spatially varying potential. One assumes
that the potential is situated between two electron reservoirs, each of which
emits particles with an equilibrium distribution into the scattering region via
perfectly conducting electrodes. The reservoirs will, in general, have different
chemical potentials, µL and µR, their difference µL−µR representing an applied
bias voltage. The electrical current conducted by the device corresponds to the
net flux of electrons passing between the reservoirs. This picture, which was
conceived by Landauer [31], is schematically illustrated in Fig. 3.2.

Let us briefly summarize the formalism that is associated with the Landauer
model. In the simplest case, electrons move phase-coherently throughout the
device, experiencing only elastic collisions in the scattering region. Any loss
of coherence due to inelastic collisions requires a higher-level description.3 For

2For example giving rise to phenomena such as conductance quantization, conspicuous
I − V dependences and Coulomb blockade [4].

3Meir and Wingreen [34] have, for example, extended the Landauer-Büttiker formalism to
incorporate electron-electron interactions in the scattering region.
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µL µRLeft electrode Right electrodeScatterer

Figure 3.2: Schematic representation of the Landauer picture for electronic
transport, where a central scattering region is situated between two electrodes
that are connected to thermal reservoirs. What drives the current is the differ-
ence between the chemical potentials µL and µR of the reservoirs.

additional simplicity, we can assume that the electron reservoirs have certain
characteristics: (i) the reservoirs are reflectionless, i.e., electrons entering the
reservoirs from the electrodes are always accepted, and (ii) the reservoirs are
macroscopic in the sense that the chemical potentials are maintained at µL and
µR unaffected by the input and output of electrons via the electrodes. The
two assumptions imply that the reservoirs can be described by independent
equilibrium Fermi-Dirac distributions, so that the probability that an electron
being supplied has energy E is given by Fermi functions

f(E − µ) =
1

e(E−µ)/kBT + 1
, (3.1)

where kB is Boltzmann’s constant, T is the temperature, and µ is the chemical
potential of the associated reservoir.

Suppose now that an electron with energy µR < E < µL is provided to the
left electrode. The electron is then initially propagating in a right-going Bloch
wave in one of the modes of the left electrode. Let us denote the 1D wave
number, energy, and group velocity of this mode by k, Ek, and vk = 1

~

dEk

dk > 0,
respectively. When the electron hits the central region in the Landauer model,
it is exposed to elastic scattering and with some probability Tk transmitted into
the right electrode. It will then propagate through the right electrode and finally
enter the right reservoir. If it is not transmitted, it is reflected back into the
left electrode with probability Rk (Tk + Rk = 1) and will eventually return to
the left reservoir. The current flow of electrons according to such a sequence of
events is then given by the first term in the formula

I =
e

L

∑

k

f(Ek − µL)vkTk +
e

L

∑

−k′

f(E−k′ − µR)v−k′T−k′ , (3.2)

where e
L accounts for the electrons being normalized in the 1D volume L. Here

the second term corresponds to the reverse flow situation, where the electrons,
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designated by wave numbers −k′, are propagating from the right reservoir to-
wards the left (v−k′ < 0).

3.1.3 The Landauer-Büttiker formula

To arrive at Eq. (3.2) we considered the transmission probabilities T±k for spe-
cific electron wave numbers ±k. Accordingly, the total transmission coefficients
for a particular electron energy E, can be expressed as

T±(E) =
∑

±k

T±kδ(Ek − E), (3.3)

for the left-going (−) and right-going (+) electrons, respectively, with δ being
the Dirac delta function. Since we must have time reversal symmetry, so that the
current is the exact opposite when time is running backwards, the coefficients
T−(E) and T+(E) have to be identical: T−(E) = T+(E) ≡ T (E). We can then
rewrite Eq. (3.2) as an integral over energies by first transforming the sums over
wave numbers into integrals, i.e.,

∑
k → 2 × L

2π

∫
dk, where the factor of 2

accounts for spin degeneracy, and subsequently apply dk = dEk/~vk to obtain

I =
2e

h

∫ ∞

−∞
T (E)

[
f(E − µL) − f(E − µR)

]
dE. (3.4)

which is a key formula in the Landauer-Büttiker theory. We will use it to
calculate the current in the numerical examples of this thesis (see Sec. 6.4).

Let us now look at what happens in the zero temperature limit of the above
formalism. We note that in this limit the Fermi function in Eq. (3.1) becomes
a step function. If we also assume that the difference |µR − µL| is so small that
T (E) → T (EF ) is independent of E, then Eq. (3.4) can be readily evaluated as

I =
2e

h
T (EF )

∫ µL

µR

dE =
2e

h
T (EF )(µL − µR), (3.5)

for the case µR < µL. Since the potential difference between the two electrodes
is given by Vb = −(µL − µR)/e, we arrive at the following expression for the
conductance

G =
I

Vb
=

2e2

h
T (EF ), (3.6)

which is in agreement with the original Landauer formula from 1957 [31].
Eq. (3.6) implies that the maximum conductance of a single channel with two

spin states is G0 = 2e2

h , for the ballistic case of T = 1. The experimental verifi-
cation of such quantized conductance has been found, e.g., for metal nanowires
in break-junction setups [35]. In general, however, the value of quantization of
a given channel in a device deviates from G0, since T is not 1. Instead, we will
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Device Bulk electrodeBulk electrode

Figure 3.3: Schematic illustration of a nano-scale two-probe system in which a
device is sandwiched between two semi-infinite bulk electrodes.

have a total G that is the sum of contributions of all available channels, with
each contribution being less than or equal to G0.

The conductance is therefore quite intuitively formulated in terms of trans-
mission and reflection matrices, t and r, that satisfy the unitarity condition
t†t + r†r = 1, in the case of elastic scattering. The matrix element tij is the
probability amplitude of an incident electron in a mode i in the left electrode
being scattered into a mode j in the right electrode, and correspondingly rik is
the probability of it being reflected back into mode k in the left electrode. This
simple interpretation then yields the Landauer-Büttiker formula [32]

G =
2e2

h
Tr[t†t], (3.7)

which holds in the limit of infinitesimal voltage bias and zero temperature.
Consequently, the total transmission for a given electron energy E is

T (E) = Tr[t†t] =
∑

ij

|tij |2, (3.8)

where i can be restricted to the Bloch modes of the left electrode and j can be
restricted to the Bloch modes of the right electrode. An alternative derivation
of Eqs. (3.7) and (3.8) is available from linear response theory [36].

In Secs. 3.2.4 and 3.3.4 we will present numerical procedures to efficiently
calculate the transmission T (E) for nano-scale two-probe devices.

3.1.4 Two-probe systems

In correspondence with the Landauer picture, a typical nano-scale device can
be conceptually divided into three regions (see Fig. 3.3):

• Left semi-infinite electrode (L) with a periodic bulk configuration

• Central region (C) with an arbitrary device configuration

• Right semi-infinite electrode (R) with a periodic bulk configuration

More precisely, it is clear that far deep in the left and right macroscopic elec-
trodes, the effective potential felt by electrons will resemble that of ideal periodic
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bulks because of screening [26]. Thus a central region of appropriate size can
always be chosen for which this L–C–R setup is a good approximation. Almost
any infinitely extending system with a periodicity breaking region, such as junc-
tions, interfaces, single molecules between electrodes, and tip-sample systems,
can be properly modeled in this manner. In the following, we will therefore
treat only this type of setup, which we call a two-probe system.

We here start by discussing how to solve the Schrödinger equation for a two-
probe system in the LCAO basis of localized non-orthogonal atomic orbitals,

(ES − H)c = 0, (3.9)

where H is an infinite Hamiltonian matrix with the block form

H =




H∞

L H∞
L,C 0

H∞†
L,C HC H∞

R,C

0 H∞†
R,C H∞

R



 , (3.10)

and S is the corresponding overlap matrix with a similar form. The “∞” su-
perscripts indicate blocks of (semi-)infinite order. As such, the key to a proper
solution is a practical approach to handle such an infinite eigenvalue problem.
This is addressed in detail in Secs. 3.2.1 and 3.3.3. Here, we will first take
advantage of the compact support of the LCAO basis in order to obtain a com-
putationally favorable representation of the H and S matrices.

Consider for example the Al–C7–Al two-probe system in Fig. 3.3, where the
device configuration corresponds to the central region (C) and the electrodes
are two semi-infinite bulks (L and R). We know, that the interaction between
distant atoms and the overlap of the corresponding localized orbitals are neg-
ligible because of “nearsightedness” [18]. Consequently, there will be sparsity
in the Hamiltonian and overlap matrices, where typically only O(N) elements
are non-zero in the N ×N central block. There are several ways to exploit this
sparsity to end up with a linear scaling method [19].

In this work, we will restrict our efforts to an appropriate layer ordering of the
orbitals, which results in computationally attractive block-tridiagonal matrix
structures. Let us illustrate the technique with the Al–C7–Al example for which
we have calculated the electronic density n(r) and display the x̂ · r = 0 color
coded result in the upper part of Fig. 3.4. We also indicate in this figure how
the entire system can be divided into so-called principal layers that only interact
with neighbor layers. The orbitals within a given layer are then assumed to be
grouped together when indexing the H and S matrices. Accordingly, each layer
can be described, by appropriate diagonal Hamiltonian matrices Hi and overlap
matrices Si, where i is the layer number, and off-diagonal matrices written Hi,j

and Si,j , that represents the interactions between layers. In this manner the
Hamiltonian and overlap matrices becomes block-tridiagonal infinite matrices,
which is illustrated in the the bottom part of Fig. 3.4. For the electrodes we
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L

. . .

C R

. . .

HL,HL,L HC HR,HR,R

. . .

. . .

Figure 3.4: Illustration of how the Al–C7–Al system is modeled by two semi-
infinite electrodes (L andR) and a central region (C), each divided into principal
layers that only interact with neighbor layers. The upper panel shows the elec-
tron density n in the y–z–plane. The lower panel displays the structure of the
corresponding Hamiltonian matrices.

use subscripts L and R instead of numbers i, j, since these blocks are repeated
throughout the respective electrode.

In the rest of this chapter, we will consequently assume a Hamiltonian, given
by

H̄ =





. . .
. . .

. . . H̄L H̄L,L

H̄†
L,L



 H̄C




H̄R,R

H̄†
R,R H̄R

. . .

. . .
. . .





, (3.11)

where the finite matrix of the central device is

H̄C =





H̄1 H̄1,2

H̄†
1,2

. . .
. . .

. . .
. . . H̄n−1,n

H̄†
n,n−1 H̄n




, (3.12)

and where we have introduced notation H̄ ≡ ES − H. Notice also that the
C region in this particular setup contains at least one layer of each electrode,
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which means that H̄1 = H̄L and H̄n = H̄R. This is an important feature of our
approach, which we will return to later.

3.1.5 Electronic density

Let us end the brief description of the Landauer-Büttiker theory by linking the
derived formalism to the DFT electronic structure method presented in Chap. 2.
To do this, the expression for the density n(r) in the Landauer-Büttiker picture
is needed. Assuming that the wave functions ψi(r) and energies ǫi of the KS
eigenvalue equations in Eq. (2.4) have been obtained for a given cycle, then,
following the same arguments that lead to Eq. (3.2) and Eq. (3.3), we have

D(r, E) = D(r, E)+ +D(r, E)−, (3.13)

D(r, E)± = 2
∑

±k

|ψ±k(r)|2δ(E − ǫ±k), (3.14)

for the local density of states (LDOS) in the central region. Again, the +k sum
corresponds to right-going (+) electrons incident from the left electrode, and the
−k sum to left-going (-) electrons incident from the right. It is here implied that
each solution (ψi(r),ǫi) has a well-defined momentum ki by which the solutions
can be designated i→ k in a consistent way.

Integrating the LDOS in the C region over available energies then gives the
electronic density in the Landauer-Büttiker approach

n(r) =

∫ ∞

−∞

[
D(r, E)+f(E − µL) +D(r, E)−f(E − µR)

]
dE, (3.15)

where f is again the Fermi function and µL/R are the chemical potentials for
the left (L) and right (R) reservoirs. It is evident from the distinct terms
in Eq. (3.15) that the electronic density in the C region corresponds to two
independent contributions, one from electrons coming from the left electrode,
in equilibrium with the left reservoir, and one from electrons coming from the
right electrode, in equilibrium with the right reservoir. We will come back to
the additional steps in the self-consistent DFT procedure which are required to
implement the above equations later (see Secs. 3.2.5 and 3.3.5).

3.2 Green’s function method

In mathematics, Green’s functions are frequently used as a tool to solve dif-
ferential equations subject to boundary conditions. In the current context, it
also turns out to be a convenient approach to solve the infinite Schrödinger
equation in Eq. (3.9) for electron transport calculations. The Green’s func-
tions have several attractive features that reflects an intuitive interpretation in
terms of the electron scattering model at hand. A rigorous treatment of the
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electronic properties of nano-scale devices in terms of Green’s functions leads
to the non-equilibrium Green’s function (NEGF) formalism [4, 37, 38]. This
is currently the state-of-the-art framework for first principles modeling of the
current-voltage relations at the atomic level and much theoretical research has
been generated on its success [39, 40, 41, 17, 42, 43, 44, 45, 46, 47].

Since the main focus in this chapter is on the computational aspects of trans-
port calculations, we will here take a numerical point of view on the adoption of
the Green’s function technique. We leave the details of the properties of Green’s
functions and their physical interpretation to App. A. The derivations of the
primary NEGF formulas from a physical perspective are given in App. B.

3.2.1 Self-energy matrices

To begin with, let us simply reformulate the infinite eigenvalue problem in
Eq. (3.9) as a Green’s function equation, defined as

(ES − H)G = I, (3.16)

which for the two-probe system can be written



H̄∞

L H̄∞
L,C 0

H̄∞†
L,C H̄C H̄∞

R,C

0 H̄∞†
R,C H̄∞

R








G∞

L G∞
L,C G∞

L,R

G∞†
L,C GC G∞

R,C

G∞†
L,R G∞†

R,C G∞
R



 =




I∞ 0 0
0 I 0
0 0 I∞



 , (3.17)

and set out to solve for the Green’s function matrix G instead of the wave
function c. We have again used the notation H̄ ≡ ES − H with the significant
difference that an imaginary part is added to the energy, i.e., E → E + ı̂η,
where η is an infinitesimal quantity. This is to specify the proper retarded
Green’s function from the two available solutions, as explained in App. A.

The motivation for transforming Eq. (3.9) into Eq. (3.16) from a numerical
perspective, is the interest in obtaining the solution of the Schrödinger equation
only for the central C part of the two-probe system, while being able to accom-
modate the correct influence of the electrode parts. Since the C region is where
all the scattering occurs, it must include the full information of the electronic
transport processes, in the sense of the Landauer picture in Sec. 3.1.2 [4].

Consider the linear system in Eq. (3.17) and, for the moment, ignore that its
size is infinite. We then see that, by subtraction the appropriate multiplication
of the top and bottom block rows from the central block row, it is possible
to eliminate the blocks H̄∞†

L,C and H̄∞
R,C from the leftmost matrix. To be more

specific, we perform a block Gaussian elimination by which the blocks mentioned
vanish and central block is modified accordingly H̄C → H̄C − ΣL −ΣR, where

ΣL = H̄∞†
L,C(H̄∞

L )−1H̄∞
L,C , (3.18)

and
ΣR = H̄∞

R,C(H̄∞
R )−1H̄∞†

R,C . (3.19)
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The expressions in Eqs. (3.18) and (3.19) are simply the second terms of the
Schur’s complements from the top and bottom elimination operations. In this
manner, we end up with a central block row (0, H̄C −ΣL−ΣR,0)T to be multi-
plied onto the central column of G and equal to I, which isolates an expression
for GC , given by

GC = ((E + ı̂η)SC − HC − ΣL − ΣR)−1, (3.20)

where the notation for H̄C is explicitly written out.
It might seem that we have not gained much from deriving Eqs. (3.18)–(3.20)

since the formulas to obtain ΣL and ΣR still involve semi-infinite matrices. In
practice, however, because the layered two-probe setup generates Hamiltionian
and overlap matrices with block-tridiagonal structure, the elements of H̄∞

L,C are

all zero except in the lower left corner, where they are equal to H̄L,L of size

mL × mL. Likewise, for H̄∞†
L,C , H̄∞

R,C , and H̄∞†
R,C , which are non-zero only in

the blocks H̄†
L,L,H̄R,R, and H̄†

R,R, respectively (see Eq. (3.11)). This allows us
to determine the finite number of non-zero elements of the ΣL and ΣR from
expressions with finite matrices, i.e.,

[ΣL]mL×mL
= H̄†

L,LgLH̄L,L, (3.21)

and
[ΣR]mR×mR

= H̄R,RgRH̄†
R,R, (3.22)

where gL and gR are the so-called surface Green’s functions of the electrodes
corresponding to the lower right mL×mL submatrix of G∞

L ≡ (H̄∞
L )−1 and the

upper left mR ×mR submatrix of G∞
R ≡ (H̄∞

R )−1, respectively.
Finally, by using Eq. (3.12), we arrive at the following matrix inversion

operation in order to obtain the central part of the Green’s function

GC =





H̄1 − ΣL H̄1,2

H̄†
1,2

. . .
. . .

. . .
. . . H̄n−1,n

H̄†
n−1,n H̄n − ΣR





−1

, (3.23)

where the [·]m×m notation is implied. From here on, we will call the matrices
ΣL and ΣR the self-energy matrices of the left (L) and right (R) electrodes [4].

3.2.2 Surface Green’s functions

So far, the main computational tasks identified in the Green’s function method
are the evaluation of the self-energy matrices ΣL and ΣR, and the subsequent
calculation of GC by means of matrix inversion. As will become clear during
this chapter, these tasks are actually the foundation for most other necessary
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calculations, including the computation of the density matrix and current. In
fact, for almost all systems, the most overall CPU time is spent (see Sec. 3.5.1)
determining the surface Green’s function gL and gR that are needed for the
self-energy matrices via Eqs. (3.21)–(3.22). It is therefore relevant to discuss
the details of this very costly step of the Green’s function approach.

As introduced above, the surface Green’s function gL depends only on the
semi-infinite left part of the two-probe Hamiltonian in Eq. (3.11) and the en-
ergy E (including the infinitesimal η). Consider the matrix equation (ES∞

L −
H∞

L )G∞
L = H̄∞

L G∞
L = I∞ that defines G∞

L , written as





. . .
. . .

. . . H̄L H̄L,L

H̄†
L,L H̄L









. . .
...

...
...

· · · Gn−2,n−2
L Gn−2,n−1

L Gn−2,n
L

· · · Gn−1,n−2
L Gn−1,n−1

L Gn−1,n
L

· · · Gn,n−2
L Gn,n−1

L Gn,n
L




= I∞,

(3.24)
where the new block notation Ai,j = Ai,j ≡ [A]ij of a matrix A was used. It
seems that in order to obtain the surface Green’s function matrix gL = Gn,n

L

from Eq. (3.24), we apparently have to perform an infinite number of block
Gaussian eliminations. Fortunately, such a succession of eliminations in the
case of the block-Toeplitz matrix H̄∞

L will often converge, in the sense that the
Schur complements of two consecutive eliminations become identical to machine
precision, after a finite number of iterations.

Several well-established methods exist for this [48]. For comparison, we here
discuss three different schemes to find the surface Green’s functions of the semi-
infinite electrodes and also provide implementation details.

Recursive method

It is straightforward to obtain a recursive expression for gL by considering the
above Hamiltonian H̄∞

L of the semi-infinite left electrode and a similar Hamil-
tonian H̄∞+1

L with one extra principal layer on the surface, i.e.,

H̄∞
L =





. . .
. . .

. . . H̄L H̄L,L

H̄†
L,L H̄L



 , H̄∞+1
L =







 H̄∞
L




H̄L,L

H̄†
L,L H̄L



 .

(3.25)
Since the matrix H̄∞+1

L has an explicit 2 × 2 block structure and g∞+1
L =

[(H̄∞+1
L )−1]2,2 we simply apply the matrix inverse identity in Eq. (1.2) to write

g
(n+1)
L = [H̄L − H̄†

L,Lg
(n)
L H̄L,L]−1, (3.26)

where it is used that G∞
L = (H̄∞

L )−1. Here ∞ has been replaced by (n) to
indicate a finite iteration number. A similar derivation for the right electrode
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gives the expression

g
(n+1)
R = [H̄R − H̄R,Rg

(n)
R H̄†

R,R]−1, (3.27)

for the evaluation of g∞+1
R ≡ [(H̄∞+1

R )−1]1,1. Notice that the formulas for gL

and gR differ only in the order of the off-diagonal blocks in the second term
because the former represents downwards block Gaussian elimination and the
latter upwards block Gaussian elimination.

Eqs. (3.26) and (3.27) form the basis for simple recursive algorithms that

use g
(0)
L = H̄−1

L and g
(0)
R = H̄−1

R as initialization and iterate until the change
from adding an extra principal layer is less than a given tolerance. The fastest
way to implement this is by avoiding the explicit inverse, for example

ALGORITHM I: Recursive method

1. initialize A := H̄L

2. solve AX = H̄L,L

3. A := H̄L − H̄†
L,LX

}
iterate until (A′ − A)2ij ≤ δ2,

4. gL := A−1

(3.28)

for the left electrode, resulting in gL of accuracy δ at convergence. It is clear,
however, in the light of the available method described next, that this recursive
method is not of practical interest On the other hand it is easy to implement as
a reference for other methods.

Recursive 2n method

The most commonly used method in practice is probably the recursive technique
of Lopez-Sancho et. al. [49], which has exponential convergence in the number
of iterations. We can derive this procedure by looking at the last column of the
left electrode Green’s function G∞

L in Eq. (3.24), which can be written

H̄†
L,LGn−1,n

L + H̄LGn,n
L = I,

H̄†
L,LGi−1,n

L + H̄LGi,n
L + H̄L,LGi+1,n

L = 0, (i < n).
(3.29)

Consider three succeeding equations, e.g., for i− 1, i and i+ 1, from this chain
of mutually dependent linear equations. We can use the first and last of these
equations to isolate expressions for Gi−1,n

L and Gi+1,n
L , given by

Gi−1,n
L = −H̄−1

L [H̄†
L,LGi−2,n

L + H̄L,LGi,n
L ],

Gi+1,n
L = −H̄−1

L [H̄†
L,LGi,n

L + H̄L,LGi+2,n
L ],

(3.30)
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and subsequently insert them into the equation for i. After rearranging the
terms, this leads to the following equation

H̄†
L,LH̄−1

L H̄†
L,LGi−2,n

L + [H̄L − H̄†
L,LH̄−1

L H̄L,L

− H̄L,LH̄−1
L H̄†

L,L]Gi,n
L + H̄L,LH̄−1

L H̄L,LGi+2,n
L = 0 (3.31)

which can be written in the simple form

A22G
i−2,n
L + BGi,n

L + A11G
i+2,n
L = 0, (i < n− 2), (3.32)

where we have defined two new matrices A and B, given by

A =

(
H̄L,L

H̄†
L,L

)
H̄−1

L

(
H̄L,L H̄†

L,L

)
, B = H̄L − A21 − A12. (3.33)

Moreover, if we use i = n in the upper equation of Eq. (3.30) and insert this in
the initial expression of Eq. (3.29), we get

A22G
n−2,n
L + CGn,n

L = I, (3.34)

where C = H̄L−A21 has been introduced. Now notice that equation Eq. (3.32),
which is valid for all i < n− 2, together with equation Eq. (3.34), has the same
form as the original chain of equations in Eq. (3.29), if we only include even
values of i, i.e. i → 2i in Eq. (3.32). This means that the original and new
chain can be classified as isomorphic, where the latter obviously has twice the
spacing between principal layers of the former.

The final step is to realize that there is nothing that prevents us from ap-
plying the above replacements again on the new chain of equations, and thus
repeatedly. Then the result is another recursive scheme for the evaluation of
gL = Gn,n

L , that with each iteration doubles the number of principal layers
taken into account, that is 2n layers for n iterations. We will implement the
method in the following simple way:

ALGORITHM II: Recursive 2n method

1. initialize A :=

(
HLL 0

0 H†
LL

)
, B := HL, C := HL

2. A :=

(
A11

A22

)
B−1

(
A11 A22

)

3. B := B− A12 − A21

4. C := C− A12





iterate until (A12)

2
ij ≤ δ2

5. gL := C−1

(3.35)

where δ sets the accuracy (we use machine precision 10−15). Here A can be
calculated without finding the explicit inverse B−1 in the same manner as for
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Eq. (3.28). After convergence the surface Green’s function of the left electrode
can be obtained as gL = C−1. In the case of a semi-infinite right electrode the
last line of the iteration step 4 would simply be C := C − A21, resulting in
gR = C−1 at completion.

Notice that n iterations of the above algorithm corresponds exactly to 2n−1
iterations of the recursive formula Eq. (3.28). This technique is therefore much
faster and more stable in terms of avoiding rounding errors than the linear
recursive scheme described previously [48].

Other methods

We will briefly mention a few other schemes which have been developed for
calculating surface Green’s functions in order to obtain self-energy matrices.

First we note that in the very limited number of cases where the off-diagonal
matrices H̄L,L and H̄R,R are non-singular, the surface Green’s functions can be
calculated in closed form, e.g., as devised by Umerski [50]. Such an approach
is somewhat faster even than the recursive 2n method, but obviously limited in
applicability and therefore rarely used.

Alternatively, Rocha and Sanvito et. al. [51] attacks the problem of singular
off-diagonal matrices directly with a regularization approach that transforms
the full block tridiagonal Schrödinger equation into an equivalent block tridi-
agonal equation with well-conditioned coupling matrices. The surface Green’s
functions are then determined from the Bloch solutions of the transformed elec-
trode Hamiltonians in a manner that is both fast and stable. In this approach
they argue that the regularization is a necessary step in order to reduce errors
during the process of constructing gL and gR.

On the other hand, the evaluation of the surface Green’s functions from the
Bloch solutions can be attempted without any prior regularization (and with real
E and η = 0). The key is to omit the solutions that are unphysical due to the
mentioned singularities. We credit the first application of this approach to Ando
[52] and adopt it here in connection with the wave function matching method
described later in this chapter. Over the years the method has been modified
and refined by other authors [53, 54, 55]. We believe that our implementation for
obtaining the electrode self-energy matrices using this approach (see Secs. 3.3.2
and 3.3.3) avoids the stability problems mentioned by Rocha and Sanvito, and
therefore renders an explicit regularization superfluous. We also note that in
the most recent and still unpublished work [56] from the group of Sanvito, the
authors also consider situations where the regularization is not needed, which
is fortunately always the case in this work.

3.2.3 Matrix inversion

We now turn to the second computationally heavy and repeatedly executed
task in the Green’s function method, which is the matrix inversion operation
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to obtain GC . In principle, although the Hamiltonian matrix to be inverted
in Eq. (3.23) has block tridiagonal structure, the inverse matrix is going to be
filled out. The inverse operation is then at least O(N2) in complexity even when
H̄C −ΣL −ΣR has O(N) elements. We remind the reader that N ≈ nm̄, where
n is the number of blocks in H̄C and m̄ is the maximum size of any of the blocks
(i.e., O(nm̄2) ∼ O(N) elements). Fortunately, as we will see in Sec. 3.2.5, the
main quantities needed in the Green’s function method can be obtained without
knowing the entire GC matrix. In particular, the density matrix n requires
only the familiar block tridiagonal part of GC , which corresponds to sites where
the localized orbitals overlap. This part has only O(N) elements and can be
obtained in O(N) complexity. We will show how to do this in Chap. 4, but first
look at a standard full matrix inverse procedure.

Consider the block Gaussian elimination method introduced in Eqs. (1.3)–
(1.6). The particular downwards “sweep” performed has eliminated the lower
off-diagonal blocks. Let us attempt to complete the transformation of the left-
hand side of the augmented matrix (A|I) in Eq. (1.4) until it becomes the iden-
tity matrix. We know that when this is the case, the resulting right-hand side
matrix will be the inverse matrix. Therefore, we will do an upwards block Gaus-
sian elimination “sweep” to eliminate the upper off-diagonal blocks in Eq. (1.4)

Eq. (1.4) ∼





A′
11 J′

11 J′
1,2 . . . J′

1,n

A′
22 J′

2,1

. . .
. . .

...
. . .

...
. . . J′

n−1,n−1 J′
n−1,n

A′
n,n J′

n,1 · · · J′
n,n−1 I




,

(3.36)
where A′

ii and J′
n,i = Jn,i are defined in Eqs. (1.5)–(1.6), and

J′
ij = Jij − Ai,i+1(A

′
i+1,i+1)

−1J′
i+1,j , 1 ≤ i < n, 1 ≤ j < i, (3.37)

J′
ii = I − Ai,i+1(A

′
i+1,i+1)

−1J′
i+1,i, 1 ≤ i < n. (3.38)

J′
ij = −Ai,i+1(A

′
i+1,i+1)

−1J′
i+1,j , 1 ≤ i < n, i < j ≤ n, (3.39)

Now we can simply LU-factorize the diagonal matrices A′
ii in Eq. (3.36) and

multiply (A′
ii)

−1 onto the ith row of the augmented matrix, which yields the
identity matrix in the left-hand side and A−1 in the right-hand side. Explicitly
counting the basic block operations of this upwards sweep procedure results in
n LU-factorizations, 2n2 + n − 2 multiplications and 1

2 (n2 + n − 2) additions,
which means that it is of O(n2m̄3) ∼ O(N2) complexity, as expected.

Accordingly, the basic algorithm that can be implemented in order to cal-
culate the Green’s function GC of the central region for two-probe systems is
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written:

ALGORITHM III: Green’s function method

1. obtain gL using algorithm ii

2. ΣL := H̄†
L,LgLH̄L,L

}
the left elecrode

3. obtain gR using algorithm ii

4. ΣR := H̄R,RgRH̄†
R,R

}
the right elecrode

5. initialize A′
1 := H̄11 − ΣL

6. for i := 2, . . . ,n

7. solve H̄i,i−1 = Ji,i−1A
′
i−1 for Ji,i−1

8. A′
i := H̄i − Ji,i−1H̄i−1,i

9. for j := 2, . . . , i− 1

10. Ji,j := −Ji,i−1Ji−1,j

11. end

12. end






downwards sweep

13. initialize A′
n := A′

n − ΣR, J′
n,j = Jn,j for j = 1, . . . ,n

14. for i := n − 1, . . . , 1

15. solve H̄i,i+1 = J′
i,i+1A

′
i+1 for J′

i,i+1

16. for j := i+ 2, . . . ,n

17. J′
i,j := −J′

i,i+1J
′
i+1,j

18. end

19. J′
i,i := I− J′

i,i+1J
′
i+1,j

20. for j := 1, . . . , i− 1

21. J′
i,j := J′

i,j − J′
i,i+1J

′
i+1,j

22. end

23. end






upwards sweep

24. for i := 1, . . . ,n

25. solve A′
i[Gi,1 Gi,2 · · · Gi,n] = [J′

i,1 J′
i,2 · · · J′

i,n]

26. end





GC

(3.40)

The total number of basic block operations for this Green’s function algorithm
is 3n − 2 LU-factorizations, n2 + 4n − 4 multiplications and 4n − 6 additions.

3.2.4 Transmission calculations

The primary objective in the current modeling of quantum transport is to calcu-
late the current-voltage characteristics of specific nano-scale systems. In order
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to do this using the Green’s function method we will apply the NEGF formula
for the current I through a two-probe system in the coherent limit, which is
properly derived in App. B. The formula for a small bias Vb = −(µL − µR)/e is
written as

I =
2e

h

∫ ∞

−∞
T (E) (f(E − µL) − f(E − µR)) dE, (3.41)

where f is the Fermi function in Eq. (3.1), and

T (E) = Tr{ΓLG†
CΓRGC}, (3.42)

is the transmission at energy E. Here we have introduced the matrices

ΓL = i(ΣL − Σ†
L), ΓR = i(ΣR − Σ†

R), (3.43)

which we will call the broadening matrices. The expression for the transmission
coefficient in Eq. (3.42) is often referred to as the Caroli formula [57]. In practice,
the limits of the integral in Eq. (3.41) can be restricted to a finite range because
f(E − µ) goes rapidly towards zero when E differs from µ, as described in the
previous section. We will now focus on the computational technique used to
calculate the transmission T (E) at a given energy E from Eq. (3.42).

It is evident that all the quantities in the equations above can be determined
from the matrices ΣL,ΣR, and GC introduced previously. Since we have already
discussed how to obtain ΣL and ΣR in an efficient manner, and subsequently
GC by matrix inversion, all requisites are available to use Eq. (3.42). However,
we actually only need a single block of GC to find T (E) because the broadening
matrices ΓL and ΓR exists only in the corners blocks of the central region matrix
structure like ΣL and ΣR. More specifically, we have the simplification

T (E) = Tr










ΓL 0

0
. . .

. . .

. . .
. . . 0
0 0




× G†

C ×





0 0

0
. . .

. . .

. . .
. . . 0
0 ΓR




× GC






= Tr{ΓLG†
n,1ΓRGn,1},

,

(3.44)
where Gn,1 ≡ [GC ]n,1, which implies that only the upper right block of the
inverse of H̄C − ΣL − ΣR is necessary for the evaluation of T (E).

From Eq. (3.44) we see explicitly why modeling quantum transport in terms
of Green’s functions is convenient. The information required to find the trans-
mission between layer 1 and layer n is fully contained in the Green’s function
block Gn,1 because the Green’s function does not represent the single-particle
wave functions themselves, but rather the wave functions resulting from a unit
excitation somewhere in the system. In particular, the block Gi,j describes the
wave functions in layer i resulting from the possible excitations of orbitals local
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to layer j, so that Gn,1 gives directly the probabilities of observing electrons in
the right electrode as a result of incident electrons from the left electrode.

Again, it is relatively simple to implement an algorithm for computing Gn,1

using block Gaussian eliminations. Considering the downwards block Gaussian
elimination defined in Eqs. (1.3)–(1.4), we see that such a single sweep is suf-
ficient to obtain the inverse of the entire bottom row of the block tridiagonal
matrix, and hence also the block [(H̄C −ΣL−ΣR)−1]n,1. The following sequen-
tial algorithm can therefore be implemented to obtain T (E) at completion:

ALGORITHM IV: Calculate T (E) using Gn,1

1. initialize A := H̄1,1 − ΣL, B := I

2. for i := 2, . . . ,n

3. solve H̄i,i−1 = XA for X

4. A := H̄i,i − XH̄i−1,i

5. B := −XB

6. end

7. solve (A− ΣL)Gn,1 = B

8. obtain T (E) from Eqs. (3.43) and (3.44),

(3.45)

We note that this algorithm has an O(nm̄3) computational complexity, where m̄
is the maximum order of any block in H̄C (i.e., it is O(N) in the total number
of orbitals N , since N ≈ nm̄).

We will take advantage of the useful physical interpretation of Gi,j men-
tioned above to develop a new algorithm in Chap. 4, which is generally faster
than the algorithm in Eq. (3.45). A nicely performing parallel algorithm for
obtaining Gn,1 has been published in [58].

3.2.5 Obtaining the Self-consistent Hamiltonian

As introduced in Chap. 2, we will apply DFT in order to obtain the Hamiltonian
matrices HL,HL,L,HR,HR,R, and HC for the Landauer-Büttiker type two-probe
systems, which we are concerned with here. As we have argued several times
above, the assumption that makes this computationally feasible for an open
and infinite system, is that we are able to separate it into three distinct regions:
bulk–[central region]–bulk. Consequently, this involves solving the Schrödinger
equation and the Poisson equation in a self-consistently manner for each region
of the two-probe system separately.

Consider the self-consistent DFT procedure in the flow chart in Fig. 2.1. To
begin with, the self-consistent electrode Hamiltonians HL and HR are calculated
according to this procedure by properly setting them up as ideal periodic systems
using k-point sampling (see Sec. 2.1.7). Also the off-diagonal matrices HL,L

and HR,R can be constructed from the self-consistent solution. The unit cells
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Figure 3.5: Detailed flow-diagram for the “solve KS eigenvalue problem” step of
the self-consistent procedure in Fig. 2.1 in the case the central region calculation
using the Green’s function method. Notice that in order to obtain Deq and Dneq

one has to compute ΣL,ΣR, and Gr
C for many different energy points E.

of the electrodes typically consists of relatively few atoms and obtaining the
correspondingly small electrode Hamiltonians in this way is quite fast.

The evaluation of the central region Hamiltonian HC follows a slightly mod-
ified flow chart, as depicted in Fig. 3.5, in order to incorporate the Green’s func-
tion description presented in the previous sections. Compared to the molecule
and bulk calculations, the “solve KS eigenvalue problem” step of the self-
consistent procedure is different. Now the eigenproblem solution is obtained
by means of the Green’s function matrix GC and the density matrix D (from
which the density n(r) is available, see Eq. (2.18)). We have already shown how
perform the first two steps in this modified flow diagram. Let us now describe
the step of obtaining the density matrix D from GC in two important cases.

Equilibrium case µL = µR ≡ µ

We can use the following integral expression from NEGF theory (derived in
Sec. B.5) to calculate the electron density matrix

D = − 1

π

∫ ∞

−∞
Im{GC}f(E − µ) dE, (3.46)

under equilibrium conditions. In practice the integral is bounded from below
by the bottom valence-band edge and from above by the vanishing of the Fermi
function when E > µ. The only problem with Eq. (3.46) is therefore that
the Green’s function is in general a rapidly varying function along the real
axis. This implies that an accurate determination of the integral requires many
energy points, often more than 5000. Fortunately, one can get around this issue
by using complex functions theory. Since the Green’s function is an analytical
function and can be extended into the complex plane, we can evaluate the
integral in Eq. (3.46) according to the residue theorem by integrating along a



3.2 Green’s function method 39

contour in the complex plane, which encloses the poles of the Fermi function. A
detailed description of this contour technique can be found in Ref. [39]. In the
complex plane, the functions are smooth and only a few points are needed for
very accurate integration, usually around 50 points. This factor 100 reduction
in the computational expense is one of the most important virtues of the Green’s
function method as a practical approach [37].

Non-equilibrium case with finite bias |µL − µR| > 0

In the non-equilibrium case we have to use the general NEGF expression

D =
1

2πı̂

∫ ∞

−∞
G< dE. (3.47)

to obtain the density matrix. The “lesser” Green’s function matrix is given by

G< = ı̂GC

(
ΓLf(E − µL) + ΓRf(E − µR)

)
G†

C , (3.48)

where ΓL and ΓR are the broadening matrices defined in Eq. (3.43) (Eqs. (3.47)
and (3.48) are also derived in Sec. B.5). We note that, in practice, only the
first and last block columns of GC are actually needed in Eq. (3.48) because of
the zero parts of ΓL and ΓR (same arguments as used in Sec. 3.2.4). However,
unlike the retarded Green’s function GC , the lesser Green’s function G< is not
analytic away from the real energy axis, which makes it impossible to apply the
contour method. Fortunately, it is possible to rewrite Eq. (3.47) as two separate
contributions, given by

D = Deq + Dneq, (3.49)

where the first contribution is

Deq =
1

2π

∫ ∞

−∞

(
GCΓLG†

C + GCΓRG†
C

)
f(E − µ) dE

= − 1

π

∫ ∞

−∞
Im{GC}f(E − µ) dE,

(3.50)

which is identical to the equilibrium case in Eq. (3.46), and hence obtained using
the complex contour, and the second contribution is

Dneq =
1

2π

∫ ∞

−∞

(
GCΓLG†

C

(
f(E − µL) − f(E − µ)

)

+ GCΓRG†
C

(
f(E − µR) − f(E − µ)

))
dE (3.51)

where the integrand is non-zero only over a limited range, for which f(E − µ)
differs significantly from either f(E−µL) or f(E−µR). This range is of the order
of the bias window µL ≤ E ≤ µR, for µL < µR, but has to be evaluated along
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the real energy axis with relatively small steps. For large biases the calculation
of the non-equilibrium density matrix Dneq is the overall most time consuming
part of the Green’s function method (see benchmark results in Sec. 3.5.1).

We note in passing that if we choose µ = µL in Eq. (3.51), then the first term
of the integrand cancels out. Similarly, choosing µ = µR eliminates the second
term. This means that we have two simple and equivalent formulas by which to
obtain the density matrix D in the non-equilibrium case. In practice, however,
the results from the µ = µL calculation and the µ = µR calculation often differs,
in particular because of errors when evaluating Dneq. This difference can then
be used to estimate the numerical integration error, and also to combine the
two results as a weighted sum to improve the final accuracy (see Ref. [39]).

3.3 Wave function matching method

This section is devoted to the solution of the two-probe Schrödinger equation in
Eq. (3.9) using the wave function matching (WFM) method. This method has
become increasingly popular in recent years mainly because it extends naturally
and in a transparent fashion the perception of electrons being transmitted and
reflected, much in the spirit of the original Landauer picture (Sec. 3.1.2). As
such, the basic approach of the WFM method has been used under different
names by different people; the scattering states approach [39, 40], the mode
matching method [59, 55], the over-bridging boundary-matching scheme [33, 60],
and the WFM method [52, 61, 62]. Here we will adopt the last name and the
formalism corresponding to it. It was initially developed by Ando [52] and
subsequently refined by Brocks et al. [Ref. [62] and references therein]. In
Chap. 5 we will develop the WFM method even further to achieve a form that
is much more efficient in practice (up to an order of magnitude faster). The
formal equivalence between the WFM method and the Green’s function method
that was presented in the previous section has been proven in [55].

3.3.1 Scattering wave function for two-probe systems

As we saw in the previous sections, the conductance and current through a
nano-scale device attached to two reservoirs is proportional to the quantum-
mechanical probability T (E) that an incoming electron at energy E in the one
reservoir will transmit to the other reservoir. In the following we set out to find
T (E) in terms of the individual transmission probabilities tij that enters in the
Landauer formula Eq. (3.6), and also the density matrix D of the central region,
by solving the infinite Schrödinger equation (ES−H)c = 0 defined in Eq. (3.9)
directly for the scattered wave function c.

The starting point is the same two-probe systems as before (see Sec. 3.1.4).
In particular, we assume that the infinite structure is divided into principal
layers numbered i = −∞, . . . ,∞ and composed of a finite central (C) region
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Figure 3.6: Schematic representation of WFM applied to layered two-probe
systems, where the central device region, consisting of layers i = 1, . . . , n, is
attached to left and right semi-infinite electrodes. The incoming propagating
state from the left electrode is scattered in the central region and end up as
reflected and transmitted superpositions of propagating and evanescent states.

containing the device and two semi-infinite left (L) and right (R) electrode
regions. The Schrödinger equation to be solved can then be written (see Fig. 3.6)





. . .
. . .

. . . H̄L H̄L,L

H̄†
L,L



 H̄C




H̄R,R

H̄†
R,R H̄R

. . .

. . .
. . .









...
c0

c1

...
cn

cn+1

...





= 0, (3.52)

where the finite matrix of the central device H̄C is given in Eq. (3.12) using the
usual notation H̄ ≡ ES−H, and the wave function in layer i is represented by
a column vector ci = (ci,1, . . . , ci,mi

)T of the expansion coefficients, where mi

is the number of orbitals in the layer. Thus the wave function c extending over
the entire system is written as c = (cT

−∞, . . . , c
T
∞)T. Notice that we also in this

setup assume that the border layers 1 and n of the central region are identical
to a layer of the connecting electrodes. We will get back to this later.

As is known from scattering theory, the solution to Eq. (3.52) for the part far
deep in the left electrode will correspond to a wave which is a superposition of
the Bloch modes of this bulk material. A Bloch mode in this context is a wave
that propagates in an ideal periodic lattice without loss (we will determine these
in the next section). Assuming then, that an electron is incident from the left
electrode, it will always be propagating in one of the right-going Bloch modes,
say number i, available there. This is shown as the incoming wave in Fig. 3.6.
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Subsequently, when it hits the central device region, some of the amplitude
of the electron wave will be reflected back into the various left-going modes of
the left electrode. These can be both Bloch modes and so-called evanescent
modes, which decay exponentially. Alternatively, the electron may tunnel all
the way through the device region, in which case some of the electron wave
is transmitted into the right-going modes, denoted for example by j, of the
right electrode. By finding the scattering wave function c corresponding to this
situation it is then possible to determine how much was transmitted, yielding
tij . This can be done by directly matching the wave functions in layers c−1 and
cn+1 to the corresponding first and last layer of the central region. Subsequently
T (E) can be found by summing all contributions tij via the Landauer-Büttiker
expression Eq. (3.8). We will now present the computational aspects of this
technique, which is the core of the WFM method.

3.3.2 Bulk modes of the electrodes

Initially we need to calculate the modes of the bulk electrodes. To this end we
look at the Schrödinger equation for the ideal left electrode, given by





. . .
. . .

. . . H̄L H̄L,L

H̄
†
L,L H̄L H̄L,L

H̄
†
L,L H̄L

. . .

. . .
. . .









...
cL,i−1

cL,i

cL,i+1

...




= 0, (3.53)

which has a block-Toeplitz structure and therefore can be written simply as

H̄†
L,LcL,i−1 + H̄LcL,i + H̄L,LcL,i+1 = 0, (3.54)

for i = −∞, . . . ,∞. The subscript L on the solution cL designates that this
is for the left electrode. Then, since this system is infinitely periodic, Bloch’s
theorem predicts that the cL,i’s differ only by a phase factor [2], i.e.,

cL,i = eı̂kdcL,i−1, (3.55)

where k is the wave number and d is the distance between layers. Therefore,
by defining λL ≡ eı̂kd and using Eqs. (3.54) and (3.55), we can isolate a simple
expression for cL,i, given by

H̄†
L,LcL,i + λLH̄LcL,i + λ2

LH̄L,LcL,i = 0, (3.56)

which is a quadratic eigenvalue problem (QEP).
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In principle, the simplest way to solve Eq. (3.56) is by finding the eigenvalues
and eigenvectors of the so-called transfer matrix4

TL =

(
0 I

−H̄−1
L,LH̄†

L,L H̄−1
L,LH̄L

)
(3.57)

where I is the identity mL × mL matrix. However, such a solution obviously
requires that H̄L,L can be inverted which is seldom the case. In systems where
H̄L,L is singular or ill-conditioned (all systems in this work) it is then most
convenient to linearize the QEP and solve the equivalent generalized eigenvalue
problem [63]

A

(
cL,i

cL,i+1

)
= λLB

(
cL,i

cL,i+1

)
(3.58)

where

A =

(
0 I

−H̄L,L −H̄L

)
, B =

(
I 0
0 H̄L,L

)
, (3.59)

which is of order 2mL × 2mL and gives the 2mL solutions of Eq. (3.56).

We can implement Eq. (3.58) straightforwardly by calling the lapack rou-
tines dggev/zggev [29] for the real/complex case. However, it is also possible
to apply a simple “shift-and-invert” trick to take advantage of the zero and
identity subblocks of A and B. See the details of this approach in App. C.

Since the cL,i vectors for different layers i are related simply via Eq. (3.55) we
will from here on skip the implied layer subscript i. Let us instead designate the
2mL solutions of Eq. (3.58) by numbers k = 1, . . . , 2mL. Solving Eq. (3.58) thus
provides the electrode modes cL,k (as the eigenvectors), and the phase factors
λL,k (as eigenvalues), which we from here on refer to as Bloch factors. In general,
the eigenvalues appear as complex pairs (λ+

L,k, λ
−
L,k), related by λ+

L,kλ
−
L,k = 1

[63], which in our case indicates that half the modes are right-going (+) and
half are left-going (−), as can be expected from symmetry arguments.

A simple algorithm running through the 2mL solutions one by one can then
be used to group the modes into three categories:

1. Trivial solutions which have eigenvalues |λ+
L,k| = 0 or |λ−L,k| = inf, which

are interpreted as unphysical or very rapidly decaying or growing modes.
These eigenpairs are discarded.

2. The so-called Bloch modes that have real wave numbers k giving Bloch
factors with |λL,k| = 1, and correspond to propagating waves that go from
one layer to the next with constant amplitude.

4The transfer matrix used here is defined

„

cL,i

cL,i+1

«

= TL

„

cL,i−1

cL,i

«

.
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Figure 3.7: A polar plot showing the positions of the 243 complex eigenvalues
(blue/circles) inside the unit disc (i.e., |λ| ≤ 1) for an Au(111) electrode with
27 atoms per unit cell at E = −2 eV. There are 21 eigenvalues corresponding
to Bloch modes (red/filled dots) which are located on the unit circle.

3. The remaining modes that have complex k and |λL,k| 6= 1 and represent
evanescent (exponentially growing or decaying) waves.5

A polar plot of the Bloch factors with |λk| ≤ 1 of an example Au(111) electrode
is shown in Fig. 3.7. The few Bloch factors that correspond to the propagating
Bloch modes are highlighted.

We note that, in practice, it makes sense to keep only those eigenpairs that
have eigenvalues within the intervals [55]

λmin ≤ |λ+
L,k| ≤ 1 and 1 ≤ |λ−L,k| ≤ λ−1

min, (3.60)

for a reasonable choice of λmin. Modes with |λ±L,k| outside these intervals are
decaying or growing very rapidly and their influence in an actual calculation is
in most cases insignificant. What exactly constitutes a reasonable choice of the
parameter λmin is a key subject of Chap. 5.

Finally, let us assume that the number of modes selected from category 2 and
3 is 2m̊L out of the total 2mL solutions. In the following it is then convenient
to classify these modes according to the propagation direction. In the case of
Bloch modes, we calculate the group velocity from the expression [59]

vL,k = −2d

~
Im
{
λL,kc

†
L,kH̄

†
L,LcL,k

}
, (3.61)

and use the sign of vL,k to distinguish whether they are right-going (+) or left-
going (−). For the evanescent modes, we know by definition (see Eq. (3.55))

5 Even though the evanescent modes do not contribute to the transmission in the ideal
unbounded electrode, they will provide important exponential tails leaving and entering “im-
purities” such as a scatter region or boundaries.
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that we have |λ+
L,k| < 1 for right-going modes and |λ−L,k| > 1 for left-going

modes.

The mode selection and classification for the left electrode leads to the defi-
nition of two mode matrices:

C±
L =

(
c±L,1, . . . , c

±
L,m̊L

)
, (3.62)

which has the right-going (+) and left-going (−) coefficient vectors as columns,
and two corresponding diagonal matrices

Λ±
L = diag{λ±1 , λ±2 , . . . , λ±m̊L

}, (3.63)

that contain the Bloch factors. We also note, without explicit derivation, that
similar considerations for the right electrode would lead to definitions of matrices
C±

R and Λ±
R, built from solutions of the corresponding QEP for the right system.

3.3.3 Block tridiagonal system of linear equations

Returning now to the infinite two-probe Schrödinger equation in Eq. (3.9), we
know that the solution to such a second-order differential equation can be deter-
mined be specifying a value and a first derivative at one point or by specifying
values at two points. In our case, we will do the latter as follows.

As discussed in Sec. 3.3.1 we can describe the incident, reflected and trans-
mitted parts of scattering wave function as superpositions of bulk modes. Thus
it is possible to express the wave functions in layers i = 0 and i = n+1 in terms
of the mode matrices, for example as

c0 = C+
Lain + C−

Laref , cn+1 = C+
Ratrans, (3.64)

where ain,aref , and atrans are vectors holding the expansion coefficients in the
basis of bulk modes (which is be assumed to be complete [56]). We note that
the left-going part of cn+1 is fixed to 0 from the outset. Also, in order to specify
a particular incident right-going mode k we can simply set [ain]i = δi,k.

Now we may take the L–C–R splitting of our two-probe systems into account,
i.e., that the boundaries were chosen far enough into the semi-infinite electrodes
layers, that the wave functions for layers i < 1 and i > n correspond to the ideal
electrode case, for which ci = λci−1 is valid. In our notation this allows us to
write the wave functions in layers i = −1 and i = n + 2, as

c−1 = C+
L(Λ+

L)−1ain + C−
L (Λ−

L )−1aref , cn+2 = C+
RΛ+

Ratrans. (3.65)

by using both the mode matrices and the Bloch factor matrices. Inserting c−1
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and cn+2 in Eq. (3.52), i.e., specifying two values of the solution, we arrive at





H̄L H̄L,L

H̄†
L,L



 H̄C




H̄R,R

H̄†
R,R H̄R









c0

c1

...
cn

cn+1




=





−H̄†
L,Lc−1

0
...
0

−H̄L,Lcn+2




, (3.66)

which is the finite system of linear equations to be solved in the WFM method.
In order to implement an appropriate WFM algorithm we first rewrite the

linear system in Eq. (3.66) in a more convenient form. Considering Eqs. (3.64)
and (3.65) we see that it is possible to express c−1 in terms of c0 and the
known coefficients ain of the incoming wave, if matrices C±

L and (Λ±
L )−1 were

to commute.6 Let us assume that we can invert the mode matrices and write
C̃±

LC±
L = I, where C̃±

L are the so-called (Moore-Penrose) pseudo-inverses [1].
Consequently, inserting this in Eq. (3.65) and using Eq. (3.64) yields

c−1 = C+
L(Λ+

L)−1C̃+
LC+

Lain + C−
L (Λ−

L )−1C̃−
LC−

Laref

=
[
(B+

L )−1 − (B−
L )−1

]
C+

Lain + (B−
L )−1c0,

(3.67)

where the so-called Bloch matrices [55] for the left electrode

B±
L = C±

LΛ±
L C̃±

L (3.68)

have been introduced. In the same manner, we can express cn+2 in terms of
cn+1 by inserting I = C̃+

RC+
R appropriately, i.e.

cn+2 = C+
RΛ+

RC̃+
RC+

Ratrans = B+
Rcn+1, (3.69)

where
B±

R = C±
RΛ±

RC̃±
R (3.70)

are the Bloch matrices for the right electrode. Finally, the combination of
Eqs. (3.66), (3.67), and (3.69) results in the block tridiagonal system of linear
equations, given by





g−1
L H̄L,L

H̄†
L,L H̄1 H̄1,2

H̄†
1,2

. . .
. . .

. . . H̄n H̄R,R

H̄†
R,R g−1

R









c0

c1

...
cn

cn+1




=





q0

0
...
0
0




, (3.71)

6 This would only be the case for orthonormal cL,k vectors, i.e., C±†
L

C±
L

= I, which is not
a valid assumption in our derivation.
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where

gL = [H̄L + H̄†
L,L(B−

L )−1]−1, gR = [H̄R + H̄R,RB+
R]−1 (3.72)

and the remaining source term q0 on the right is

q0 = H̄†
L,L

[
(B−

L )−1 − (B+
L )−1

]
C+

Lain. (3.73)

We now present how to implement the solution of Eq. (3.71) in a straightfor-
ward and efficient manner. Initially we need to determine the pseudo-inverses
of C±

L and C±
R in order to obtain the Bloch matrices B±

L and B±
R. The numer-

ically most stable way to proceed is to perform a QR factorization of the mode
matrices (assuming that these have full rank m̊L), written as

C±
L = Q±

LR±
L , (Q±

L )†Q±
L = I, (3.74)

for the left electrode and similarly with L → R for the right electrode. Here
R±

L are upper triangular m̊L × m̊L matrices and Q±
L are orthogonal mL × m̊L

matrices. It is then easy to form the pseudo-inverses by solving

R±
L C̃±

L = (Q±
L )†, (3.75)

which requires only back substitution since the R±
L matrices are already upper

triangular. The same operations hold for L → R and the Bloch matrices can
subsequently be formed directly from Eqs. (3.68) and (3.70).

We are now in a position to evaluate g−1
L , g−1

R , and q0, and solve the linear
system of equations using the block Gaussian elimination sweeps. Performing
the elimination of the lower off-diagonal blocks of Eq. (3.71) with a downwards
sweep (see Eqs. (1.4)–(1.5)) yields





H̄′
0 H̄L,L

H̄′
1 H̄1,2

. . .
. . .

H̄′
n H̄R,R

H̄′
n+1









c0

c1

...
cn

cn+1




=





q′
0

q′
1
...

q′
n

q′
n+1




, (3.76)

where H̄′
0 = g−1

L , q′
0 = q0, and

H̄′
i = H̄i − H̄i,i−1(H̄

′
i−1)

−1H̄i−1,i, i = 1, . . . ,n + 1, (3.77)

q′
i = −H̄i,i−1(H̄

′
i−1)

−1q′
i−1, i = 1, . . . ,n + 1, (3.78)

using Hn+1 = g−1
R as initialization.

Succeeding these operations by an upwards sweep, then gives




H̄′
0

H̄′
1

. . .

H̄′
n

H̄′
n+1









c0

c1

...
cn

cn+1




=





q8′
0

q8′
1
...

q8′
n

q8′
n+1




, (3.79)
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where
q8′

i = q′
i − H̄i,i+1(H̄

′
i+1)

−1q8′
i+1, i = 0, . . . ,n. (3.80)

with q8′
n+1 = q′

n+1. Thus we end up with a block diagonal left-hand side matrix
and can solve for the solutions ci simply as

ci = (H̄′
i)

−1q8′
i , i = 0, . . . ,n + 1, (3.81)

which gives us the correctly matched scattering wave functions we were looking
for, both inside the central region and in the connecting layers of the electrodes.
We show in the next two sections how to benefit from the solutions ci.

In line with the above derivations we implement the WFM method in this
thesis with the following O(N) algorithm:

ALGORITHM V: The WFM method

1. obtain C±
L ,Λ

±
L from QEP (Eqs. (3.56) − (3.63))

2. [Q±
L ,R

±
L ] = QR{C±

L}, solve R±
L C̃±

L = (Q±
L )†

3. B±
L := C±

LΛ±
L C̃±

L

4. g−1
L := H̄L + H̄†

L,L(B−
L )−1






the left elecrode

5. obtain C+
R,Λ

+
R from QEP (Eqs. (3.56) − (3.63))

6. [Q+
R,R

+
R] = QR{C+

R}, solve R+
RC̃+

R = (Q+
R)†

7. B+
R := C+

RΛ+
RC̃+

R

8. g−1
R := H̄R + H̄R,RB+

R






the right elecrode

9. q0 := H̄†
L,L

[
(B−

L )−1 − (B+
L )−1

]
C+

Lain

10. initialize H̄′
0 := g−1

L , H̄n+1 := g−1
R , q′

0 := q0

11. for i := 1, . . . ,n + 1

12. solve H̄i,i−1 = XH̄′
i−1 for X

13. H̄′
i := H̄i − XH̄i−1,i

14. q′
i := −Xq′

i−1

15. end






downwards sweep

16. initialize q8′
n+1 := q′

n+1

17. for i := n, . . . , 0

18. solve H̄i,i+1 = XH̄′
i+1 for X

19. q8′
i := q′

i − Xq8′
i+1

20. end






upwards sweep

21. for i := 0, . . . ,n + 1

22. solve H̄′
ici = q8′

i

23. end





scattering states solution

(3.82)
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Notice that we can calculate for all the possible incident modes simultaneously
by using ain → I, where I is of order m̊L × m̊L. Furthermore, we have in this
algorithm used that B−1 = (CΛC̃)−1 = CΛ−1C̃ = C diag{λ−1

1 , . . . , λ−1
m }C̃,

with all super and subscripts implied, in order to avoid any explicit inversion of
the Bloch matrices B±

L and B±
R, which would be inefficient.

3.3.4 Transmission calculations

As a final important aspect of the WFM approach we want to determine the
transmission coefficients tij in order to obtain the total transmission T (E) from
the Landauer-Büttiker formula in Eq. (3.8). The transparency of the WFM
description makes this quite easy. As we already know the specific mode that is
incident, we simply have to relate the calculated scattering solution in the first
layer of the right electrode cn+1 to the right-going bulk modes available here.

More specifically, assume that the particular Bloch mode which is incident
is available as column k of the mode matrix C+

L , i.e., using [ain]i = δi,k. We
denote the resulting scattering wave function in layer n + 1 by cn+1,k, which is
calculated from the WFM linear system in Eq. (3.71). Then, we can write

C+
Rtk = cn+1,k, (3.83)

giving the kth column of t, since C+
R is the mR × m̊R column matrix holding

the right-going bulk modes of the right electrode (and here assumed to have full
rank). Thus to obtain the entire transmission matrix in one step, we simply
solve

C+
Rt = (cn+1,1, cn+1,2, . . . , cn+1,m̊L

) , (3.84)

where the right-hand side is obtained simultaneously using ain → I.

There are two additional points to consider before calculating T (E) with the
WFM method. First of all, there is no need to perform an upwards Gaussian
elimination sweep as done in algorithm v in the previous section. If we
are only interested in the transmission coefficients tij (and not the reflection
coefficients rij) then only cn+1 is required, and this solution is readily available
from the downwards sweep and one subsequent solve. In order to obtain the
reflection coefficients, however, the c0 solution is needed, i.e.,

C−
Lr = (c0,1, c0,2, . . . , c0,m̊L

) − C+
L , (3.85)

which demands the full solution of the linear system. In this case the second
term removes the components corresponding to the incident modes.

The other point to consider is that when using the Landauer-Büttiker for-
mula in Eq. (3.8) it is assumed that the electrode modes carry unit current in
the conduction direction. In other words, we have to weigh the transmission co-
efficients by the group velocities of the Bloch modes involved or “flux-normalize”
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all the Bloch modes right from the beginning [64, 42]. In the current implemen-
tation we do the latter and require all the Bloch modes in C±

L to satisfy

(c±L,k)†c±L,k =
dL

v±L,k

, (Bloch modes) (3.86)

where v±L,k are the group velocities as defined in Eq. (3.61) and dL is the layer
thickness of the left electrode. At the same time, all the evanescent electrode
modes are (state-) normalized in the standard way, i.e.,

(c±L,k)†c±L,k = 1, (Evanescent modes) (3.87)

and similarly in the case of the right electrode L→ R. The above normalizations
ensure that t†t + r†r = 1 from the outset, which is also convenient for testing
the accuracy of the obtained results, as we will see in Chap. 5.

Finally, the algorithm to calculate the total transmission in the WFM me-
thod can be written as:

ALGORITHM VI: Calculate T (E) using WFM

1. initialize H̄′
1 := g−1

L , H̄n+1 := g−1
R , q′

0 := q0

2. for i := 2, . . . ,n + 1

3. solve H̄i,i−1 = XH̄′
i−1 for X

4. H̄′
i := H̄i − XH̄i−1,i

5. q′
i := −Xq′

i−1

6. end

7. solve H̄′
n+1cn+1 = q′

n+1

8. solve C+
Rt = cn+1

9. obtain T (E) from Eq. (3.8)

(3.88)

Here it is assumed that the matrices C+
R, g−1

L , g−1
R , and q0 (for ain → I) have

been provided by executing lines 1 − 9 of algorithm v. We note that this
implementation uses the same number of solves and multiplications inside the
sweep for loop as the Green’s function approach in algorithm iv. However,
since the number of columns of q′

i (i.e., number of Bloch modes in the left
electrode) is in general much lower than mi (i.e., the total number of modes in
the left electrode), the matrix-matrix multiplication in line 5 in algorithm vi

is relatively inexpensive compared to line 5 of algorithm iv. This actually
results in a notable speed-up in the downwards sweep performed (see Sec. 3.5.2).

3.3.5 Obtaining the self-consistent Hamiltonian

The correspondence between the WFM approach and the Landauer-Büttiker
formalism allows us to merge the WFM method with the self-consistent DFT



3.4 Combining the two methods 51

procedure in the same manner as described in Sec. 3.1.5. More precisely, by
using the obtained scattering states solutions for the central region,

cC,k = (cT
1,k, . . . , c

T
n,k)T, (3.89)

where k numbers the different incident Bloch modes either in the left electrode
as described above, or in the right electrode under reverse circumstances, we are
able to determine the density matrix directly as an outer product (cf. Eq. (3.14))

D±
ij =

∑

k=1

[c±C,k]i[c
±
C,k]∗j , (3.90)

where we have indicated by superscripts that the solutions cC,k in Eq. (3.89)
correspond to either the right-going (+) and left-going (−) case. Notice that
there is an implicit energy dependence in this expression for D± which is the
electron energy E introduced from the outset via the notation H̄ ≡ ES − H.
It is subsequently possible to evaluate the electronic density n(r) needed in the
self-consistent procedure by means of the integral over energies in Eq. (3.15).

In this work, however, we will not adopt the WFM method as implemented
in algorithm vi in order to obtain the self-consistent Hamiltonian. Only for
the transmission calculation is the method applied, i.e., without the upwards
sweep, as explained in Sec. 3.3.4. Instead, we will use the combined method,
presented in the next section, which is directly applicable as part of the self-
consistent DFT procedure in the same manner as described in Sec. 3.2.5. With
the new efficient scheme we develop in Chaps. (5) and (6) this turns out to be
a very competitive approach especially for non-equilibrium cases.

3.4 Combining the two methods

As is apparent from the previous sections in this chapter, there are close simi-
larities between the Green’s function method and the WFM method within the
modeling of quantum transport in two-probe systems. In particular, looking at
the appropriate algorithms in Eqs. (3.40) and (3.82) we see that both have two
main parts: A preliminary calculation for the bulk electrodes, and the solution
for the central region by one downwards and one upwards block Gaussian elim-
ination sweep. The formal equivalence between the two methods has already
been established by Khomyakov et al. [55]. However, we are not aware of an ac-
tual implementation that attempts to combine the methods in practice. In this
section we develop such a hybrid and the proper framework for its description.

3.4.1 Self-energy matrices revisited

To begin with we will derive an expression for the self-energy matrices defined
in the Green’s function formalism in terms of the quantities available in the
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WFM approach. Consider again the linear system in Eq. (3.71), which has a
block tridiagonal left-hand side matrix of n + 2 × n + 2 blocks. We remind the
reader that in out setup, the C region has an additional electrode layer at each
boundary in order for H̄1 = H̄L and H̄n = H̄R to hold (this is not the case in
the previously published WFM formulations of Refs. [62] and [55]). Now notice
that if we perform a block Gaussian elimination once (i.e., one row) from the
top and once from the bottom in Eq. (3.71) and leave out the same lines, we get





H̄1 − ΣL H̄1,2

H̄†
1,2 H̄2

. . .

. . .
. . . H̄n−1,n

H̄†
n−1,n Hn − ΣR









c1

c2

...
cn




=





q′
1

0
...
0




, (3.91)

where
ΣL = H̄†

L,L[H̄L + H̄†
L,L(B−

L )−1]−1H̄L,L, (3.92)

and
ΣR = H̄R,R[H̄R + H̄R,RB+

R]−1H̄†
R,R, (3.93)

are the self-energy matrices for the left and right electrode (using Eqs. (3.21),

(3.22) and (3.72)), and q′
1 = −H̄†

L,LgLq0. Moreover, q′
1 can be easily rewritten

as
q′

1 = −H̄†
L,LgLH̄†

L,L[(B−
L )−1 − (B+

L)−1]C+
Lain

= −H̄†
L,LgL[H̄†

L,L(B−
L )−1 + H̄L + H̄L,LB+

L ]C+
Lain

= −[H̄†
L,L + H̄†

L,LgLH̄L,LB+
L ]C+

Lain

= −[H̄†
L,LC+

L + ΣLC+
LΛ+

L ]ain

(3.94)

by taking Eqs. (3.73),(3.72), and (3.21) into account, and using that B+
L satisfies

H̄†
L,L(B±

L )−1 + H̄L + H̄L,LB±
L = 0 by definition (see Eq. (3.68)). Because of

our particular setup, we can then obtain the solutions for the layers n+1 and 0
as cn+1,k = B+

Rcn,k and c0,k = (B−
L )−1(c1,k −λ+

L,kc
+
L,k)+ c+

L,k, and insert these
in Eqs. (3.84) and (3.85), which simplifies to

C+
R(Λ+

R)−1t = [cn,1, cn,2, . . . , cn,m̊L
], (3.95)

and
C−

LΛ−
Lr = [c1,1, c1,2, . . . , c1,m̊L

] − C+
LΛ+

L , (3.96)

in order to obtain the scattering matrices t and r when using ain → I.
More importantly, what has happened by doing the above block Gaussian

elimination operations is that the Hamiltonian matrix entering the linear system
in Eq. (3.91) is now identical to the inverse of the Green’s function matrix GC

in Eq. (3.23). This implies that we have the simple relation

ci = [GC ]i,1q
′
1, i = 1, . . . ,n (3.97)
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between the coefficients of the scattered wave in the central region and the
first column blocks of the Green’s function matrix. It also implies that we can
calculate the self-energy matrices from Eqs. (3.92) and (3.93) and apply them in
the Green’s function approach. As seen from the benchmarks in Sec. 3.5 below,
this is often faster than the usual calculation of the surface Green’s functions gL

and gR and the self-energy matrices using algorithm ii and Eqs. (3.21)–(3.22).

3.4.2 Hybrid method

Making a hybrid algorithm that calculates ΣL and ΣR using the WFM method
and subsequently GC in the central region (or Gn,1 for transmission) using the
Green’s function method can be written:

ALGORITHM VII: Hybrid method

1. obtain C−
L ,Λ

−
L from QEP (Eqs. (3.56) − (3.63))

2. [Q−
L ,R

−
L ] = QR{C−

L}, solve R−
L C̃−

L = (Q−
L )†

3. B−
L := C−

LΛ−
L C̃−

L

4. ΣL := H̄†
L,L[H̄L + H̄†

L,L(B−
L )−1]−1H̄L,L






the left electrode

5. obtain C+
R,Λ

+
R from QEP (Eqs. (3.56) − (3.63))

6. [Q+
R,R

+
R] = QR{C+

R}, solve R+
RC̃+

R = (Q+
R)†

7. B+
R := C+

RΛ+
RC̃+

R

8. ΣR := H̄R,R[H̄R + H̄R,RB+
R]−1H̄†

R,R






the right electrode

9. execute lines 5 − 26 of algorithm iii or algorithm iv.
(3.98)

Notice that here it suffices to determine only the left-going modes of the left
electrode because only the self-energy matrices are obtained using the WFM
method and not the source term q′

1.

We would also like to point out that with this hybrid approach it is possible
to have η = 0 (i.e., use real E) both for the solution of the QEP (Eqs. (3.56)–
(3.63)) and the evaluation of the GC in Eq. (3.23). As mentioned in Sec. 3.2.1,
the η enforces the correct boundary conditions which, in the retarded case,
is that right-going and left-going evanescent/Bloch waves decay/propagate to-
wards ∞ and −∞, respectively. This means that for nonzero η, the eigenvalues
of the bulk QEPs with |λk| = 1 will be moved infinitesimally away from the
unit circle to readily classify as either right or left-going modes. However, since
we apply the group velocity formula in Eq. (3.61) to determine the propaga-
tion direction of the |λk| = 1 solutions, the infinitesimal η is not required for
evaluating nor classifying the modes. In addition, it can be shown [4] that
GC |η→0+ = GC |η→0− which makes η = 0 valid throughout algorithm vii .
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Al–C×7–Al

Au–DTB–Au

CNT(4,4)–CNT(8,0)

Figure 3.8: Example two-probe systems used for benchmarking.

3.5 Examples and benchmarks

To end this chapter we will present benchmarking results for the computational
methods described in the above sections. Again we will use the atk program as
the existing baseline implementation, while the particular algorithms outlined
(algorithms i-vii) have been implemented as additional functionality by this
author. We will benchmark the methods on the example two-probe systems
illustrated in Fig. 3.8. These systems are relatively small and can be readily
investigated for their electronic transport properties on a single CPU. Further-
more, from looking at the literature we also note that these and similar systems
are representative as de facto benchmark systems which are frequently used to
compare and test different approaches in the field [40, 47, 45, 41, 46, 65, 43, 66].

3.5.1 Benchmarking the self-consistent procedure

In correspondence with an actual calculation using the atk program (and with
the presentation in this chapter), we will benchmark the overall electronic trans-
port modeling as a two-step calculation: First, the self-consistent procedure,
which is used to obtain the self-consistent Hamiltonian matrices of electrodes
and central region, and second, the subsequent transmission calculations, which
is used to obtain the conduction or I −V characteristics etc. In this section, we
consider the self-consistent procedure, which is described by the flow diagram
of Fig. 2.1 and the discussions in Secs. 3.2.5 and 3.3.5.

In Table 3.1 we display the main data from achieving a self-consistent elec-
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Table 3.1: Benchmark results for calculating the self-consistent electronic den-
sity with the atk program for the two-probe systems given in Fig. 3.8. The
system type, bias voltage, and the numbers of atoms and matrix sizes N of the
central region (electrode unit cell) are indicated. The two right-most columns
show the numbers of iterations required and the CPU-times in seconds.

System Bias Atoms N Iterations CPU
Al–C×7–Al - 74(18) 296(72) 16 1065.0
Al–C×7–Al 1V 74(18) 296(72) 17 1572.8

Au–DTB–Au - 102(3×9) 979(243) 22 7184.2
Au–DTB–Au 1V 102(3×9) 979(243) 20 9461.4

CNT(4,4)–CNT(8,0) - 256(64) 1024(256) 33 14213.7
CNT(4,4)–CNT(8,0) 1V 256(64) 1024(256) 25 26791.1

tron density in the central region of the two-probe example systems to a tol-
erance of ||n − n′||2 < 10−4Rydberg/Bohr3. These calculations are carried out
for zero bias and 1V bias in order to measure the computational expense in
both the equilibrium and non-equilibrium cases, as discussed in Sec. 3.2.5. We
note that the results presented are not based on algorithm iii in which the
full matrix inverse for GC is evalutated, but rather the version where only the
block tridiagonal part is found, which will be described in Chap. 4. The total
number of iterations required for convergence are between 16-33 as indicated.
In all cases we use k-point sampling (1, 1, 100) of the Monkhorst type for the
bulk electrodes. The last column shows the total CPU-times in seconds. It is
apparent that the CPU-times depend strongly on the sizes N of the Hamilto-
nian matrices at hand, which are proportional to the numbers of atoms present
in the C region and the bulk electrodes.7

A detailed description of the benchmark results in terms of the percentage
of time spent in the individual key parts of the calculation in shown in the pie
diagrams in Fig. 3.9. The four most time consuming steps are indicated while
the remaining operations are counted together and labeled as the rest. The
“Calculate veff” and “Construct H” steps are well-known from the benchmark-
ing of the molecule and electrode¨systems in Sec. 2.2.2. These parts are quite
dominating for the smaller systems Al–C×7–Al and Au–DTB–Au. However,
the self-consistent procedure for two-probe systems also consists of the calcu-
lation the self-energy matrices ΣL and ΣR, and the subsequent evaluation of
the Green’s function matrix GC , as illustrated in the flow diagram in Fig. 3.5.

7 Notice that for the Au–DTB–Au system we have reduced the lateral size of the bulk elec-
trode layers to an elementary unit cell of 3 gold atoms, by taking the symmetry properties of
the metallic electrode into account. This is a common approach for crystalline electrodes (see,
e.g., Ref. [61]) which reduces the computation cost of the self-energy matrices considerably.
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Figure 3.9: Schematic illustration of the percentages of CPU-time spent in the
main computational steps of the benchmark calculations listed in Table 3.1.

These tasks are repeated for several energies E in order to obtain the density
matrices Deq and Dneq (Dneq only for the 1V bias cases). We here display the
collective time used for computing the self-energy matrices as a distinct task
and group the evaluation of GC ,Deq and Dneq into another task.

Fig. 3.9 shows that these latter two tasks, which have been identified and
discussed elaborately in this chapter, are increasing rapidly in significance for
larger systems. In the case of the final calculation of CNT(4,4)–CNT(8,0) at
1V bias the time spent in these parts of the program corresponds to more than
81% of the overall run-time. For larger systems this percentage will become
even higher. It is one of the goals of this work (see Chaps. 4–6) to introduce
appropriate optimizations and new methods that can reduce the expense of these
computationally most costly parts of electronic transport modeling, in order to
be able to investigate larger and more interesting systems in the future.

3.5.2 Benchmarking the transmission calculations

In this section we will benchmark the methods for transmission calculations
which we have discussed (i.e., algorithms iii, v and vi). To this end, we
determine the transmission coefficient T (E) as a function of the energy E (i.e.,
the transmission spectrum) for the example systems in Fig. 3.8. It is assumed
that the self-consistent Hamiltonian matrices for the example systems are known
and stored on disk for easy access. Thus the benchmarks presented in the
following correspond only to the second step of the two-step electronic transport
modeling calculation.
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Table 3.2: CPU-times in seconds for the calculation of the transmission coef-
ficient T (E) at 20 different energies inside E ∈ [−2 eV; 2 eV] for the example
systems using the different methods described in this chapter. The time spent
in the individual stages of the calculation are explicitly given in columns 2-4.

Al–C×7–Al
Method Left Right Sweep Tr{·} CPU total
Green’s 4.5 4.6 0.4 0.0 9.9
WFM 3.7 3.6 0.3 0.1 7.9
Hybrid 3.7 3.6 0.3 0.1 7.9

WFM(Γ-point) 1.8 1.8 0.3 0.1 4.4
Hybrid(Γ-point) 1.9 1.8 0.2 0.1 4.3

Au–DTB–Au
Method Left Right Sweep Tr{·} CPU total
Green’s 156.7 155.5 9.6 1.7 337.7
WFM 70.2 67.2 5.2 0.8 158.0
Hybrid 70.7 68.2 5.0 1.7 160.6

WFM(Γ-point) 40.0 39.5 5.1 0.8 100.2
Hybrid(Γ-point) 39.8 38.0 5.1 1.6 98.7

CNT(4,4)–CNT(8,0)
Method Left Right Sweep Tr{·} CPU total
Green’s 181.3 147.2 13.8 2.5 348.7
WFM 90.9 153.8 5.8 0.2 254.2
Hybrid 91.3 154.6 5.6 1.9 256.8

WFM(Γ-point) 54.4 65.4 5.8 0.2 129.2
Hybrid(Γ-point) 53.9 64.3 5.5 1.9 128.9
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The results from benchmarking the calculation of the transmission spectrum
at 20 energy points between −2 eV and 2 eV, relative to the Fermi level of
the electrodes, is shown in Table 3.2.8 In addition to the total CPU time for
the overall calculation, we have explicitly measured the time spent in the key
stages of the algorithms. These are the following: The evaluation of the self-
energy matrices (or equivalent) for the left and right electrodes, respectively,
the downwards block Gaussian elimination sweep, and the final transmission
calculation using either Caroli’s trace expression in Eq. (3.42) or the Landauer-
Büttiker formula in Eq. (3.7). In all calculations these four stages represent
more than 85% of the total CPU-times which are displayed in the last column.

Comparing the timings for the different methods, we see that the WFM
method is in general the fastest approach and more than two times faster than
the standard Green’s function method for the Au–DTB–Au system. The main
reason for this is that the evaluation of the self-energy matrices from solving a
QEP (i.e., calling zgeev) is much more efficient than from the surface Green’s
functions obtained with the 2n recursive algorithm. However, also the other
stages are less costly for the WFM method, and this by an increasing factor as
the systems grow bigger. It is apparent that the Hybrid method is very similar
in efficiency to the WFM method. Again this is because the calculations of
the self-energy matrices are the same. The additional time the Hybrid method
spends in Tr{·} compared to the standard WFM method is outweighed by less
overhead in other parts of the method, which is not explicitly measured.

As an interesting special case we also list benchmark results in Table 3.2
for the corresponding transmission calculations within the Γ-point approxima-
tion (see Sec. 2.1.7). This is not a very good approximation in the example
systems, but included here for the sake of comparison. The timings indicate
the quite significant computational savings that can be achieved with the WFM
and Hybrid methods when the Hamiltonian matrices are real as in the case of
the Γ-point approximation. Since the Green’s function method has a complex
infinitesimal part η in the energy, it always requires the use of complex arith-
metic when evaluating the self-energy matrices. The WFM and Hybrid method,
on the other hand, can use real energy throughout the transmission calculation
and therefore solve QEPs in real arithmetic (i.e., by calling dgeev) in order to
obtain the self-energy matrices, which in practice halves the time spent in these
stages.

8 Here we will not interpret or analyze the physics of the transmission spectra obtained.
We refer the reader to the references mentioned above for such descriptions.



Chapter 4

Optimizations of the Green’s

function method

One of the expensive computational task in the Green’s function method when
used to model electronic transport in two-probe systems is the matrix inverse of
the block tridiagonal Hamiltonian matrix. It is unfortunately so, that the inverse
of a block tridiagonal matrix fills out, making its straightforward calculation by
Block Gaussian elimination an O(N2) process. This was discussed previously
in Sec. 3.2.3. However, if we are only interested in the block tridiagonal part
of the inverse of a block tridiagonal matrix, then this can be achieved in O(N)
operations. In the first part of this chapter, we will describe a simple and efficient
method to do this, based on two independent block Gaussian elimination sweeps.
Moreover, in the second part, we will show how these block Gaussian elimination
sweeps lead naturally to self-energy matrix definitions for all the layers of the
central region, and that this suggests another computationally more efficient
calculation of the total transmission T (E). The new algorithms obtained in the
two parts of this chapter can be considered optimizations of the Green’s function
method presented in Sec. 3.2.

4.1 Block tridiagonal matrix inverse

In Sec. 3.2.3 we described an algorithm to calculate the matrix inverse of a
block tridiagonal Hamiltonian matrix in order to obtain the Green’s function of
the central region GC in Eq. (3.23). This algorithm had O(N2) computational
complexity for N ≈ nm̄, where n is the number layers in the C region, and m̄
is the maximum order of any of the Hamiltonian blocks H̄i, i = 1, . . . ,n.

Let us now discuss how to determine only the block tridiagonal part of
GC in O(N) operations. From Eqs. (3.36)–(3.38) it seems that in order to
calculate for example the diagonal blocks J′

ii of the inverse we have to know
Jn,i obtained from applying the full downwards sweep in Eqs. (1.4)–(1.6). This
clearly prevents any improvement of the complexity. However, by performing
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the downwards and upwards sweeps independently, and both on the original
matrix in Eq. (1.3), we can derive an alternative evaluation sequence for the
blocks of GC = A−1.

If we write down the upwards version of the downwards block Gaussian
elimination defined in Eqs. (1.4)–(1.6), we get

∼





A8

11 I J12 . . . J1,n

A21 A8

22 I
. . .

...
. . .

. . .
. . . Jn−1,n

An,n−1 A8

n,n I




, (4.1)

where A8

n,n = An,n and

A8

ii = Aii − Ai,i+1(A
8

i+1,i+1)
−1Ai+1,i, i < n (4.2)

Jij = −Ai,i+1(A
8

i+1,i+1)
−1Ji+1,j , i < n, j < i. (4.3)

Furthermore, if we now subtract the downwards result in Eq. (1.4) and the
upwards result in Eq. (4.1) from the initial augmented matrix in Eq. (1.3), we
arrive at





B11 −I −J1,2 . . . −J1,n

B22 −J2,1 −I
. . .

...
. . .

...
. . .

. . . −Jn−1,n

Bn,n −Jn,1 · · · −Jn,n−1 −I




, (4.4)

where the diagonal blocks of the left-hand side matrix are

Bii = Aii − A′
ii − A8

ii, 1 ≤ i ≤ n. (4.5)

Then, because Eq. (4.4) is equal to (A − A − A|I − I − I) = −(A|I), we can
make LU-factorizations of the diagonal blocks Bii and multiply (Bii)

−1 onto
the ith row of the augmented matrix in Eq. (4.4), which results in the identity
matrix in the left-hand side and −A−1 in the right-hand side. By inspection
one can realize that to calculate the diagonal blocks [A−1]ii now require 3n− 2
LU-factorizations of the matrices A′

ii (i = 2, . . . ,n), A8

ii (i = 1, . . . ,n − 1), and
Bii (i = 1, . . . ,n), and only 5n − 4 multiplications and 4n − 6 additions (none
is necessary for B11 and Bn,n). Moreover, in order to obtain the off-diagonal
blocks [A−1]i,i±1 of the inverse matrix, only a single additional multiplication
per block is needed.

The linear transformations in this alternative method for the matrix inverse
outline the steps of a simple sequential algorithm to obtain the block tridiagonal
part of GC , based on two (independent) block Gaussian elimination sweeps
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and the inversion (i.e., LU-factorization) of the diagonal blocks Bii. We will
implement it as follows,

ALGORITHM VIII: Block tridiagonal Green’s function matrix

1. initialize A′
1 := H̄11 − ΣL, A8

n := H̄n,n − ΣR, B := I

2. for i := 2, . . . ,n

3. solve H̄i,i−1 = J′
iA

′
i−1 for J′

i

4. A′
i := H̄i,i − J′

iH̄i−1,i

5. end





downwards sweep

6. for i := n − 1, . . . , 1

7. solve H̄i,i+1 = J8

iA
8

i+1 for J8

i

8. A8

i := H̄i,i − J8

iH̄i+1,i

9. end





upwards sweep

10. B1 := −A8

1 + ΣL, Bn := −A′
n + ΣR

11. solve B1[G11 G12] = [I J8

1]

12. solve Bn[Gn,n−1 Gn,n] = [J′
n I]

13. for i := 2, . . . ,n − 1

14. Bi := H̄i,i − A′
i − A8

i

15. solve Bi[Gi,i−1 Gii Gi,i+1] = [J′
i I J8

i]

16. end

(4.6)

which is clearly an O(N) method. Notice that since the two sweeps and all ite-
rations of the final loop are completely independent calculations, the algorithm
in Eq. (4.6) is well suited for parallel execution on a dual-core CPU or two CPUs
on a parallel computer. Further details and analysis of the above procedure can
be found in PAPER I.

4.1.1 Basic operations count

As mentioned in Sec. 3.5.1, the better performance of the O(N) method in
algorithm viii , compared to the performance of the O(N2) method in algo-

rithm iii, was already taken into account in the benchmarking results of that
section. The reason for this is, that the above algorithm was adopted in the
commercial software that contains the atk program [23]. In fact, the version of
atk which is used as a baseline implementation in this thesis (version 2.0) was
released after algorithm viii had been incorporated as the standard routine
for obtaining GC in the self-consistent DFT procedure. Therefore, we do not
find it necessary to explicitly measure CPU-times in order to demonstrate its
applicability. The computational savings are indeed significant and general as
can be realized from simply counting the basic matrix operations, see Table 4.1.
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Table 4.1: The number of basis block operations performed using algorithm iii

to compute the full matrix inverse for GC , and using algorithm viii to com-
pute the block tridiagonal part of of the inverse for GC .

Algorithm LU-factorizations Multiplications Additions
algorithm iii 3n − 2 n2 + 4n − 4 4n − 6
algorithm viii 3n − 2 7n − 6 4n − 6

4.2 Efficient transmission calculations

As we have seen in Sec. 3.2, the Green’s function block [GC ]n,1 of the central
region contains the information needed to determine the total transmission T (E)
when the coupling to the electrodes via the self-energy matrices ΣL and ΣR are
known. However, any other block (i, j) of the Green’s function [GC ]i,j could in
principle be used if the corresponding self-energy matrices were available. For
the block [GC ]i,j we would need the self-energy matrices corresponding to the
the case where the ith and jth principal layers are the border layers of the central
region. We will now describe an intuitive scheme of extending the self-energy
concept to all layers of the central region in order to use the smallest block on
the diagonal of GC in the usual Green’s function transmission expression in
Eq. (3.42). The sheme is simple, computationally advantageous, and gives a
more accurate result than using the standard approach described in Sec. 3.2.4.

4.2.1 Generalized self-energy matrices

Our first step is to derive a matrix expression that can be interpreted as the
self-energy for a given layer of the C region by means of purely algebraic ma-
nipulations. We will use the general inversion result for 2× 2 block matrices in
Eq. (1.2). Consider the L–C part of the two-probe Hamiltonian H̄ in Eq. (3.11).
Let us associate A11 with the semi-infinite submatrix of H̄ and A22 with the
finite central region matrix H̄C , such that

(
A11 A12

A21 A22

)
=





. . .
. . .

. . . H̄L H̄L,L

H̄†
L,L



 H̄C








. (4.7)

We can now apply the inversion formula in Eq. (1.2) in order to obtain the
inverse of the A22 block and in the process recognize the second term of the
Schur complement S = A22−A21A

−1
11 A12 as the usual self-energy matrix ΣL =



4.2 Efficient transmission calculations 63

H̄†
L,LgLH̄L,L defined in Sec. 3.2.1, where gL is the surface Green’s function of

the left electrode. Let us then change notation by adding a subscript 1 to denote
the layer where this self-energy matrix is defined (i.e., it is non-zero only in block
(1,1)), and also making the subscript L into a superscript, i.e., ΣL

1 ≡ ΣL.
Suppose now that the A11 block is augmented to include the first block

column and top block row of H̄C (whose sizes are equal to those of H̄LL),
and that A22 is correspondingly stripped. Again we can attempt to obtain the
inverse of the smaller (2, 2)-block and consider the second term of the corre-
sponding Schur complement, which now takes the form S = H̄1 − ΣL

2 , where

ΣL
2 = H̄†

1,2(H̄1 − ΣL
1 )−1H̄1,2. We will interpret matrix ΣL

2 as a self-energy
matrix for the left electrode plus the left-most layer of the central region.

Since the system is block tridiagonal, this procedure can be continued for
i = 2, 3, . . . ,n, which corresponds to performing block Gaussian elimination of
the lower band. For each elimination step we can interpret the corresponding
matrix ΣL

i as the self-energy matrix describing the coupling of the left elec-
trode augmented with the i leftmost layers of the central region. A recursion
expression to obtain these matrices is then given by

ΣL
i = H̄†

i−1,i(H̄i−1 − ΣL
i−1)

−1H̄i−1,i, −∞ < i ≤ k, (4.8)

where k is a given layer in the central region.
In the same manner, self-energy matrices ΣR

i can be defined that represent
the coupling of the right semi-infinite part in Eq. (3.11) to the central region
and the successive extension of the right region by one block column and block
row of H̄C . This corresponds to performing a block Gaussian elimination of the
upper band and we define the ΣR

i matrices by writing

ΣR
i = H̄i,i+1(H̄i+1 − ΣR

i+1)
−1H̄†

i,i+1, k ≤ i <∞. (4.9)

as the corresponding recursion expression.
Eqs. (4.8) and (4.9) describe the successive coupling of adjacent layers from

within the left and right electrodes to layer k within the central region. This
makes it straightforward to recursively evaluate the self-energy matrices ΣL

k

and ΣR
k for a given layer k since the matrices ΣL

1 and ΣR
n are available from

either the Green’s function method or the hybrid method (i.e., ΣL
1 = ΣL and

ΣR
n = ΣR). We will use this to speed up the transmission calculations.

4.2.2 Fast transmission calculations

Consider the calculation of the total transmission probability T (E) for a given
energy E. As described in Sec. 3.2.4, the most common way to proceed in the
Green’s function approach when ΣL and ΣR have been obtained is to determine
the off-diagonal block [GC ]n,1 and use this in the Caroli formula in Eq. (3.42).
This is for example the case in Refs. [4, 43, 39, 37]. Here we suggest a different
approach, in which the self-energy matrices are propagated from their corner
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block positions further inwards in the central region Hamiltonian. We note that
in order to obtain the information required to calculate the transmission through
the entire two-probe system, it is necessary to determine the coupling between
all layers connecting the left with the right electrodes. This can be initiated
from left to right, from right to left, or from both ends.

The idea is then to select a block H̄k on the diagonal of H̄C , typically the
block of smallest size, and attempt the compute block [GC ]k,k of the correspond-
ing Green’s function matrix. Clearly, this block also contains the information
needed to determine T (E) if the coupling to layer k − 1 and layer k + 1 is
known. We therefore calculate the self-energy matrices ΣL

i (i = 1, . . . , k) and
ΣR

i (i = k, . . . ,n), describing the coupling from the left and right electrodes to
layer k using the recursion expressions Eq. (4.8) and Eq. (4.9). Subsequently,
this allows us to rewrite the original equation (H̄C −ΣL −ΣR)GC = I defining
the Green’s function of the finite central region, as







 H̄L
↓




H̄k−1,k

H̄k − ΣL
k − ΣR

k

H̄†
k,k+1



 H̄R
↑









× GC =





I
JL

2 I

JL
3 JL

2 JL
3

. . .
...

...
. . . I

JL
k ...J

L
2 JL

k ...J
L
3 · · · JL

k I JR
k · · · JR

k ...J
R
n−2 JR

k ...J
R
n−1

I
. . .

...
...

. . . JR
n−2 JR

n−2J
R
n−1

I JR
n−1

I





,

(4.10)
where H̄L

↓ is the upper-bidiagonal matrix

H̄L
↓ =





H̄1 − ΣL
1 H̄1,2

. . .
. . .

. . . H̄k−2,k−1

H̄k−1 − ΣL
k−1




, (4.11)
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the H̄L
↑ is the lower-bidiagonal matrix

H̄R
↑ =





H̄k+1 − ΣR
k+1

H̄†
k+1,k+2

. . .

. . .
. . .

H̄†
n−1,n H̄n − ΣR

n




, (4.12)

and the off-diagonal blocks appearing in the right-hand side identity matrix,
which is a result of the block Gaussian elimination steps, are given by

JL
i = H̄†

i−1,i(H̄i−1 − ΣL
i−1)

−1, −∞ < i ≤ k (4.13)

JR
i = H̄i,i+1(H̄i+1 − ΣR

i+1)
−1, k ≤ i <∞. (4.14)

Inspecting Eq. (4.10), we notice that the kth row of the left-hand side matrix
and the kth column of the right-hand side matrix are non-zero only in the center
block. It is therefore simple to obtain the the kth diagonal block of the Green’s
function,

[GC ]k,k = (H̄k − ΣL
k − ΣR

k )−1, (4.15)

which corresponds to inverting the block of smallest size in the system, if k is
chosen accordingly.

The motivation for performing the above calculations is to determine the
electron transmission through the full block tridiagonal system. By applying
Eq. (4.8) and Eq. (4.9) to evaluate the self-energy matrices ΣL

k and ΣR
k and

subsequently Eq. (4.15) to obtain [GC ]k,k, the transmission T (E) can be com-
puted from the appropriate Caroli formula

T (E) = Tr{ΓL
k G†

k,kΓ
R
k Gk,k}, (4.16)

where we have used G, corresponding to the full system Green’s function, in-
stead of GC , since this represents the same block in our setup, and

ΓL
k = i(ΣL

k − ΣL†
k ), ΓR

k = i(ΣR
k − ΣR†

k ), (4.17)

are the broadening matrices defined for the layer k. Eq. (4.16) is valid due to
the properties of the trace operator and the specific structure of Eq. (4.10) (the
explicit proof is given in PAPER I).

Our implementation of this fast transmission Green’s function method can
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be written:

ALGORITHM IX: Calculate T (E) using Gk,k

1. initialize ΣL
1 := ΣL, ΣR

n := ΣR

2. for i := 2, . . . , k

3. solve (H̄i−1 − ΣL
i−1)X = H̄i−1,i

4. ΣL
i := H̄†

i−1,iX

5. end

6. for i := n − 1, . . . , k

7. solve (H̄i+1 − ΣR
i+1)X = H̄†

i,i+1

8. ΣR
i := H̄i,i+1X

9. end

10. solve (H̄k − ΣL
k − ΣR

k )Gk,k = I

11. obtain T (E) from Eqs. (4.16) and (4.17)

(4.18)

In this implementation, all that is needed to calculate T (E) is the self-energy
matrices ΣL and ΣR to initiate the recursion (their evaluation is the focus of the
Krylov subspace algorithm presented in Chap. 6) and, after the recursion, the in-
version of a single block and a few matrix-matrix multiplications (we can neglect
the additions of complexity O(m̄2)). This approach is therefore very efficient.
In particular, compared to the case where the off-diagonal block Gn,1 is used in
the Caroli expression, one saves significantly in floating point operations dur-
ing the sweep process since the number of explicit matrix-matrix multiplication
performed is exactly half (cf. algorithm iv). Also the order of the matrices
Gk,k,ΣL

k ,and ΣR
k , used in the last steps of algorithm ix is often smaller than

the corresponding matrices Gn,1,ΣL,and ΣR used in algorithm iv (see more
comparison details in PAPER I).

4.2.3 Benchmarking the new algorithm

In order to demonstrate the speed-up achieved by the new transmission algo-
rithm, we apply it to the example two-probe systems introduced in Sec. 3.5 and
compare with the standard Green’s function method. The benchmarking results
are displayed in Table 4.2 and show clearly the savings during the sweep stage of
the calculation when using the new approach. As explained, this is due to the
fewer matrix-matrix multiplication necessary in order to obtain Gk,k instead
of Gn,1. For the smallest system (Al–C×7–Al) most of the gain disappears in
computational overhead. In the case of the two largest systems (Au–DTB–Au,
CNT(4,4)–CNT(8,0)), the savings are close to the estimated factor of 2.

We note, however, that the overall speed-up is not very significant because
the evaluation of the self-energy matrices, in these two-probe systems, are much
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Table 4.2: CPU-times in seconds for the calculation of the transmission coef-
ficient T (E) at 20 different energies inside E ∈ [−2 eV; 2 eV] for the exam-
ple systems in Fig. 3.8 from applying the standard Green’s function method
(algorithm iv) and the new fast method (algorithm ix). The time spent in
the individual stages of the calculation are explicitly given in columns 2-4.

System Method Left Right Sweep Tr{·} Total
Al–C×7–Al Green’s 4.5 4.6 0.4 0.0 9.9
Al–C×7–Al Fast Green’s 4.5 4.5 0.3 0.0 9.7

Au–DTB–Au Green’s 156.7 155.5 9.6 1.7 337.7
Au–DTB–Au Fast Green’s 157.4 155.9 5.0 1.6 334.1

CNT(4,4)–CNT(8,0) Green’s 181.3 147.2 13.8 2.5 348.7
CNT(4,4)–CNT(8,0) Fast Green’s 181.7 146.9 7.1 2.5 342.0

more expensive than the sweep stage of the calculation. For other systems, in
which the central region is relatively larger (see, e.g., Sec. 5.7), the impact of
the savings in the sweep stage is correspondingly bigger.
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Chapter 5

Efficient wave function

matching method

The wave function matching (WFM) method and similar techniques have re-
cently been successfully applied for the calculation of electronic transport in
quantum two-probe systems [39, 40, 59, 55, 33, 60, 52, 61, 62]. We have de-
scribed the details of this method in Sec. 3.3 and implemented the corresponding
algorithms (algorithm v/vi). In terms of efficiency they are comparable to the
widely used Green’s function approach. To our knowledge, the WFM schemes
presented so far in the literature requires the evaluation of all the Bloch and
evanescent bulk modes of the left and right electrodes in order to obtain the
correct coupling between device and electrode regions. The reason for this is
that it requires the complete set of bulk modes to be able to represent the proper
reflected and transmitted wave functions. In this chapter we will describe a new
modified WFM approach that allows for the exclusion of the vast majority of
the evanescent modes in all parts of the calculation by simply extending the cen-
tral region with a few layers. This approach makes it feasible to apply iterative
techniques (e.g, as described in the next chapter) to efficiently determine the
relatively few bulk modes of interest, which allows for a significant reduction of
the computational expense of the WFM method in practice.

5.1 Introduction and motivation

The WFM method is based upon direct matching of the bulk modes in the
left and right electrode to the scattering wave function of the central region.
For the most part this involves two major tasks; obtaining the bulk electrode
modes and solving a system of linear equations. For the purpose of calculating
transport properties the application of the method results in the transmission
and reflection matrices t and r from Eqs. (3.84) and (3.85), respectively. The
elements of t and r are then used in order to determine the total transmission
T (E) or reflection R(E) (where T+R = 1) within the Landauer-Büttiker theory.
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Table 5.1: CPU-times in seconds when using the standard WFM method in
algorithm v for calculating t and T (E) at 20 different energies inside E ∈
[−2 eV; 2 eV] for various two-probe systems. The numbers of atoms in the
central region (electrode unit cell) are indicated. The two right-most columns
show the percentage of the CPU-time used for computing the electrode bulk
modes with dgeev vs. solving the central region linear systems in Eq. (3.91).

System Atoms CPU dgeev Eq. (3.91)
Li–Li 32(8) 0.1 75% 25%

Fe–MgO–Fe 27(6) 2.2 61% 38%
Al–C×7–Al 74(18) 4.2 87% 10%

Au–DTB–Au 102(27) 100.2 90% 8%
Au–CNT(8,0)×1–Au 140(27) 90.0 86% 12%
Au–CNT(8,0)×5–Au 268(27) 130.0 65% 34%
CNT(8,0)–CNT(8,0) 192(64) 136.4 94% 5%
CNT(4,4)–CNT(8,0) 256(64|64) 129.2 94% 5%
CNT(5,0)–CNT(10,0) 300(40|80) 141.0 80% 17%
CNT(18,0)–CNT(18,0) 576(144) 1565.7 87% 11%

In practice, it turns out that for many average size two-probe systems,
the most time consuming stage of the WFM method is to determine the elec-
trode bulk modes, which requires solving the quadratic eigenvalue problem in
Eq. (3.56) for both electrodes. As examples, see the profiling results listed in
Table 5.1, where we have used the method to compute t and T (E) for a selection
of two-probe systems (timings are only for the final transmission calculations,
not for obtaining the self-consistent Hamiltonians). We should point out that
the metallic electrodes in the two-probe systems considered in Table 5.1 can
be fully described by much smaller unit cells than indicated (often only a few
atoms are needed) and therefore the time spend on computing the bulk modes
can be vastly reduced in these specific cases. For a general method, however,
which supports CNTs, nano wires, etc., as the electrodes, the measurements are
appropriate for showing the overall trend in the computational costs.

The results in Table 5.1 show that to determine the bulk modes by employing
the state-of-the-art lapack eigensolver dgeev [29] is, in general, much more
expensive than to solve the system of linear equations in Eq. (3.71). We expect
this trend to hold for larger systems as well. Therefore, in the attempt to model
significantly larger devices (thousands of atoms), it is of essential interest to
reduce the numerical cost of the bulk modes calculation. We will argue that
a physically reasonable and computationally attractive approach is to limit the
number of bulk modes taken into account, e.g., by excluding the least important
evanescent modes. In the remainder of this chapter, a new technique to do this
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Figure 5.1: Atomic configuration of gold electrode example systems. Left: the
ideal Au(111) electrode. Right: the Au–CNT(8,0)×4–Au two-probe system.

in a rigorous and systematic fashion is presented.
Before we begin let us stress that the outset of the following scheme is the

WFM method in the “combined” formulation derived in Sec. 3.4, and not the
original formulation by Refs. [52, 55, 62] which was presented in Sec. 3.3. The
analysis and conclusions hold, however, for both formulations. For notational
simplicity in the following sections, we leave out the implied subscripts L or R,
indicating the left or right electrode, whenever the formalism is the same for
both (e.g, for symbols m,λk, ck,C

±,Λ±,B±,Σ, etc.).

5.2 Decay of evanescent bulk modes

As discussed in Sec. 3.3.2, an electron in a periodic bulk system can be rep-
resented by a Bloch wave (e.g., mode ck of the electrode) in agreement with
Bloch’s theorem. A corollary of this result is that the Bloch wave vector k is a
conserved quantity in a bulk system (modulo addition of reciprocal lattice vec-
tors), and hence that the group velocity vk of the mode is conserved. In other
words, the electrons can propagate without scattering through a bulk electrode,
almost like free particles, and any electrical resistance in such a conductor is
only a result from things like imperfections that break the periodicity.

In the two-probe systems considered in this work the electrodes are assumed
to be ideal and periodicity is only broken because of the device in the central
region. It commends an intuitive description in terms of scattering waves as
presented in Sec. 3.3.1, for which the incoming, reflected and transmitted wave
functions are represented in the (complete) basis of bulk modes. The procedure
to determine the Bloch factors λk and non-trivial modes ck of an ideal electrode
and subsequently characterize these as right-going (+) or left-going (−) was
given in Sec. 3.3.2. We note that only the obtained propagating modes with
|λk| = 1 are able to carry charge deeply into the electrodes and thus enter in the
Landauer expression in Eq. (3.8). The evanescent modes with |λk| 6= 1, on the
other hand, decay exponentially but can still contribute to the current in the
two-probe system, as the “tails” may reach across the central region boundaries.

Consider a typical example of an electrode mode evaluation: We look at
the gold electrode in the left part of Fig. 5.1 with 27 atoms in the unit cell
represented by 9 (sp3d5) orbitals for each Au-atom. Such a system results
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Figure 5.2: (a) Positions of the Bloch factors λk (|λk| ≤ 1) obtained for a bulk
Au(111) electrode with 27 atoms per unit cell at E = −1.5 eV. (b) Amplitudes
of the corresponding normalized electrode modes ck moving through 10 principal
layers of the ideal bulk electrode. A total of 243 modes are shown of which 3
are propagating (colored/dashed) and the rest are evanescent (circles/black).

in 243 right-going and 243 left-going modes. Fig. 5.2a shows the positions in
the complex plane of the Bloch factors corresponding the right-going modes
(i.e., |λk| ≤ 1) for energy E = −1.5 eV. We see that there are exactly three
propagating modes, which have Bloch factors located on the unit circle. The
remaining modes are evanescent, of which many have Bloch factors with small
magnitude very close to the origin.

Fig. 5.2b illustrates how the 243 left-going modes would propagate through
10 successive gold electrode principal layers. The figure shows that the ampli-
tudes of the three propagating modes are unchanged, while the evanescent modes
are decaying exponentially. In particular, we note that the evanescent modes
with Bloch factors of small magnitude are very rapidly decaying and vanishes in
comparison to the propagating modes after only a few layers. In the following,
we will exploit this observation and attempt to exclude such evanescent modes
from the WFM calculation altogether.

5.3 Excluding evanescent modes

In practice we will exclude the rapidly decaying evanescent modes by employing
the selection criteria of Khomyakov et al. [55] which was given in Eq. (3.60) as
part of the classification procedure. More specifically, only the bulk modes ck

with Bloch factors λk satisfying

λmin ≤ |λk| ≤ λ−1
min, (5.1)
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are computed and subsequently taken into account, however, for a setting of
the parameter λmin (0 < λmin < 1) that is much higher than in the case of the
standard WFM method. Eq. (5.1) is thus adopted as the key relation to select
a particular subset of the available bulk modes.

Suppose that we have determined all the non-trivial solutions (ck, λk) of the
bulk electrode QEP (Eq. (3.56)) and stored these in the matrices C± and Λ± (as
noted above we leave out the the appropriate subscripts L and R). We will then
denote the mode and Bloch factor matrices from which the rapidly decaying
evanescent modes are excluded via Eq. (5.1), and also the Bloch matrices and
self-energy matrices obtained from these, with a tilde, i.e., as C̃±,Λ̃±, B̃± and
Σ̃. The mode matrices holding the excluded modes are subsequently denoted
by a math-ring accent C̊±, so that

C± = [C̃±, C̊±], (5.2)

is the assumed splitting of the full set of modes. All expressions to evaluate the
Bloch and self-energy matrices are unchanged as given in Sec. 3.3.2. However,
since the column spaces of C̃± are not complete, there is no longer any guaranty
that WFM can be performed so that the resulting self-energy matrices and,
in turn, the solution cC = [cT

1 , . . . , c
T
n ]T of the linear system in Eq. (3.91),

are correct. In addition, errors can occur in the calculation of t and r from
Eqs. (3.84) and (3.85) because the boundary wave functions cn+1 and c0 might
not be fully represented in the reduced sets C̃+

R an C̃−
L , respectively.

As shown in Sec. 3.3.3, the key to deriving the WFM block tridiagonal linear
system in Eq. (3.91) is twofold: Specifying the layer wave functions coming
into the C region and matching the layer wave functions across the C region
boundaries. In our case the incoming waves are

c+
1 = C+

LΛ+
Lain, (5.3)

from the left (cf. Eq. (3.64)) and

c−n = 0, (5.4)

from the right. The matching is accomplished by using the Bloch matrices
B± = C±Λ±(C±)−1, which by construction propagate the layer wave functions
in the bulk electrode, i.e.,

c±j = (B±)j−ic±i , (5.5)

where subscript L is implied for the left electrode (i, j ≤ 1), and R for the right
electrode (i, j ≥ n). Notice that the Bloch matrices are always square and also
invertible since any trivial QEP solutions (λk ∼ 0, inf) are rejected from the
outset in the mode classification procedure, see Sec. 3.3.2. When the reduced
Bloch matrices B̃± are used instead of B±, however, the possible components of
the wave functions c1 and cn outside the column spaces of C̃± are not properly
matched, and the boundary conditions are not necessarily satisfiable.
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Figure 5.3: Two-probe system in which the C region boundaries are expanded
by l extra layers of the corresponding connecting electrode.

5.4 Inserting extra electrode layers

In order to diminish the errors introduced by excluding evanescent modes, we
propose to insert additional electrode layers in the central region as illustrated
schematically in Fig. 5.3. As discussed above, this would quickly reduce the
imprint of the rapidly decaying evanescent modes in the boundary layer wave
functions c1 and cn, which means that the critical components outside the
column spaces C± become negligible at an exponential rate in terms of the
number of additional layers. We emphasize that the inserted layers may be
“fictitious” in the sense that they can be accommodated by block Gaussian
elimination operations prior to solving Eq. (3.91) for the original system.

Let us now analyze the above statements formally. In the particular case,
where l extra principal layers of the connecting electrodes are inserted and also
the border layers of the C region are identical to the connecting electrode layers,
we can write the boundary matching equations as

c0 = (B̃+
L)−1c

(l)+
1 + (B̃−

L )−1c
(l)−
1 (5.6)

for the left boundary and

cn+1 = B̃+
Rc(l)+

n + B̃−
Rc(l)−

n (5.7)

for the right boundary, where c
(l)+
1 = λ+

L,kc
+
L,k and c

(l)−
n = 0 are fixed as bound-

ary conditions. We point out, that the l extra layers are bulk layers extending
from each electrode and therefore connected via the relation in Eq. (5.5) for L
and R, respectively. Moreover, since the electrode wave functions can always be
expanded in the corresponding complete set of bulk modes, we may write

c±i = C±a±
i = [C̃±, C̊±]

[
ã±

i

å±
i

]
, (5.8)

where a±
i = [ã±T

i , å±T
i ]T are vectors that contain the expansion coefficients and

subscript L is implied for the left electrode (i ≤ 1), and R for the right electrode
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(i ≥ n). Thus we may consider the (unfixed) boundary wave functions entering
Eqs. (5.6) and (5.7), by explicitly writing

c
(l)−
1 = (B−

L )−lc−1 = [C̃−
L , C̊

−
L ]

[
(Λ̃−

L )−lã−
1

(Λ̊−
L )−lå−

1

]
, (5.9)

and

c(l)+
n = (B±

R)lc+
n = [C̃+

R, C̊
+
R]

[
(Λ̃+

R)lã+
n

(Λ̊+
R)lå+

n

]
, (5.10)

using the definition B± = C±Λ±(C±)−1. This shows that the critical com-
ponents outside the column spaces of C̃±

L and C̃±
R are given by coefficients

(Λ̊−
L )−lå−

1 and (Λ̊+
R)lå+

n , respectively. Assuming that we exclude fastest decay-
ing of the evanescent modes according to Eq. (5.1), we will have |λk| > λ−1

min

for the diagonal elements of Λ̊−
L and |λk| < λmin for the diagonal elements of

Λ̊+
R. More importantly, since λmin is always less than 1, these coefficients always

decrease as a function of l.
We therefore conclude that WFM with the reduced Bloch matrices B̃± ap-

proaches the exact case with B± if additional electrode layers are inserted as
suggested, and thus, that the solution cC obtained from Eq. (3.91) when only a
reduced set of bulk modes are used, approaches the correct solution accordingly.

5.5 Accuracy and error analysis

As pointed out above, the exclusion of some of the evanescent modes from
the mode matrices C± may introduce errors because the column spaces in C̃±

are incomplete. However, it is not obvious to which extend this influences
the accuracy of the transmission and reflection calculations from the scattering

states solutions c
(l)−
1 and c

(l)+
n . It is therefore important to be able to estimate

and monitor the accuracy of the results obtained. We now discuss how this can
be done in a systematic fashion in terms of the parameter λmin and the number
l of extra electrode layers.

Consider first the accuracy of the transmission matrix t in the case of the
extended two-probe system in Fig. 5.3. Initially, for a specific incoming mode
k, we would like to compare the correct result obtained with the complete set
of modes (cf. Eq. (3.83)),

tk =

[
t̃k

t̊k

]
= [C̃+

R, C̊
+
R]−1c(l)+

n , (5.11)

to the result obtained with the reduced mode matrix (denoted by a prime),

t′k =

[
t̃′k
0̊′

]
= [C̃+

R, 0̊]−1c(l)+
n , (5.12)
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where 0̊′ and 0̊ represents the zero vector and zero matrix of size m̊R and
mR × m̊R, respectively.

Notice that the important coefficients in tk and t′k for transmission calcu-
lations are the ones representing the Bloch modes which enters the Landauer-
Büttiker formula in Eq. (3.8). Since these are never excluded they will always
be located within the first m̃R elements, i.e., in t̃k and t̃′k. It then suffices to
compare these parts of the transmission matrix which we can do as follows.

From the properties of the pseudo inverse we are able to write the relation

(C̃+
R)−1[C̃+

R, C̊
+
R] = [Ĩ, (C̃+

R)−1C̊+
R], (5.13)

where Ĩ is the identity matrix of order equal to the number of included modes
m̃R. Using the expression in Eq. (5.10) it then follows that

t̃k = (Λ̃+
R)lã+

n , (5.14)

and
t̃′k = t̃k + (C̃+

R)−1C̊+
R(Λ̊+

R)lå+
n , (5.15)

where the t̃′k expression clearly corresponds to the correct coefficients t̃k plus
an error term.

We have already established in the previous section that the (Λ̊+
R)lå+

n factor
in the error term will decrease as a function of l. To ascertain that the total
error term also decreases, we look at the 2-norm of (C̃+

R)−1C̊+
R, which satisfies

||(C̃+
R)−1C̊+

R||2 ≤ m̊
1
2

R||(C̃+
R)−1||2, (5.16)

since ||C̊+
R||2 ≤ m̊

1
2

R when all evanescent modes are assumed to be normalized

(see Eq. (3.87)). The norm ||(C̃+
R)−1||2 can be readily evaluated and depends

on the set of modes included via the parameter λmin but not on l. We then have
that (C̃+

R)−1C̊+
R is independent of l, and consequently, that the error term in

Eq. (5.15) must decrease as a function of l.

5.5.1 Error estimates

We now derive expressions in order to estimate and monitor the error in a
calculation of the total transmission coefficient T (E) with the proposed WFM
method. Writing Eq. (5.15) as t̃′k = t̃k + ǫ̃k, where ǫ̃k holds the errors on
the coefficients of the kth column, we can insert this in the Landauer-Büttiker
formula in Eq. (3.7) and obtain an expression for T ′(E), given by

T ′(E) = T (E) +
∑

kk′

(t̃∗kk′ ǫ̃kk′ + ǫ̃∗kk′ t̃kk′ + |ǫ̃kk′ |2) (5.17)

where T (E) is the exact result and the summation is over the Bloch modes k
and k′ in the left and right electrode, respectively.
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In the attempt to estimate the order of the error term in Eq. (5.17), we

may (as a worst case approximation) take all diagonal elements of Λ̊+
R to be

equal to the maximum range λmin of Eq. (5.1), which makes all elements ǫ̃kk′

proportional to λl
min. Thus we arrive at the simple relation

|T ′ − T | ∼ λl
min +O((λl

min)2
)
, (5.18)

which shows that the error decreases exponentially in terms of the number of
extra layers l. We will adopt the expression in Eq. (5.18) as a reasonable order
of magnitude estimate of the accuracy of T ′(E).

Alternatively, if we assume that the magnitude of the error on the right-going
and left-going components are of similar order, we can attempt to monitor the
error arising on the boundary conditions. In order to do this, we introduce the
new coefficient vectors

b̃L,k = (C̃+
R)−1(c

(l)+
1 − λ+

L,kc
+
L,k) (5.19)

and

b̃R,k = (C̃−
R)−1c(l)−

n . (5.20)

We note that |b̃L,k| = 0 and |b̃R,k| = 0 in the case where the boundary con-

ditions are exactly satisfied (i.e., c
(l)+
1 = λ+

L,kc
+
L,k and c

(l)−
n = 0). Thus b̃R,k,

for example, represents the error on the left-going components within the right
boundary layer in the same way that ǫ̃k represents the error on the right-going
(transmitted) components. We would therefore expect the same order of mag-
nitude of |b̃R,k| and |ǫ̃k| in an actual calculation for a given mode k.

This suggests another order of magnitude accuracy estimate for T (E), which
is straightforward to monitor using the results available with the reduced set of
bulk modes. By relating |b̃R,k| ∼ |ǫ̃k| and using Eq. (5.17), we can write

|T ′ − T | ≤
∑

k

(2|t̃k||ǫ̃k| + |ǫ̃k|2) ∼
∑

k

(2|t̃k||b̃R,k| + |b̃R,k|2), (5.21)

where all the vector norms (e.g., |t̃k|2 =
∑

k′ |t̃kk′ |2) are assumed to be taken
over the elements corresponding to propagating bulk modes k′ only.

We note without explicit derivation that similar arguments for the reflection
matrix with columns r̃′

k and the total reflection coefficient R′, as presented
above for t̃′k and T ′, results in the same accuracy expressions for |R′ −R| as for

|T ′ − T | in Eqs. (5.18) and (5.21), if we substitute t̃k → r̃k and b̃R,k → b̃L,k.

5.6 Implementation

We now turn to the practical implementation of the new method. To begin
with we note that in order to benefit the most from the approach of excluding
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evanescent modes, we have to be able to target and compute only the modes of
interest. This is in contrast to the standard method of evaluating all modes and
subsequently throwing away a (relatively modest) subset of them (see Sec. 3.3.2).

The resulting algorithm which we have implemented is written,

ALGORITHM X: Efficient WFM method

1. obtain C̃±
L , Λ̃

±
L from QEP (see Chap. 6)

2. [Q̃±
L , R̃

±
L ] = QR{C̃±

L}, solve R̃±
LC̃±

L = (Q̃±
L )†

3. B̃±
L := C̃±

L Λ̃±
L C̃±

L

4. Σ̃L := H̄†
L,L[H̄L + H̄†

L,L(B̃−
L )−1]−1H̄L,L






the left electrode

5. obtain C̃+
R, Λ̃

+
R from QEP (see Chap. 6)

6. [Q̃+
R, R̃

+
R] = QR{C̃+

R}, solve R̃+
RC̃+

R = (Q̃+
R)†

7. B̃+
R := C̃+

RΛ̃+
RC̃+

R

8. Σ̃R := H̄R,R[H̄R + H̄R,RB̃+
R]−1H̄†

R,R






the right electrode

9. q̃′
1 = −[H̄†

L,LC+
L + Σ̃LC̃+

LΛ̃+
L ]ain

10. initialize A′
1 := H̄11 − ΣL, A8

n := H̄n,n

11. for i := 1, . . . , l

12. solve H̄L,L = XA′
1 for X

13. A′
1 := H̄L − XH̄L,L

14. q′
1 := −Xq′

1

15. end






extra layers left

16. execute downwards sweep of algorithm v for i = 1, . . . ,n

17. for i := 1, . . . , l

18. solve H̄L,L = XA′
n for X

19. A′
n := H̄L − XH̄L,L

20. q′
n := −Xq′

n

21. end






extra layers right

22. A8′
n := A′

n − ΣR

23. repeat lines 11 − 21 in ”reverse” (i.e., extended upwards sweep)

24. for i := 1, . . . ,n

25. solve H̄′
ici = q8′

i

26. end





scattering states solution

(5.22)
Notice that the extra layers have been inserted “fictitiously” in the sense that
they are implemented by block Gaussian elimination operations before and after
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the standard downwards and upwards sweeps.
Since the majority of the evanescent modes can be excluded from the WFM

calculation altogether by using algorithm x, the numerical operations in lines
1-9 are in general much less costly in comparison with lines 1-9 of the original
WFM method in algorithm v. For many large two-probe systems, which the
current method is aimed for, this algorithm can therefore be very efficient in
combination with an appropriate iterative eigenvalue problem solver in steps 1
and 5. A particular procedure based on the restarted Arnoldi method developed
in the next chapter is adopted in the following applications.

5.7 Examples

We exemplify the previous discussion quantitatively by looking at two cases.
First, in order demonstrate of applicability of the derived error estimates in
Eqs. (5.18) and (5.21), we consider the Au–CNT(8,0)×4–Au system. Second,
we return to the motivating arguments in Sec. 5.1 and compute the speed-ups
achieved by the proposed WFM method for the systems mentioned there.

5.7.1 Benchmarking example

Consider the Au–CNT(8,0)×4–Au two-probe system in the right part of Fig. 5.1,
consisting of the Au(111) electrode described earlier, and a 128 atom (4 unit
cells) device of zigzag-(8,0) carbon nanotube (CNT). For energy E = −1.0 eV
and E = −1.5 eV, we have calculated the deviation between the total trans-
mission obtained when all bulk modes are taken into account (T ) and when
evanescent modes are excluded (T ′) as specified with different settings of λmin.
Deviations are also determined for the corresponding total reflection coefficients
(R and R′). Fig. 5.4 shows the results as a function of l, together with the esti-
mate λl

min of Eq. (5.18) and the estimate of Eq. (5.21) both for the transmission
and reflection coefficients, where the higher order terms have been neglected,

We observe that the absolute error in the obtained transmission coefficients
(red curves) and reflection coefficients (blue curves) are generally decreasing as
a function of l, following the same or better convergence rate as λl

min (dashed
line). Looking closer at results for neighbor l values, we see that the errors in
the E = −1.5 eV case initially exhibit wave-like oscillations. This is directly
related to the wave form of the evanescent modes that have been excluded (see
the propagation of the slowest decaying black curves in Fig. 5.2(b)), since the
representation of these modes in the reduced spaces C̃± (i.e., the expansion
coefficients in ǫ̃k) may shift when l is increased. In other words, although the
norm of the errors |ǫ̃k| are decreasing as a function of l, the specific error ǫ̃kk′

on a given (large) coefficient of t̃′kk′ or r̃′kk′ may increase, which means that the
overall error term in Eq. (5.17) can go up. Fortunately, however, this is only a
local phenomenon with the global trend being rapidly decreasing errors.



80 Efficient wave function matching method

      

      

      

      

      

      

      

      

      

      

      

      

 

 

10−6

10−6

10−6

10−4

10−4

10−4

10−2

10−2

10−2

10 0

10 0

10 0

0 1 2 3 4 5 6 7 8 9 10
l (layers)

λmin = 0.5

λmin = 0.3

λmin = 0.1
(λmin)l

|T ′ − T |

|R′ − R|
P

k 2|t̃k||b̃R,k|
P

k 2|r̃k||b̃L,k|

      

      

      

      

      

      

      

      

      

      

      

      

 

 

10−6

10−6

10−6

10−4

10−4

10−4

10−2

10−2

10−2

10 0

10 0

10 0

0 1 2 3 4 5 6 7 8 9 10
l (layers)

λmin = 0.5

λmin = 0.3

λmin = 0.1
(λmin)l

|T ′ − T |

|R′ − R|
P

k 2|t̃k||b̃R,k|
P

k 2|r̃k||b̃L,k|

Figure 5.4: Error (absolute) in the calculated total transmission and reflection
coefficients T ′ and R′ as a function of l. The panels show the cases of λmin set
to 0.5, 0.3 and 0.1, for energy E = −1.0 eV (left) and E = −1.5 eV (right) The
dashed line indicate the theoretical accuracy estimate λl

min.

It is striking that all the results for E = −1.0 eV in the left part of Fig. 5.4
are completely identical for all settings of λmin. This indicates that there are
no modes located in the area 0.1 ≤ |λk| ≤ 0.5 of the unit disc at this energy.
Moreover, the quality of the simple accuracy estimate λl

min and the estimates
expressed by Eq. (5.21) for the transmission coefficients (green curves) and re-
flection coefficients (yellow curves), respectively, are very distinct. For relatively
large λmin in the E = −1.5 eV case, all estimates are very good. However, for
E = −1.0 eV or for smaller values of λmin, only the latter two retain a high
quality while the λl

min estimate tends to be overly pessimistic. It is important
to remember, that these estimates are by no means strict conditions but very
reasonable to make an order of magnitude estimate of the accuracy.

We note in passing, that the results in the top panels of Fig. 5.4 corresponds
to using only the propagating Bloch modes in the transmission calculation (i.e.,
only 3 out of 243 for E = −1.5 eV, cf. Fig. 5.2). Still we are able to compute T
and R to an absolute accuracy of three digits by inserting 2× 5 extra electrode
layers in the two-probe system. This is quite remarkable and shows promise for
large-scale systems, e.g., with nano-wire electrodes, for which the total number
of evanescent modes available becomes exceedingly great.
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Table 5.2: CPU-times in seconds and speed-up when using the efficient WFM
method in algorithm x for calculating t and T (E) at 20 different energies
inside E ∈ [−2 eV; 2 eV] for various two-probe systems (cf. Table 5.1). Columns
4-5 show the percentage of the CPU-time used for computing the electrode bulk
modes from the QEP vs. solving the central region linear systems in Eq. (3.91).

System Atoms CPU Speed-up QEP Eq. (3.91)
Li–Li 32(8) 0.1 1.1 71% 28%

Fe–MgO–Fe 27(6) 2.1 1.0 55% 44%
Al–C×7–Al 74(18) 2.3 1.7 71% 27%

Au–DTB–Au 102(27) 42.0 2.3 67% 32%
Au–CNT(8,0)×1–Au 140(27) 34.0 2.6 50% 49%
Au–CNT(8,0)×5–Au 268(27) 68.4 1.9 26% 73%
CNT(8,0)–CNT(8,0) 192(64) 31.5 4.3 61% 37%
CNT(4,4)–CNT(8,0) 256(64|64) 33.6 3.8 62% 37%
CNT(5,0)–CNT(10,0) 300(40|80) 54.4 2.5 41% 58%
CNT(18,0)–CNT(18,0) 576(144) 469.7 3.3 48% 51%

5.7.2 Speed-up

In conclusion to this section it is appropriate to demonstrate that the proposed
WFM method, which we have implemented as algorithm x, is indeed both
robust and efficient. We have therefore calculated the transmission spectrum
T (E) for 20 different energies inside E ∈ [−2 eV; 2 eV] for a selection of fre-
quently studied two-probe systems using parameters λmin = 0.1 and l = 1. The
CPU-times for the efficient WFM method is given in Table 5.2 and can be di-
rectly compared with the CPU-times for the standard WFM method listed in
Table 5.1. The actual transmission spectra produced by applying the two meth-
ods are identical to more than three significant digits (for explicit comparison of
T (E) curves, see Sec. 6.4). Also, we have confirmed the results in the majority
of the cases1 by reviewing the original publications that consider these systems
[67, 40, 41, 66, 68]. We choose therefore not to show the T (E) spectra obtained.

The speed-ups achieved by the efficient WFM method for the different two-
probe systems are displayed in the fourth column of Table 5.2. They range
from 1 to 4.3 and follow a common trend; the larger the electrode unit cells are,
both in general and relative to the central region, the better speed-up can be
expected. Also the percentages of time spent in the key stages can be directly
compared to the corresponding numbers for the standard method (cf. Table 5.1).
It is apparent that the relative cost has shifted from the electrode QEPs to the
solution of the central region linear system in Eq. (3.91). This is partly due to

1 Fe–MgO–Fe, Al–C×7–Al, Au–DTB–Au, Au–CNT(8,0)×N–Au, CNT(8,0)–CNT(8,0).
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the extra (“fictitious”) layers in the C region, and partly due to the significantly
cheaper evaluation of the self-energy matrices (see next chapter).

We refer the reader to PAPER II and Sec. 6.4 for more verification that the
above WFM method calculates the correct scattering states and transmission
spectrum in an efficient manner.



Chapter 6

Krylov subspace method for

computing self-energy

matrices

In the previous chapters of this thesis, we have given detailed descriptions of
the Green’s function method and the WFM method for the modeling quantum
transport in two-probe nano-scale devices. We have seen that in both methods,
it is necessary to evaluate the self-energy matrices of each electrode for a number
of different energies. For most systems this represents the dominant part of the
computational work. So far, the fastest method for obtaining the self-energy
matrices has been via the solutions of the bulk QEPs of the electrodes. As il-
lustrated in the previous chapter, only the propagating and the slowly decaying
evanescent states in the bulk electrodes contribute to the transmission of elec-
trons through a two-probe device of some extension. These states correspond
to the solutions of the QEP that have complex eigenvalues in the vicinity of the
unit circle. One can then generate reduced self-energy matrices on the basis of
a few selected solutions of the QEP, which include all the electrode-device cou-
pling information of interest. To exploit this in practice, an algorithm to search
for and compute the desired quadratic eigenpairs is required. In this chapter,
we develop such a method using an iterative Krylov subspace technique.

6.1 Introduction

With the recent surge of very efficient iterative schemes to obtain a few specific
eigenpairs of large-scale eigenvalue problems (see Refs. [69, 70, 71, 72, 73] and
references therein), we believe such techniques to be the natural starting point
for solving the electrode QEPs in Eq. (3.56). In particular the methods that are
tailored for quadratic and polynomial matrix problems seem to bee promising
[74, 75, 76, 77]. In such methods, the explicit linearization of the QEP as
performed in Eq. (3.58) and the subsequent doubling of the problem size, can
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be effectively avoided [77]. Furthermore, by applying appropriate restarting
mechanisms (see, e.g., [69]) as part of the iterative schemes, one is able to
determine the selected eigenpairs to a given accuracy at a relatively low cost.

The most difficult aspect of applying the existing iterative methods for the
QEPs at hand, is the particular interior location of the desired eigenvalues within
the complex eigenvalue spectrum. In many of the applications for which large-
scale iterative methods are used it is the extreme (i.e., exterior) of the spectrum
that is of interest. In our case, we require the specific eigenpairs with eigenvalues
close to the unit circle. Fortunately, the Arnoldi method combined with a
shift-and-invert strategy has proven to be an effective tool in obtaining selected
interior eigenvalues of large-scale general complex eigenproblems.[70, 71, 72].
Other iterative methods, which are also suitable for this task, is the folded
spectrum variant of the preconditioned conjugate gradient method [78] and the
Jacobi-Davidson method for QEPs [79, 80, 73]. We here adopt the Arnoldi
method, which is the simplest and most straightforward to implement, and
leave the study of the applicability of the latter two methods to future work.

6.1.1 Arnoldi procedure

The Arnoldi method was first introduced as a direct algorithm for reducing a
general matrix to upper Hessenberg form [81]. It was later discovered to be an
excellent iterative technique for finding eigenpairs of large matrices [82]. The
procedure can be essentially viewed as a modified Gram-Schmidt process for
constructing an orthogonal basis of a Krylov subspace. It works for general
non-Hermitian matrices as is required in our case. We begin here with a brief
presentation of the basic procedure.

The Krylov subspace of dimension m generated by an n× n matrix A and
an initial vector v1, is given by

Km(A,v1) ≡ span{v1,Av1,A
2v1, . . . ,A

m−1v1}, (6.1)

which is the span of the vectors available from the power method [83]. In order to
determine the Krylov subspace, we apply the Arnoldi procedure which generates
an orthonormal basis {v1, . . . ,vm} for Km(A,v1). algorithm xi below lists
the steps of a continuable version of the Arnoldi procedure which is initially
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called with a parameter k = 1 and a random starting vector v1.

ALGORITHM XI: Arnoldi procedure (continuable)

1. if k = 1, v1 = v1/||v1||2
2. for j = k, k + 1, . . . ,m do

3. v = Avj

4. for i = 1, 2, . . . , jdo

5. Hij = vT
i v

6. v = v − Hijvi

7. end

8. Hj+1,j = ||v||2
9. if Hj+1,j = 0,m = j, breakdown

10. vj+1 = v/hj+1,j

11. end

(6.2)

After m − 1 iterations an n × m matrix whose columns are the orthonormal
basis vectors for Km(A,v1) is available,

Vm =
(
v1, . . . ,vm

)
. (6.3)

The projection of the matrix A onto Km(A,v1) is then

Hm = V†
mAVm, (6.4)

where Hm is m × m and upper Hessenberg (i.e., it has zeros below its lower
bidiagonal). The matrix Hm (not to be confused with Hamiltonian matrix Hi) is
also constructed by algorithm xi. Approximate solutions of the eigenproblem
Ax = λx can subsequently be obtained as the so-called Ritz eigenpairs (γ,Vmy)
of the projected eigenproblem Hmy = γy. More specifically, as m increases the
Ritz pairs becomes increasingly better approximations to certain eigenpairs of
Hm (we point to Refs. [83, 80] for details).

We note that algorithm xi stops prematurely at line 9 if the length of the
current vector to be added to V is zero. If this is the case, then the projection
of A onto the current subspace of dimension j will be exact. Therefore such a
breakdown is called a “lucky breakdown”. In any case, the algorithm produces
the output matrices Vm+1 and Hm+1 which by construction will satisfy the
relation

AVm = Vm+1Hm+1, (6.5)

where Vm+1 = (Vm,vm+1) is a rectangular n × (m + 1) matrix and Hm+1 =
(HT

m, (0, . . . , 0, hm+1,m)T )T is an (m+ 1) ×m upper Hessenberg matrix.
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6.2 Krylov subspace algorithm

In this section we describe the new Krylov subspace method for evaluating
the electrode self-energy matrices ΣL and ΣR. The crucial assumption in the
approach is that we may strip the less important modes from the mode matrices
C± in Eq. (3.62) and still obtain a good approximation to the self-energy matrix
as described in Chap. 5. Our current method, which targets the specific modes
that are most important, can be characterized as a shift-and-invert Arnoldi
method with adaptive subspace size. We will describe the key ingredients of the
method in the following. The goal is to present an alternative for obtaining the
self-energy matrices, which is faster than existing techniques.

6.2.1 Shift-and-invert transformations

Iterative methods based on Krylov subspaces produce Ritz values that converge
fastest to the dominant part of the eigenvalue spectrum given by the extremal
eigenvalues [83]. In the current application, it is the interior of the eigenvalue
spectrum that is of interest, in particular the eigenvalues λk that satisfy λmin ≤
|λk| ≤ λ−1

min. To be able to find this part of the spectrum efficiently, we employ a
shift-and-invert strategy which implies that the QEP in Eq. (3.56) is rewritten
as (

µ2M + µC + K
)
ck = 0, (6.6)

where

M = H̄†
L,L + σH̄L + σ2H̄L,L, (6.7)

C = H̄L + 2σH̄L,L, (6.8)

K = H̄L,L, (6.9)

and

µ =
1

λk − σ
. (6.10)

Notice that we have left out the implied subscript L on the eigenvalues λL,k

and eigenvectors cL,k (we do this from here on). By transforming the QEP,
the eigenvalues of Eq. (3.56) have been shifted by σ and inverted while the
eigenvectors are unchanged. Thus the dominant part of the spectrum of Eq. (6.6)
now corresponds to the eigenvalues of the original QEP closest to the shift σ.

As discussed in Sec. 3.3.2, the simplest technique for solving the QEP in
Eq. (6.6) is by linearizing it to a generalized eigenvalue problem of twice the
size, see Eq. (3.58). However, for the values of σ used in this work, M is always
well-conditioned. A linearization is therefore possible as a standard eigenvalue
problem of size 2mL, given in the current notation as (cf. Eq. (3.57))

Ax = µx, (6.11)
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where A is

A =

(
0 I

−M−1K −M−1C

)
, (6.12)

and the 2mL eigenvalues µk are identical to the ones of Eq. (6.6). The eigenvec-
tors of Eq. (3.58) are given by xT

k = (ck, µkc
T
k ), so that the original eigenvectors

ck can be selected as the first mL elements of xk.
If we assume that the Hamiltonian and overlap matrices for the electrodes

are real, then the spectrum of the QEP in Eq. (3.56) is symmetric with respect
to the real axis of the complex plane and the eigenvalues are either real or occur
in complex conjugate pairs [63]. In addition, as seen by transposing Eq. (3.56),
the eigenvalues in this case also come in pairs λk and 1/λk. We will use these
properties to present a simplified method for the extraordinary case of real H̄L

and H̄L,L, and subsequently discuss the steps required for the general complex
case in Sec. 6.2.5. The purpose of the current method is thus to determine the
eigenpairs (λk, ck) of Eq. (3.56) that satisfy λmin ≤ |λk| ≤ 1, for λmin > 0 (the
pairs that satisfy 1 ≤ |λk| ≤ λ−1

min can subsequently be obtained as (λ−1
k , ck)).

As is apparent from the polar plot example in Fig. 5.2, the majority of the
eigenvalues with |λk| ≤ 1 are located near the origin. Therefore, it is not efficient
to apply the shift σ = 0 in order to obtain the wanted eigenvalues which lie in
the outskirts of the unit disc. Instead we may apply four different shifts, given
by σ = ±1/

√
2 and σ = ±ı̂/

√
2, in four separate Arnoldi procedures. Each of

these then cover a quarter-slice of the unit disc and produce Ritz values that
converge fast to eigenvalues close to the given shift. Simple sorting techniques
can be employed in each Arnoldi procedure to take only the portion of the Ritz
pairs into account that is covered by a given shift.

When applying the shift-and-invert strategy devised, two of the shifts have
to be complex. In practice this means working in complex arithmetic or dou-
bling the size of the problem [84]. However, in the case of real Hamiltonians
it is advantageous to search for the complex eigenvalues in conjugate pairs and
thereby eliminate one of the complex shifts. Moreover, this can be done almost
entirely in real arithmetic as follows.

Notice that Eq. (6.11) was obtained by linearizing the shift-and-inverted
QEP written in Eq. (6.6). We may also reverse the order of the linearization
and shift-and-invert operations. Performing a linearization of Eq. (3.56) that

results in an eigenproblem Âx = λx of double size, and subsequently a shift-
and-invert transformation arriving at (Â−σI)−1x = µx, shows that the matrix
applied in the Arnoldi procedures can also be written [63]

(Â − σI)−1 =

(
−M−1Ĉ −M−1K

I − σM−1Ĉ −σM−1K

)
, (6.13)

where

Ĉ = H̄L + σH̄L,L. (6.14)
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The eigenpairs (µk,xk) of (Â − σI)−1x = µx are exactly the same as of
Eq. (3.58). In addition, we may now consider the combined spectral trans-
formation for two conjugate shifts σ and σ∗, given by

T = (Â − σI)−1(Â − σ∗I)−1 =
Im{(Â− σI)−1}

Im{σ} , (6.15)

which was originally proposed by Parlett and Saad [84]. Applying matrix T in
the Arnoldi procedure generates approximate solutions to Tx = µ′x, where the
eigenvalues are given by

µ′ =
1

(λ− σ)(λ− σ∗)
, (6.16)

which become extreme for conjugate eigenvalues λ and λ∗ of Eq. (3.56) that are
close to σ and σ∗. In our case, the complex shifts are purely imaginary: σ = ı̂β,
where β is real. Then we have µ′ = (λ2 + β2)−1 and, more importantly, the
matrix T is simply given by β−1 times the imaginary part of Eq. (6.13), written
as

T =

(
−β−1Im{M−1Ĉ} −β−1Im{M−1K}

Re{M−1Ĉ} Re{M−1K}

)
, (6.17)

which is purely real. This makes it feasible to use real arithmetic in all parts of
the algorithm except for the initial complex LU-factorization of M.

6.2.2 Selection scheme and convergence criteria

In order to benefit from the shift-and-invert strategy described above we must
separate the solutions of the QEPs into three groups, one for each shift. This
is illustrated schematically in Fig. 6.1, where the unit disc of the complex plane
is cut into “quarter-slices”. In practice, the separation is accomplished by an
simple selection scheme to determine which of the available solutions (λk, ck)
that correspond to wanted Ritz pairs located inside the valid quarter-slice. The
selection scheme can be implemented as two separate processes.

The first selection process is designed to identify those solutions that cor-
respond to eigenpairs of the original QEP which satisfy λmin ≤ |λk| ≤ 1. It is
important to realize, however, that since all computations are done in finite pre-
cision arithmetic, there is no guarantee that the Bloch modes of the electrodes
will have magnitudes |λk| exactly equal to 1. Even the left-going propagating
modes, which are targeted in our case, can have |λk| > 1. In practice, we there-
fore define the propagating modes to be those Ritz pairs (λk, ck) that satisfy

(1 + ǫ)−1 ≤ |λk| ≤ 1 + ǫ (6.18)

where ǫ is a small infinitesimal (set to 10−8 in our implementation). In order
to make sure that all propagating modes are taken into consideration it is thus
necessary to select all Ritz pairs that satisfy λmin ≤ |λk| ≤ 1 + ǫ.
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Figure 6.1: Illustration of the complex eigenvalues (blue/circles) for the Al(100)
electrode at E = 3 eV. The eigenvalues corresponding to the right-going modes
(red/filled dots) of interest can be separated according to their location within
three distinct (green/shaded) areas of the unit disc and determined efficiently
using shift-and-invert spectral transformations to ±1/

√
2 and ı̂/

√
2 (crosses).

To obtain the Ritz values λk used in the selection process, we have to trans-
form the solutions of the projected eigenproblem to the corresponding Ritz pairs
(λk, ck) by reversing the shift-and-invert operation. The transformation again
depends on whether the shift σ is real or imaginary. In the case of real σ,
we have λk = µ−1

k + σ from Eq. (6.10). For imaginary σ, Eq. (6.16) can be
rearranged to λ2

k = µ−1
k + σ2, which has two solutions of equal magnitude.

This is sufficient to allow selection on the basis of the magnitude |λk|, how-
ever, when it comes to obtaining the Ritz values λk themselves, it is necessary to
use other means for imaginary σ, e.g., by forming the Rayleigh quotient [83]. In
our case, and for QEPs in particular, it is possible and computationally advan-
tageous to use alternatives to the Rayleigh quotient that work with vectors and
matrices of size mL instead of 2mL. Several such techniques that are both fast
and accurate have recently been devised by Hochstenbach and van der Vorst
[85]. We will adopt the MR-2 method of that paper, which yields λk = αk

βk
, for

αk and βk defined as (
αk

βk

)
= −Z̃H̄†

L,Lck, (6.19)

where Z̃ is the pseudo-inverse of Z = (H̄L,Lck, H̄Lck). Since all eigenvectors
are unchanged by the shift-and-invert operation, the ck vectors applied here are
the first mL elements of the Ritz vectors.

The remaining selection process should single out the Ritz pairs that are
inside the valid slice of the unit disc. To this end, we can apply the inner
product of (Re{λk}, Im{λk}) and (Re{σ}, Im{σ}), given by

Re{λk}Re{σ} + Im{λk}Im{σ} = |λk||σ|cos θ (6.20)
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where θ is the angle between λk and σ in a polar representation of the complex
plane. In order for λk to be inside the quarter-slice that has σ on the bisector we
must have |θ| ≤ π/4 or equivalently cos θ ≥ 1/

√
2. For real shifts σ = ±1/

√
2,

this observation yields the condition

Re{λk}Re{σ}
|λk|

≥ 1

2
, (6.21)

and similarly for imaginary shift σ = ı̂/
√

2,

|Im{λk}Im{σ}|
|λk|

>
1

2
, (6.22)

where the absolute value of the left-hand side is taken to allow λk to be both in
the top and the bottom quarter-slice. Notice that the equality is removed since
the (very rare) event of λk lying exactly on the border of two slices is already
taken into account in the condition for real σ.

Finally, let us discuss how to check for convergence. For each shift, the
convergence condition is regarded as satisfied when all the Ritz pairs of interest
that are also located inside the valid quarter-slice are identified and accurate to
a given tolerance. We estimate the accuracy of the obtained pairs (λk, ck) by
evaluating the corresponding relative residual norm, which yields the following
convergence criterion,

||(H̄†
L,L + λkH̄L + λ2

kH̄L,L)ck||2
norm(H̄L)

≤ tol (6.23)

where tol is the convergence tolerance and norm(H̄L) is an appropriate norm
for matrix H̄L. In our implementation we set tol = 10−11 and apply the
approximation norm(H̄L) ≈ ||diag(H̄L)||2, that is, we include only the diagonal
entries of the 2-norm of H̄L. These choices require very low computational effort
and give the correct result for all numerical examples we have investigated.

6.2.3 Restarting and multiple eigenvalues

An unfortunate aspect of the Arnoldi procedure is that one cannot know in
advance how many steps will be needed before the eigenpairs of interest are
well approximated by Ritz pairs. If many steps are necessary, then solving the
projected eigenvalue problem becomes costly. Moreover, when applying our
Krylov method to evaluate the self-energy matrices we do not know the exact
number of eigenpairs wanted and cannot estimate the required dimension of the
Krylov subspace.

One way to circumvent the first difficulty is to restart the Arnoldi method
after a certain number of iterations using the obtained information to generate
a better starting vector or deflate particular eigenvalues [80]. However, this
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will not improve on the second difficulty which requires an adaptive maximum
dimension of the Krylov subspace. In addition, we observe in most applications
that the benefits of an efficient restart procedure (e.g., as devised by Morgan
and Zeng [69]), does not outweigh the computational expense of the restarting
overhead. The typical size of the self-energy matrices encountered is too small
to make it beneficial to use such techniques, which have been developed for
large-scale applications.

Therefore, we have chosen to employ a simple continuation scheme instead
of restarting, where a check for convergence is performed after a given number
of Arnoldi iterations, and if not satisfied, the procedure simply continued where
it was left off. With the input parameter k, the listed algorithm xi is able
to generate an initial Krylov subspace Km of a given dimension m, but also
continue the process augmenting the space with subsequent calls. This allows
us to perform iterations as long as the approximations are unsatisfactory and/or
there is doubt whether all wanted eigenpairs have been found.

An important special case to be considered when applying the Arnoldi pro-
cedure to solve an eigenvalue problem is the possibility of multiple eigenvalues.
A Krylov subspace method will, in theory, produce only one eigenvector corre-
sponding to a multiple eigenvalue. So determining multiplicity is quite difficult.
Several approaches exist that deal with this problem, including deflation com-
bined with effects of round-off error [80], block Arnoldi procedures [80] and
so-called random restarts [86, 69]. The present Krylov method does not incor-
porate any mechanisms to take algebraic multiplicity into account because such
cases do not occur in practice for the applications of this work (eigenvalues will
not be identical to machine precision in any of the numerical examples, but only
to within ∼ 10 − 11 digits, see Sect. 6.3).

6.2.4 Implementation

The implementation of our Krylov method is composed of two main parts. An
iterative part that determines the wanted Ritz pairs (λk, ck) which approximate
the eigenpairs of the QEP in Eq. (3.56), and a non-iterative part that sets
up the mode and phase matrices and evaluates the self-energy matrix from
these by direct methods. The iterative part is organized as three independent
computations, one for each of the used shifts σ. It consists of the application
of the Arnoldi procedure together with a check for convergence plus the initial
work to construct the input matrices for algorithm xi. As described above
the actual calculations will depend on whether the shift is real or imaginary.

The key steps of the Krylov method for evaluating the self-energy matrix
ΣL of the left electrode are presented in algorithm xii below. It is important
to stress that the details of each step are kept at a minimum to enhance the
readability. Furthermore, for evaluating the self-energy matrix ΣR of the right
electrode, the steps are exactly the same, except for the substitution L → R
of all super- and subscripts and the removal of line 1 (this line is only required
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for left electrodes in order to obtain ΣL also from right-going modes). We refer
the reader to PAPER III for a detailed discussion of the steps in the algorithm.

ALGORITHM XII: Krylov method to evaluate Σ̃L

1. Exchange matrices H̄L,L and H̄†
L,L.

2. for σ = 1/
√

2,−1/
√

2, ı̂/
√

2 do

3. if σ is real, calculate A from Eq. (6.12),
else calculate T from Eq. (6.17) and set A = T.

4. Select random vector v1 of size 2mL.

5. Apply algorithm xi to generate Km(A,v1).

6. Solve the projected eigenproblem Hmy = µky.

7. if σ is real,

select all (µk,yk) that satisfy λmin ≤ |µ−1
k +σ| ≤ 1+ ǫ, and store the

Ritz pairs (λk, ck) = (µ−1
k + σ,Vmyk) that have Re{λk}Re{σ} ≥

|λk|
2 ,

else

select all (µk,yk) that satisfy λmin ≤ |µ−1
k + σ2| 12 ≤ 1 + ǫ, and

evaluate the original eigenvalues λk with the MR-2 method of
Ref. [85] and store the Ritz pairs (λk, ck) = (λk,Vmyk) that have

|Im{λk}Im{σ}| > |λk|
2 .

8. For the selected pairs (λk, ck) find residual ||(H̄†
L,L + λkH̄L +

λ2
kH̄L,L)ck||2, and check for convergence. If not satisfied, increase m

appropriately and go to step 5.
9. end

10. For all stored Ritz pairs (λk, ck) having (1 + ǫ)−1 ≤ λk ≤ 1 + ǫ, calculate
velocity v from Eq. (3.61). Discard the pairs with v < 0 (i.e, the left-going
modes).

11. Construct matrices Λ̃+
L and C̃+

L (see Eqs. (3.62) and (3.63)) from the
remaining pairs.

12. [Q̃+
L , R̃

+
L ] = QR{C̃+

L}, solve R̃+
LC̃+

L = (Q̃−
L )†

13. B̃+
L := C̃+

LΛ̃+
LC̃+

L

14. Σ̃L := H̄†
L,L[H̄L + H̄†

L,L(B̃+
L)−1]−1H̄L,L

6.2.5 Generalization to complex Hamiltonians

In the Krylov subspace method presented above we have assumed that the
electrode Hamiltonian matrices are real in order to simplify the computational
procedures. We now discuss the steps required to handle the case of com-
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plex H̄L and H̄L,L, which is the case, e.g., when applying k-point sampling
(algorithm xii only works for the Γ-point).

As noted in Sec. 6.2.1 the assumption of real H̄L and H̄L,L leads to sim-
plifications with the shift-and-invert operations: Firstly, we may consider only
right-going modes (λk, ck) with |λk| ≤ 1 since the left-going are uniquely re-
lated as (λ−1

k , ck), and, secondly, we can use the spectral transformation T
in Eq. (6.17) to determine the wanted eigenpairs for the two imaginary shifts
σ = ±ı̂/

√
2 simultaneously and in real arithmetic.

In order to generalize the Krylov subspace method to complex Hamiltonian
matrices, it is thus necessary to determine the left-going modes satisfying 1 ≤
|λk| ≤ λ−1

min (i.e, located outside the unit circle) directly, since there is no general
relation to the right-going modes (we note that it is advantageous to change the
shift positions to outside the unit circle, although this is not necessary for good
convergence). Furthermore, we must abandon the T matrix and perform two
independent shift-and-invert operations for σ = ±ı̂/

√
2. It is clear, that all

this is now done in complex arithmetic and that the extra shift required will
make the general algorithm a little more expensive (as shown in Sec. 6.3.3, the
LU-factorizations required for each shift-and-invert operation is the dominant
cost of our approach). We have implemented the generalizations and refer the
reader to the appendix of PAPER III for a numerical example.

6.3 Convergence behavior and computational com-

plexity

The Krylov method described in Sect. 6.2 represents an iterative approach for
evaluating the self-energy matrices. Accuracy and efficiency of the method de-
pends on the dimensions of the three Krylov subspaces generated for the three
applied shifts σ. In practice, these dimensions are controlled by two parame-
ters: tol and λmin. Typically, the smaller tol is, the more work is required to
satisfy the convergence criteria. However, setting this value too large may cause
eigenvalues to be missed when there are nearly multiple or clustered eigenvalues.
The λmin parameter on the other hand, sets the scale of exactly how many Ritz
pairs will be approximated. In this section, we will exemplify the convergence
behavior of algorithm xii by monitoring the relative residual norm in rela-
tion to the two controlling parameters tol and λmin. This gives an indication
of the typical number of iterations required for a given size of the self-energy
matrix. We also estimate the number of floating point operations needed in the
expensive parts of the algorithm and give the computational complexity.

6.3.1 Convergence of the residual norm

In order to demonstrate the convergence behavior of our Krylov method, we
first monitor the relative residual norm of the wanted eigenpairs as a function
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of the number of iterations. An expression for this norm for a given eigenpair
(λk, ck) is available as the left hand side of Eq. (6.23). We will consider the
Al(100) electrode at E = 3 eV and parameter λmin = 0.1, which requires a total
of 13 eigenpairs to be determined (8 Bloch modes and 5 evanescent modes) from
the three separate Arnoldi procedures. This example thus corresponds to the
situation illustrated in Fig. 6.1 and represents a typical calculation for an Al
electrode with 18 atoms per unit cell (the size of the self-energy matrix is 72).

In Fig. 6.2 we present curves showing the history of the residual norm for
a given number of iterations for the wanted eigenpairs in each of the separate
shift-and-invert Arnoldi procedures. We show only the 45 first iterations since
this number is enough for convergence in all cases. Also, only residuals for
eigenpairs corresponding to right-going modes are displayed.

The top figure of Fig. 6.2 illustrates the results from applying the shift
σ = 1/

√
2 and shows that the Arnoldi procedure determines four different Ritz

pairs with individual convergence curves. Comparing with the respective polar
plot in Fig. 6.1 (top-left), we observe a fifth eigenvalue (λ = 0.95+0.31ı̂) located
inside the valid quarter-slice. This fifth eigenvalue represents a left-going mode
and is thus discarded in step 10 of algorithm xii. We also see by comparison
with Fig. 6.1, that the eigenpairs with eigenvalues furthest from the current shift
(the cross) in the complex plane, in this case λ4, is the slowest to converge. This
is characteristic of how the shift-and-invert Arnoldi method locates eigenvalues
[83], and also the key to the success of the proposed Krylov method.

The middle figure of Fig. 6.2 shows the convergence of the two Ritz pairs
which are covered by the Arnoldi procedure with σ = −1/

√
2 and correspond to

right-going modes in the present example. We note that λ5 and λ6 are nearly
multiple eigenvalues and that the behavior of the residual norms, where one
eigenpair is available many iterations before its counterpart, is typical in such a
case. Here, in particular, we see that eigenvalue λ5 is determined to an accuracy
of ∼ 10−11 after 18 iterations before λ6 even shows up as a Ritz value of the pro-
jected eigenproblem. This indicates that λ5 and λ6 must be identical to around
10 significant digits, and that they cannot be distinguished in our Arnoldi pro-
cedure before this accuracy is achieved. Again we would like to emphasize that
without additional mechanisms to deal with multiple eigenvalues, this implies
an upper bound condition on the value of the tol parameter. Thus if all mul-
tiple eigenvalues are to be identified, which is necessary for algorithm xii to
produce the correct result, then this parameter should not be larger than the
absolute difference between any two of the wanted eigenvalues.

The bottom figure of Fig. 6.2 shows the residual norm history of the re-
maining 7 Ritz pairs required in the current example. These are determined
by the Arnoldi procedure with imaginary shift σ = ı̂/

√
2 and correspond to

filled dots in the bottom polar plot of Fig. 6.1 that represent right-going modes.
We observe that the eigenvalue closest to σ, here denoted by λ8, constitutes a
complex conjugate pair together with λ9, and that these have exactly the same
residual norm curve (indistinguishable in the figure) although they are obtained
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Figure 6.2: Convergence behavior of the Krylov algorithm for the Al(100) elec-
trode at E = 3 eV. The figures show the residual norm as a function of itera-
tions for Ritz pairs that satisfy 0.1 ≤ |λk| ≤ 1+ ǫ, in the case of shift-and-invert
transformations to ±1/

√
2 and ı̂/

√
2, respectively.
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separately as individual Ritz pairs in the algorithm. The reason for the identical
residual norm is that we apply the combined spectral transformation T given
by Eq. (6.15) in the case of the imaginary shift. We also note that there are two
more instances of nearly multiple eigenvalues (λ10,λ11 and λ12,λ13) which also
have the characteristic residual norm curves of almost identical Ritz values.

In all residual norm figures, we see the trend that the eigenvalues located
far from the position of the shift are slow to converge. This suggests that
eigenvalues located in the vicinity of the intersections between the unit circle
and the dividing lines of the four quarter-slices will be the most difficult to
determine since they are furthest from the respective shifts. The maximum
distance from such an eigenvalue to σ is 1/

√
2, which is the same as from σ to

the origin. This rouses concern whether the many unwanted eigenvalues close
to the origin can become dominant compared to the wanted border eigenvalues.
Fortunately, this will not be the case because the unwanted eigenvalues close to
the origin are clustered and therefore easy to represent in the Krylov subspace
with only a few iterations [83]. We observe this in practice, e.g., from the bottom
figure of Fig. 6.2, where the Ritz pair corresponding to λ12, which lies close to
the worst case position on the unit circle, initially converges only slightly slower
than the Ritz pair for λ8 positioned right next to the shift.

6.3.2 Number of iterations to convergence

The curves of the residual norms presented above indicate that the proposed
Krylov method is an iterative procedure that locates the specific eigenpairs re-
quired to evaluate the self-energy matrices in a systematic fashion. We will now
consider the typical number of iterations performed by the method. This num-
ber is obviously related to the number of wanted eigenpairs which again depends
on the parameter λmin and the particular energy E. Also the convergence toler-
ance tol may affect the number of iterations, however, since the convergence is
always linear and fast in the final part of the Arnoldi procedure (see the steep
slopes of the residual curves in Fig. 6.2), this influence is minor. In the following,
we therefore fix tol = 10−11 and measure the number of iterations required for
different energies E and three settings of λmin.

First we look at the Al(100) electrode of the previous section. The parameter
λmin is set to 0.05, 0.1, and 0.5, which are reasonable values for two-probe
systems with this electrode (see, e.g., numerical examples in Sect. 6.4). In the
upper panel of Fig. 6.3 we present the number of wanted Ritz pairs determined
by the Krylov method when it is applied to the Al(100) electrode at energies in
the interval E ∈ [−12 eV, 20 eV] and steps of 0.5 eV between each data point.
The results are displayed in a stair-step fashion to indicate that the curve does
not alter much if the energy resolution of the measurements is increased. In the
lower panel we show the corresponding total number of iterations performed
by the Arnoldi procedures. This number is rapidly varying even for very small
step size between the energy points since it depends on the specific positions of
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Figure 6.3: Typical number of iterations with the Krylov method for the Al(100)
electrode. Upper panel: the number of wanted Ritz pairs to be determined at
different energy points for three settings of the parameter λmin. Lower panel:
the corresponding total number of iterations performed by the three Arnoldi
procedures in order to reach convergence for tol = 10−11.

the wanted Ritz pairs and how difficult they are to locate. For E outside the
energy range shown, there are no propagating modes nor any evanescent modes
satisfying λmin ≤ |λk| < (1 + ǫ)−1.

From Fig. 6.3 we can see that the total number of iterations in general fol-
lows to the number of Ritz pairs required, as expected. The minimum number
of iterations for a given E is fixed by the value m provided as input to algo-

rithm xii, which designates the dimension of the initial Krylov subspace. Here
we have chosen m = 15 which implies a minimum number of 45 iterations and is
illustrated by the dashed line in the lower panel (in practice, a value of m = 30
is more reasonable, but here we halve this to obtain more details in the curves).
The maximum number of iterations measured is 147 at E = 5 eV for λmin = 0.05
and λmin = 0.1, and 104 at E = 6.5 eV for λmin = 0.5. For all energies, the
number of iterations is either stagnant or decreasing as the parameter λmin is
increased, since the area of the unit disc for which eigenvalues are taken into
account becomes smaller.

In Fig. 6.4 we consider an armchair (4,4) carbon nanotube (CNT) electrode
with 16 carbon atoms per unit cell and the corresponding (12,12)–CNT electrode
with 48 atoms per unit cell. The sizes of the self-energy matrices in these
cases are 128 and 384, respectively. The energy interval investigated is E ∈
[−27 eV, 27 eV] with steps of 0.5 eV between points. When E is outside this
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interval the result is again zero wanted Ritz pairs.
It is evident from Fig. 6.4 that the overall trend for the CNT electrodes is the

same as for Al(100). The more Ritz pairs to be determined the more iterations
are required for convergence. We note, however, that the amount of Ritz pairs
needed for the (4,4)–CNT electrode, and hence the number of iterations to
converge, is on the same level as for the Al(100) electrode in Fig. 6.3, even
though the sizes of the matrices entering the calculation are almost doubled.
Thus the number of Ritz pairs required for a given problem size is relatively
smaller, which means that a CNT electrode is an easier task for the Krylov
method compared to the Al(100) electrode.

We also note that the number of Ritz pairs for a given E and λmin in the case
of the (12,12)–CNT electrode is always close to three times the corresponding
number in the case of the (4,4)–CNT electrode, and likewise for the total number
of iterations. E.g., when λmin = 0.05, the maximum number of iterations is 162
for the (4,4)–CNT electrode and 404 for the (12,12)–CNT electrode. This is not
surprising since there are exactly three times as many right-going modes in the
(12,12)–CNT electrode than in the (4,4)–CNT electrode. In other words, the
efficiency of the proposed Krylov method for the large electrode is similar to
that achieved for the small electrode.

The two observations made from Fig. 6.4 indicate that the total number of
iterations does not depend directly on the size N of the matrices at hand, but
only on the specific number of right-going modes designated as wanted via the
parameter λmin. This is an important feature, since it means, that the three
Arnoldi procedures, in practice, have an operation cost which is low compared
to other parts of the Krylov method, as shown explicitly in the following and
by numerical examples in Sec. 6.4.

6.3.3 Computational complexity

In this section we discuss the main computational expenses of algorithm xii.
Estimates of floating point operations for the key steps are presented in Ta-
ble 6.1. The expressions listed are based on the assumption that the number
of wanted Ritz pairs to be determined is q, and that this requires a total of r
iterations in the Arnoldi procedure. The size of the input matrices is N .

In the first two lines of the table, we have estimated the cost of the ini-
tial calculation of the matrices A and T that incorporate the shift-and-invert
tranformation and the linearization of the QEP to be solved. As shown in
Sect. 6.2.1, this calculation can be accomplished by a single LU-factorization of
M in Eq. (6.7) and four substitution procedures to obtain M−1K and M−1C.
The LU-factorization is known to require 2

3N
3 +O(N2) operations for a matrix

of size N [1] and the subsequent substitutions will fall under the second term of
this expression. In the case of an imaginary shift, however, the LU-factorization
and substitutions have to be done in complex arithmetic. We then assume an
operations count that is (up to) 6 times higher (also in the following).
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Figure 6.4: Typical number of iterations with the Krylov method for (a) the
(4,4)–CNT electrode and (b) the (12,12)–CNT electrode. See the description
given in the caption of Fig. 6.3 for more details.
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Table 6.1: Estimated number of floating point operations required in the main
steps of the Krylov method when applied to matrices of size N . We assume
that r is the final number of iterations required by the Arnoldi procedure to
determine exactly q wanted Ritz pairs.

Step in the Krylov method Operations estimates

Calculate A from Eq. (6.12) ∼ 2
3N

3 +O(N2)
Calculate T from Eq. (6.17) ∼ 12

3 N
3 +O(N2)

Arnoldi procedure, σ = ± 1√
2

∼ 4N2r + 4Nr2 +O(r)

Arnoldi procedure, σ = ı̂√
2

∼ 8N2r + 4Nr2 +O(r)

Solving Hky = µy ∼ O(r3)
Selection of Ritz pairs (λk, ck) ∼ 4Nr + O(r)

Computing residual norms ∼ 12N2q +O(Nq)

B̃+
L := C̃+

LΛ̃+
LC̃+

L ∼ 12N2q +O(Nq2)

Σ̃L := H̄†
L,L[H̄L + H̄L,LB̃+

L ]−1H̄L,L ∼ (3 × 4 + 12
3 )N3 +O(N2)

For the Arnoldi procedure given in algorithm i the computational expense
of one iteration is dominated by a matrix-vector product and the orthogonal-
ization loop. The matrix-vector product costs 8N2 operations for the square
matrix A of size 2N . For real shifts, however, the top half of A in Eq. (6.12)
is given by one zero block and one identity block, that does not have to be
multiplied. In the rth iteration the Gram-Schmidt orthogonalization takes 2Nr
operations. For a total of r iterations this then costs 2Nr2 operations. Unfortu-
nately, inexact arithmetic can cause the orthogonalization step to fail producing
orthogonal vectors [83], in which case, reorthogonalization is required. Taking
this into account by multiplying the orthogonalization expense by 2, we esti-
mate the worst-case computational cost of the Arnoldi procedure for real shifts
to be 4N2 + 4Nr2 plus less significant terms that can be collected as O(r). For
imaginary shift, the full size 2N matrix-vector multiplication is necessary which
doubles the factor on the first term.

Every time a check for convergence is performed between the Arnoldi pro-
cedures, it is necessary to solve the standard eigenvalue problem Hky = µy,
which corresponds to the QEP projected onto the available Krylov subspace.
This is done by applying a direct method (i.e., dgeev from the lapack library)
that takes O(r3) operations when the subspace has dimension r (in order to
save some of the computational work, it is possible to exploit that the projected
matrix Hk produced in the Arnoldi procedures is in upper Hessenberg form).
We also note that as long as r ≪ N , the cost of O(r3) operations will be a less
significant expense.

The selection of the wanted Ritz pairs in step 7 of algorithm xii is imple-
mented by simply running through the 2k solutions of the projected eigenprob-
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lem and discarding those Ritz pairs (λk, ck) that do not satisfy the conditions.
The most work is then used in obtaining the Ritz vectors ck = Vyk, which
requires 4Nr operations for the r complex vectors yk that correspond to right-
going modes. Assuming that exactly q Ritz pairs survives the selection process,
the residual norms of these are computed, and this requires three size N matrix-
vector products each plus less expensive inner products. Again, the vectors are
complex bringing the operations estimate to 12N2q + O(Nq) for obtaining the
residual norms.

To compute the pseudo-inverse is we perform a QR factorization of C̃+
L

(assuming that this has full rank) to obtain Q̃+
L and R̃+

L , and then solving

R̃+
LC̃+

L = (Q̃+
L)†, where R̃+

L is upper triangular. In this case, the complex
(“skinny”) QR factorization costs 12Nq2 +O(q3) operations [1], which is much
more than the expense of the subsequent back-substitution and the same as
the 12N2q of the matrix-matrix multiplication performed in B̃+

L := C̃+
LΛ̃+

LC̃+
L

afterwards. Again we note that for q ≪ N , this step of the algorithm does not
represent a heavy cost.

As can be seen from Table 6.1, the most expensive part of the Krylov method
for large N and r ≪ N , is the initial LU-factorizations of M needed for matrices
A and T, and the final evaluation of Σ̃L (we have to do three complex-matrix-
real-matrix multiplication for size N × N and one complex LU-factorization,
which has the unavoidable cost of (3× 4+ 12

3 )N3 operations). These steps have
an O(N3) computational complexity. In contrast, the actual iterative part of
algorithm xii is dominated by the matrix-vector products that costs O(N2)
operations for every iteration. We showed in the previous section, that the total
number of iterations r is related to N , but can be assumed to satisfy r ≪ N
in most cases. Thus the cost of the Arnoldi iterations applied in the proposed
Krylov method will be negligible compared to the other parts of the algorithm
for most electrode sizes.

6.4 Applications

In order to illustrate the accuracy and practical aspects of the proposed Krylov
subspace method we now present transmission and current calculations for a se-
lection of nano-scale systems. We begin by considering the two example systems
Au–DTB–Au and Al–C×7–Al which have been widely studied in the literature
so that results can be easily verified. We compute the current through these
systems at 1 V and 2 V biases, and use the parameter λmin to investigate the
significance of the evanescent modes in obtaining the correct currents. Next, we
look at a large carbon nanotube field-effect transistor (CNFET) that displays
so-called band-to-band tunneling. Last, we apply the method to evaluate the
self-energy matrices of a variety of electrodes (different types and sizes) and
compare the actual measured CPU times with those required by conventional
methods.
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6.4.1 Benzene di-thiol molecule coupled to gold electrodes

Electron transport through molecules attached to metallic electrodes has at-
tracted much interest in recent years. One common example is the case of a
benzene di-thiol (DTB) molecule coupled to gold (111) surfaces which has been
examined both experimentally [87, 88] and theoretically [45, 41, 46], and has
become the closest to a de facto benchmark system for numerical electron trans-
port methods (although there is no general agreement among theoretical and
experimental results at present). We will apply our Krylov subspace method
in a calculation of its transport characteristics and attempt to reproduce the
results obtained by other groups for a similar setup.

The geometry of the Au–DTB–Au system we consider here is illustrated
in Fig. 3.8. In this system, the Au(111) electrode unit cell contains 27 atoms
positioned as three adjacent 3 × 3 layers. The central region consists of three
Au(111)–(3 × 3) layers, the DTB, and another two Au(111)–(3 × 3) layers,
yielding a structure that has mirror symmetry but where the right and left
Au(111) electrode unit cells are not identical. We assume thiolate bonds between
the sulfur end-groups and the gold surfaces and use 2.39 Å for the Au–S distance
and 1.75 Å for the S–C distance (which makes this setup the same as studied
by Stokbro et al in Ref. [41]).

We apply the proposed Krylov subspace method to calculate the self-energy
matrices ΣL and ΣR of the left and right electrodes for a range of energies
E ∈ [−4 eV, 4 eV] and for different choices of the parameter λmin. The self-
energy matrices are then used in the evaluation of the corresponding transmis-
sion coefficients T (E).

In Fig. 6.5 we present the obtained transmission curves in three cases of
the bias Vb = 0 V, 1 V and 2 V (the Fermi energy EF is set to 0 eV). The
transmission spectra calculated with λmin = 0.01 (black/full curves) represent
close to exact results. These curves are determined from self-energy matrices
that are evaluated by taking both the propagating modes and almost all the
evanescent modes into account. By comparison it is apparent that the curve for
case Vb = 0 V is in complete agreement with that obtained in Ref. [41] and also
quite similar to the results in other papers [45, 46].

The (red) dashed curves in Fig. 6.5 correspond to the choice λmin = 0.5
and thus depict the T (E) obtained when only the propagating modes and a
few evanescent modes (those satisfying 0.5 < |λk| < 1) are included in the
evaluation of ΣL and ΣR. We see that these spectra are almost indistinguishable
from the λmin = 0.01 results. This indicates that the majority of the evanescent
modes are insignificant for transmission calculations of the Au–DTB–Au system.
Furthermore, the setting λmin = 0.99 yields self-energy matrices that only take
propagating modes or modes very close to propagating into account. Also for
this setting, the agreement of the resulting (blue) dotted transmission spectra
with those for the other choices of λmin is almost perfect except at a few distinct
values of E.
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Figure 6.5: Transmission spectrum of the Au–DTB–Au system for different
bias voltages Vb. The self-energy matrices used in the T (E) calculations have
been obtained by the proposed Krylov subspace method with parameter λmin

at several settings: 0.01 (black/full curve), 0.1 (red/dashed curve) and 0.99
(blue/dotted curve). The bias windows are indicated by the vertical dashed
lines.
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Figure 6.6: Current as a function of the parameter λmin used by the Krylov
subspace method for the Au–DTB–Au system with applied bias voltages (a)
Vb = 1 V and (b) Vb = 2 V. The correct currents obtained by conventional
methods are I ≈ 31.7 µA and I ≈ 57.9 µA, respectively, indicated here by the
green/dashed lines.
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We can obtain an implicit estimate of the influence of the evanescent modes
on the transmission spectrum by calculating the current I as a function of λmin

for bias 1V and 2V. Each current calculation involves the integral over the bias
windows indicated in Fig. 6.5 of an integrand proportional to T (E) as described
in Sec. 3.1.3. Since the curves for T (E) in the bias windows are almost identical
for all three choices of λmin we would expect the dependence of this parameter
on the current to be minor. As seen in Fig. 6.6, where we show the results from
monitoring the current while increasing λmin from 0.01 all the way to 1, this is
also the case. Even though there are indications for Vb = 2 V that the computed
I deviates from the correct value (the dashed lines) when less and less evanescent
modes are take into account in evaluating the self-energy matrices, we see that
the error is always less than 0.1% and therefore of no real significance.

6.4.2 Carbon wire between aluminum electrodes

To further illustrate the applicability of the proposed Krylov subspace method
we also consider carbon chains coupled to metallic electrodes, which have been
investigated in detail recently [65, 47, 39]. Carbon atomic wires are interesting
conductors since the equilibrium conductance of short mono-atomic chains varies
with their length in a oscillatory fashion. It has been shown that the coupling of
the wire to the metal electrodes leads to significant charge-transfer doping of the
wire [65]. This charge-transfer is facilitated in our formalism via the self-energy
matrices, which makes it a well suited test example.

We will examine the Al–C×7–Al two-probe system shown in Fig. 3.8 corre-
sponding to a straight wire of seven carbon atoms attached to Al(100) electrodes.
This structure exhibits a local maximum in the oscillatory conductance since it
represents an odd-numbered C chain [65]. In our setup, the Al(100) electrode
unit cell consists of 18 atoms in four layers with identical unit cells for the left
and right electrodes. The same system is studied by Brandbyge et al [39].

Again we apply the Krylov subspace method to calculate the self-energy
matrices ΣL (= ΣR) of the electrodes for energies E ∈ [−4 eV, 4 eV] and
for different choices of the parameter λmin in order to obtain the transmission
coefficients. Fig. 6.7 presents the results for bias voltages Vb = 0 V, 1 V and
2 V. The (black) full curves corresponding to λmin = 0.01 reproduces the
transmission spectra obtained in Ref. [39] (for 0 V and 1 V) exactly except for
the peak at E = 3.63 eV (for 0 V), which is probably due to finer sampling in
our work.

We also see in Fig. 6.7 that the curves for the parameter λmin set to 0.01 and
0.5 are almost identical, which indicates that the vast majority of the evanes-
cent modes (those satisfying |λk| < 0.5) have very little influence on T (E) in
the energy regime considered. However, when λmin is set to 0.99 (blue/dotted
curves), in which case only modes that can be considered as propagating are
included in the evaluation of self-energy matrices, there are several noticeable
deviations from the other curves. Also inside the bias windows and especially
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Figure 6.7: Transmission spectrum of the Al–C×7–Al system for different bias
voltages Vb. See the caption of Fig. 6.5 for further description.

for Vb = 2 V, the disregard of the evanescent modes produces errors in the
obtained transmission coefficients T (E).

This effect becomes even more evident in Fig. 6.8, where the current is again
displayed as a function of parameter λmin for the non-zero bias voltages. As the
value of λmin is increased from around 0.5 to 1, the computed current I starts
deviating significantly from the correct value. Therefore, we anticipate that at
least the slowly decaying evanescent modes must be taken into account in order
to describe the transmission properties of the Al–C×7–Al system. Moreover,
we see that this can be achieved in a rigorous and systematic fashion by selec-
ting λmin appropriately when using the proposed Krylov subspace method to
calculate the self-energy matrices.

6.4.3 Carbon nanotube field-effect transistor

In this section we will apply the developed method to a nano-device consisting of
a CNT stretched between to two metal electrodes and controlled by three gates.
The setup is inspired by Appenzeller et al. [89], and we expect this particular ar-
rangement to be able to display so-called band-to-band (BTB) tunneling, where
one observes gate induced tunneling from the valence band into the conduction
band of a semi-conducting CNT and vice versa.

We show the configuration of the band-to-band tunneling two-probe system
in Fig. 6.9. The device configuration contains 10 principal layers of a CNT(8,4),
having 112 atoms in each. The diameter of the tube and layer thickness are
8.3 Å and 11.3 Å, respectively. The electrodes consist of CNT(8,4) resting on
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Figure 6.9: (Color online) Schematic illustration of a carbon nanotube (8,4)
band-to-band tunneling device. The carbon nanotube is positioned on Li sur-
faces next to an arrangement of three gates.
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Figure 6.10: (Color online) Conduction as a function of the Gate-A voltage in
units of the conductance quantum G0. In the calculations we use a dielectric
constant of 4, VGate−A = −2.0 V, and vary VGate−B from −2.0 V to 4.0 V as
indicated.

a thin surfaces of Li, where the lattice constant of the Li layers is stretched to
fit the layer thickness of the CNT. The central region of the two-probe system
comprises a total of 1440 atoms. An arrangement of rectangular gates are
positioned below the carbon nanotube as indicated on the figure. In the plane
of the illustration (length × height) the dimensions are as follows: Dielectric
108 Å × 5 Å; Gate-A 108 Å × 5 Å; Gate-B 20 Å × 5 Å. All the regions are
centered with respect to the electrodes so that the complete setup has mirror
symmetry. In the direction perpendicular to the illustration the configuration
is assumed repeated every 19.5 Å as a super-cell.

In the following we show results from a calculation of the transmission spec-
trum T (E) for VGate−A = −2.0 V and a dielectric constant of 4. To begin
with we calculate the electronic conductance for different Gate-B voltages in
the range [−2 V, 4 V]. The results for temperature T = 0 K, in terms of the
unit conduction G0 are displayed with the black curve in Fig. 6.10. It shows an
initial conductance for VGate−B = −2.0 V of the order of one, a subsequent drop
by four orders of magnitude around VGate−B = 2.0 V, and a final increase of
one order of magnitude towards VGate−B = 4.0 V. In addition to the zero tem-
perature conduction which is equal to T (EF ), where EF is the Fermi energy, we
also display the results at room temperature T = 0 K (red curve), which can be
obtained from linear response as

G =

∫
dE T (E)

e(E−EF )/kBT

(1 + e(E−EF )/kBT)2
(6.24)

The overall trend of the conduction curve is similar for room temperature, and
can be explained as band-to-band tunneling which is tuned by the gate poten-
tials.
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In order for BTB tunneling to appear in CNFETs, fields along the length of
the tube have to be created that are strong enough to shift the conductance or
valence bands by at least the gap energy of the CNT. In the case of CNT(8,4) the
band gap is ∼ 0.8 eV which can be transcended via the three-gate arrangement.
More specifically, we present in the left part of Fig. 6.11 the total potential
induced by the three gates on the carbon atoms in CNT over the full extension
of the device. Along with this, in the right part of Fig. 6.11, we show the
corresponding transmission spectrum T (E), for four gate voltages VGate−B =
−2.0 V, 1.0 V, 2.0 V, and 4.0 V, which represent significantly different locations
on the conduction curve above.
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Figure 6.11: (Color online) Fields induced along the length of the device (left
panel) and the transmission spectrum (right panel) for the various gate voltages
VGate−B from −2.0 V to 4.0 V as indicated.

From Fig. 6.11 we can see how the bands are shifted upwards by an increasing
amount as the Gate-B voltage in turned up. To begin with, e.g., for VGate−B =
1 V, this results in lower conduction since the conduction band bends away
from the Fermi level, which is indicated by the dotted line. When the gate
voltage is at VGate−B = 2 V the valence band almost reaches the conduction
band in which case BTB tunneling becomes possible. By increasing the gate
voltage further, more bands become available for BTB tunneling and the effect
is visible as a steady increase in the calculated transmission T (E) just above the
Fermi level. This behavior is similar to that found in Ref. [89] from experiments
in the laboratory with CNFET setups.

6.4.4 CPU runtimes

In this last numerical example we focus on the typical savings in the computa-
tional time that can be achieved when computing the self-energy matrices ΣL
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Table 6.2: CPU times in seconds for computing the left self-energy matrix ΣL at
twenty different energies E between −2eV and 2eV for selected electrode types
and matrix sizes N . The parameter λmin was set to 0.1.

Electrode type Size 2n–recursion dgeev Krylov
Li 16 0.1 0.0 0.0
Fe 54 4.2 2.3 0.6

Al(100) 72 4.9 3.3 0.8
Al(100) 128 27.9 17.5 3.6
Au(111) 243 167.2 73.7 11.5

(2, 2)–CNT 64 3.6 2.4 0.7
(4, 4)–CNT 128 26.0 14.4 2.9
(8, 8)–CNT 256 208.8 118.8 17.0

(12, 12)–CNT 384 608.4 373.6 45.6
(16, 16)–CNT 512 1230.0 1403.9 121.5
(20, 20)–CNT 640 1542.3 1125.7 148.0

and ΣR with the proposed Krylov subspace method. We will compare run-
times directly with conventional schemes usually applied in electron transport
calculations.

Table 6.2 presents the profiling results when applying three different methods
to calculate the left self-energy matrix ΣL for common types of electrodes and
various matrix sizes N . In every case we consider only the Γ-point and use
single-ζ basis sets, except for Au(111) where double-ζ-polarized is used. Since
the computational cost might vary significantly with E, the seconds listed is the
accumulated time of 20 independent calculations at equidistant energies in the
interval E ∈ [−2 eV, 2 eV]. In all cases of the Krylov method the parameter
λmin was set to 0.1.

From the profiling results in Table 6.2 we see that the computational time
of the Krylov subspace method is significantly reduced compared with the
presently widely used 2n–recursive technique. Also the conventional WFM
scheme using dgeev is typically faster than the 2n–recursive algorithm (the
exception for (16, 16)–CNT is related to cache usage1). Comparing the timings
in the last two columns verifies that the cost to evaluate the self-energy ma-
trices from only the few important Bloch modes of the electrodes, as done in
our Krylov subspace method, is in general much lower than required by a direct
eigensolver to determine all possible modes.

In order to illustrate the computational complexity of the methods we show

1For the armchair (16, 16)–CNT electrode (N = 512) the call to dgeev produces an
extremely high number of L2 cache misses, many more than for the bigger (18, 18)–CNT
electrode (N = 576). This gives the bad times of the dgeev method for this particular case.
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the CNT runtimes as a function of the matrix size N in a logarithmic plot in
Fig. 6.12. Clearly, all methods have O(N3) complexity, however, the Krylov
subspace method initially follows the typical O(N2) complexity of the Arnoldi
procedure [90] until the cost of the shift-and-invert operations (see Sec. 6.3.3)
becomes dominant. For N > 500 we observe effects due to more and sometimes
less favorable cache usage. Overall, we see that the Krylov subspace method is
fastest by an order of magnitude for all but the smallest cases.

It is important to point out that the obtained self-energy matrices ΣL are
in all cases applied in a subsequent transmission calculation of T (E) for the
two-probe systems indicated, and the results then checked against those of the
conventional methods (the resulting transmissions T (E) are identical for the
three methods in all cases of E to at least 3 decimals). Furthermore, the setting
of parameter λmin to 0.1 yields self-energy matrices evaluated from all the modes
that have phases λk satisfying 0.1 < |λk| < 1 + ǫ. This is more than adequate
for obtaining correct results for all the systems considered in this section. In
practice, the parameter λmin can often be selected > 0.1 without sacrificing
any noticeable accuracy in the T (E) calculation, and this would show off the
approach as even faster.
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Chapter 7

Conclusion and outlook

The subject of this thesis has been the numerical calculation of the electronic
properties and in particular the quantum transport properties of devices at the
nano-scale. The key method used for such calculations is the Green’s function
method, which is rooted in the general formalism of the NEGF approach. Alter-
natively, the method of wave function matching can be used. In order to apply
these methods to semiconductor device simulation, however, it is necessary to
handle systems comprising millions of atoms, and this will require new efficient
algorithms for the most time consuming stages of the calculations.

The primary objective in this thesis has been to develop and implement
new algorithms which are faster than existing techniques. We will now briefly
summarize the main features of the resulting algorithms and present an outlook
on future work related to their application.

• Block tridiagonal matrix inverse (algorithm viii): The block tridi-
agonal part of the Green’s function matrix for the central region of the
nano-scale system is obtained as a matrix inverse operation in O(N) com-
putational complexity. This algorithm is based on two independent Block
Gaussian elimination sweeps and can be run in parallel on two CPUs. We
expect this algorithm to be a key ingredient in the further parallelization of
the matrix inverse in combination with a block cyclic reduction technique.
This is ongoing research at the moment.

• Efficient wave function matching method (algorithm x): A mod-
ified WFM approach is developed that allows for the exclusion of the
majority of the evanescent modes of the bulk electrodes in all parts of
a transmission spectrum calculation. The approach makes it feasible to
apply iterative techniques to efficiently determine the relatively few bulk
modes of interest, which allows for a significant reduction of the compu-
tational expense in practice. We believe this scheme has great potential
for studying electronic transport in large-scale atomic two-probe systems,
such as large carbon nanotubes or nano-wire configurations. In addition,
the real power of the approach - something which we have not addressed
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in this work - is its application to obtain the density matrix during the
self-consistent procedure in non-equilibrium situations. Our preliminary
testing shows a speed-up of more than 20 in the most costly part of the
calculation. We expect to study this further in the near future.

• Krylov subspace method (algorithm xii): A procedure based on the
Arnoldi method is employed to obtain solutions of quadratic eigenvalue
problems. One complex and two real shift-and-invert transformations are
adopted to select interior eigenpairs with complex eigenvalues on or close
to the unit circle that correspond to the propagating and evanescent modes
required in our efficient WFM method. The algorithm is robust and much
faster than conventional lapack routines employing direct eigensolvers.
The execution of the algorithm can be parallelized over the independent
shift-and-invert stages (four in the general complex case). Other iterative
methods which might avoid the explicit shift-and-invert operations, such
as the Jacobi-Davidson techniques, have potential to outperform the pro-
posed method, in particular on a parallel platform. We leave this to future
work.



Appendix A

Green’s functions

In this appendix, we briefly summarize some of the basic properties of Green’s
functions. First the fundamental mathematical properties are reviewed which
leads to the appropriate physical interpretation that is used in electronic trans-
port theory. Then the Green’s function for the simple, constant potential 1D
wire example is derived and this is subsequently used to generalize the ideas and
find the Green’s function solution for the 3D electrodes used in our two-probe
setups.

A.1 Mathematical properties

Mathematically, a Green’s function is a function that can be used to solve inho-
mogeneous differential equations subject to boundary conditions. For example,
consider the general form of a linear differential equation, given by

L̂(x)u(x) = f(x), (A.1)

where L̂(x) is a linear differential operator, u(x) is an unknown response func-
tion, and f(x) is a known non-homogeneous source term. We can write the
solution as

u(x) = L̂−1(x)f(x) ≡
∫
G(x, x′)f(x′)dx′, (A.2)

where L̂−1 is the inverse of the differential operator L̂ and the last definition is
reasonable, since we must expect the inverse of a differential operator to be an
integral operator. The two-point kernel G(x, x′) within the integral is then the
Green’s function associated with the differential operator L̂.

The Green’s function defined in Eq. (A.2) can be associated with the Dirac
delta function δ(x) that has the well-known property

∫
δ(x− x′)f(x′)dx′ = f(x), (A.3)
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which leads directly to the important relation

L̂(x)G(x, x′) = δ(x− x′), (A.4)

when comparing with the result from inserting Eq. (A.2) into Eq. (A.1) and
moving the linear operator L̂ inside the integral.

We note that the inverse of a differential operator, and thus G(x, x′), is
not uniquely specified till we specify the boundary conditions. In addition, the
Green’s function can be proved to have the following mathematical properties:

• G(x, x′) satisfies the homogeneous differential equation L̂(x)G(x, x′) = 0
at all points other than x = x′.

• G(x, x′) is continues at x = x′.

• dG(x,x′)
dx is discontinues at x = x′.

• G(x, x′) is symmetrical with respect to x and x′.

A.2 Infinite 1D wire

The movement of the electrons in the two-probe systems discussed in this thesis
is described by the single-particle Hamiltonian operator, given by

Ĥ =
[
− ~

2

2me
∇2 + V (r)

]
. (A.5)

Since this is a differential operator one can solve the corresponding Schrödinger
equation [Ĥ − E]Ψ(r) = 0, by finding the associated Green’s function, that is

G(r, r′) = [Ĥ − E]−1, [Ĥ − E]G(r, r′) = δ(r − r′), (A.6)

To illustrate, let’s consider a simple 1D case of the Hamiltonian in Eq. (A.5),
where the potential is just a constant V (r) → V0 and find the Green’s function
for [

− ~
2

2me

∂2

∂x2
+ V0 − E

]
G(x, x′) = δ(x− x′). (A.7)

Clearly, the homogeneous version of this equation resembles a one-dimensional
Schrödinger equation and will have solutions of wave form ∼ eı̂kx. Since G(x, x′)
should satisfy the homogeneous equation at all x except x = x′, we can write

G(x, x′) =

{
A+eı̂k(x−x′), x > x′

A−e−ı̂k(x−x′), x < x′
(A.8)

where A+ and A− are constants and k = [2m(V0 − E)]1/2/~. No matter what
A+ and A− might be, this solution satisfies Eq. (A.7) at all points other than
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x = x′. Taking into account the two mathematical properties, that G(x, x′) is

continues and dG(x,x′)
dx is discontinues (in this case by 2me/~

2) at x = x′, we
can determine the amplitudes A+ = A− = −ime/k~

2, which gives the solution

G(x, x′) = − ime

k~2
eı̂k|x−x′| (A.9)

valid for all x and x′. From a mathematically point of view, we immediately
note that a solution with k → −k satisfies Eq. (A.7) just as well.

A.3 Physical interpretation

From a physical point of view, we interpret the Green’s function G(x, x′) de-
fined in Eq. (A.7) as the wave function at x resulting from a unit excitation
applied at x′. As the above example shows, we can expect such an excitation
in a 1D wire to give rise to two waves traveling outwards from the point of
excitation with equal amplitudes A+ and A−. Mathematically, however, there
exists another solution, which corresponds to incoming waves that disappear
at the point of excitation. The two solutions are referred to as the advanced
and retarded Green’s functions, respectively, and satisfy the same differential
equation but with different boundary conditions. The names are linked to the
Green’s function representation in the time domain as obtained from a Fourier
transformation G(t) =

∫
dE
2π~

e+iEt/~G(E). The retarded solution is zero for
t < 0 (causal) and interpreted as the response of an excitation at t = 0, while
the advanced is zero for t > 0 (non-causal), with no direct physical meaning [4].

We can incorporate the boundary conditions into the the Green’s function
definition itself by adding a small imaginary part to the energy, i.e. E → E+ ı̂η,
where η is an infinitesimal. In the 1D wire example, this yields the equation

[
− ~

2

2me

∂2

∂x2
+ V0 − (E + ı̂η)

]
Gr(x, x′) = δ(x− x′). (A.10)

for η > 0 where the superscript “r” on Gr(x, x′) indicates that this is only valid
for the retarded solution. It is easy to see this from physical arguments since the
wave number kr for the Green’s function solution to Eq. (A.10) can be written

kr =

√
2m(V0 − (E + ı̂η))

~
=

√
2m(V0 − E)

~

√
1 +

ı̂η

V0 − E
≈ k(1 + iη̃) (A.11)

where η̃ = η/2(V0 − E), which indicates, that the wave number has gained a
positive imaginary component compared to the original wave number k. This
imaginary part makes the advanced solution, given by k → −kr in Eq. (A.9),
grow indefinitely as we move away from the point of excitation and it is therefore
not physically acceptable. The retarded solution, on the other hand, is well
bounded as it decreases infinitesimally. If we had subtracted ı̂η from the energy
instead, i.e. E → E − ı̂η, the opposite would have been the case, and then the
advanced Green’s function Ga(x, x′) would be the only correct solution.
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A.4 Ideal layered 3D electrodes

The 3D electrodes modeled in this thesis have a finite size in two dimensions and
can be divided into principal cells in the third and infinite (transmission) dimen-
sion, as described in detail, e.g., in Sec. 3.2.2. Furthermore, our formalism as-
sumes that the wave function in the ith cell can be written Ψi =

∑Mi

m=1 ci,mφi,m,
where ci,m are expansion coefficients and φi,m is the m = 1, . . . ,Mi atomic or-
bitals local to cell i. The Schrödinger equation for this system becomes block
tridiagonal as shown in Sec. 3.1.4. Here we will consider the ideal electrode
where all the diagonal and coupling blocks of H̄ are the same, i.e. H̄i ≡ H̄L

and H̄i,i+1 ≡ H̄L,L, and derive the corresponding Green’s function solution.

From comparison with the infinite 1D wire example, it is reasonable to expect
that the Green’s function is given by an infinite matrix just like the Hamiltonian
and that it satisfies the matrix equation





. . .
. . .

. . . H̄L H̄L,L

H̄†
L,L H̄L

. . .

. . .
. . .









...
...

...
· · · Gi−1,i−1 Gi−1,i Gi−1,i+1 · · ·
· · · Gi,i−1 Gi,i Gi,i+1 · · ·
· · · Gi+1,i−1 Gi+1,i Gi+1,i+1 · · ·

...
...

...




= I,

(A.12)
where I is the infinite identity matrix. The physical interpretation of this equa-
tion and G is the same as before. However, the Green’s function is now a
compound object that includes all wave functions resulting from all unit exci-
tations applied not at a single point, but over the spatial extend of an atomic
orbital. Each diagonal entry in the infinite matrix I corresponds to an excitation
at a localized orbital of the system. This means, that the block Gi,j gives the
wave functions in cell i resulting from the possible excitations in cell j.

Some important properties of the Green’s function matrix follow directly
from the definition Eq. (A.12). First we note, that since the infinite Hamiltonian
is a toeplitz block matrix, then so is it’s inverse G, if it exists. This means, that
all blocks Gi,j are the same for the same distance i− j from the diagonal and
that the full solution is fixed by a single column of G. So we can limit our
solution to column j of G for which the matrix equation Eq. (A.12) simplifies
to

H̄†
L,LGi−1,j + H̄LGi,j + H̄L,LGi+1,j = δi,jI. (A.13)

for all i = −∞, . . . ,∞. Clearly, this simplification also follows from physical
symmetry arguments.

In the same manner as for the 1D wire example we can write down a general
solution for the retarded Green’s function block Gi,j . Since an excitation should
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create two waves traveling outward from the cell j of excitation, it follows that

Gr
i,j =

{
C+

i,jA
+, i > j

C−
i,jA

−, i < j
, (A.14)

where A± are diagonal matrices of constants and C±
i,j are matrices having vec-

tors as columns that hold the expansion coefficients for the right-going (+) and
left-going (−) waves of the cell i. We write the C±

i,j matrices as

C+
i,j =

(
c1+

i,j , . . . , c
Mj+
i,j

)
, C−

i,j =
(
c1−

i,j , . . . , c
Mj−
i,j

)
, (A.15)

where the mth column of these matrices (cm±
i,j ) will hold the coefficients of the

wave function resulting from a unit excitation of the orbital φj,m in cell j.
Since the system is periodic in the transmission direction the wave functions

of the principal cells only differ by a phase factor according to Bloch’s theorem,
i.e. Ψi = eı̂kdΨi−1. This allows us to relate adjacent C±

i,j matrices by

C±
i,j = C±

i−1,jΛ
± (A.16)

where Λ± are diagonal matrices having the phase factors λ±m ≡ eı̂k±
md down the

diagonal. Here k±m is the wave number corresponding to the wave with cm±
i−1,j as

coefficients (the mth mode) and d is the distance between the cells.
We now note, that if the diagonal block Gr

i,i is known, then the entire solu-
tion Gr in Eq. (A.14) for all i and j is available by using the toeplitz property
and the Bloch relation in Eq. (A.16). Fortunately, an expression for the diagonal
block is easily obtained by setting j = i in Eq. (A.13) and then inserting

Gr
i+1,i = C+

i+1,iA
+ = C+

i,iΛ
+A+ = C+

i,iΛ
+C̃+

i,iC
+
i,iA

+ = B+Gr
i,i, and

Gr
i−1,i = C−

i−1,iA
− = C−

i,i(Λ
−)−1A− = C−

i,i(Λ
−)−1C̃−

i,iC
−
i,iA

− = (B−)−1Gr
i,i,

(A.17)
where the matrices C̃±

i,i are the inverses of C±
i,i, making C̃±

i,iC
±
i,i = C±

i,iC̃
±
i,i = I,

and in the last step we have introduced the so-called Bloch matrices defined by

B± ≡ C±Λ±C̃±, (A.18)

leaving out the implied subscripts i, i. A key assumption in chapters 5 and 6
of this thesis is that we can obtain approximate solutions for Gr by omitting
the less important columns in the C± matrices. In such a case, C̃± denotes the
(Moore-Penrose) pseudo-inverses of C±, and C±C̃± 6= I.

All blocks on the diagonal of the infinite retarded Green’s function matrix
are then given by

Gr
i,i =

[
H̄†

L,L(B−)−1 + H̄L + H̄L,LB+
]−1

=
[
H̄†

L,L

[
(B−)−1 − (B+)−1

]]−1

(A.19)
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where it was used that H̄†
L,L(B±)−1+H̄L+H̄L,LB± = 0, which follows from the

Schrödinger equation for the system. Equivalently, Gr
i,i =

[
H̄L,L(B+ −B−)

]−1

is then also satisfied. The recursion relations in Eq. (A.17) now yield all other
blocks of the Green’s function matrix.



Appendix B

The NEGF formalism for

coherent transport

The non-equilibrium Green’s function (NEGF) formalism is a conceptual and
computational framework for treating quantum transport in nano-scale devices
under finite bias. In its most complete form, it goes beyond the Landauer
approach for coherent conduction, to include inelastic scattering and strong
correlation effects at an atomistic level [4, 38, 44]. The aim of this appendix is
to obtain the main formulas of the NEGF theory in the coherent limit, which is
considered in the current thesis. We will follow the description and notation of
Datta from his famous textbooks [4, 91].

B.1 Electron reservoir probes

In the NEGF approach the electrodes (probes) constitute reservoirs of electrons
held a certain electrochemical potentials. Consider for example a semi-infinite
(left) electrode as the one depicted in the left part of Fig. 3.4. Again, assume
a separation into principal layers of the electrodes bulk material limiting the
interaction between layers to next neighbors. Electrons in this isolated electrode
will satisfy the Schrödinger equation, in matrix form, that is (cf. Eq. (3.10))

[ES∞
L − H∞

L ]cL = 0, (B.1)

where the semi-infinite Hamiltonian of the electrode is

H∞
L =





. . .
. . .

. . . HL HL,L

H†
L,L HL HL,L

H†
L,L HL




, (B.2)

and S∞
L is the corresponding overlap matrix. The superscript ∞ indicates that

there is an infinite number of principal layers in the electrode Hamiltonian. As
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explained in detail by Datta [4], these equations cannot describe a reservoir
at a constant electrochemical potential since this requires a form that allows
continues extraction and re-injection of electrons from external sources. We
therefore modify equation Eq. (B.1) by adding a constant perturbation and
write

[(E + ı̂η)S∞
L − H∞

L ]cL = QL, (B.3)

where η = 0+ is a small positive infinitesimal number that effectively introduces
extraction of electrons and the term QL on the right represents an external
source re-injecting electrons. One should note, that E is no longer an eigenvalue
of (S∞

L )−1H∞
L at which the electron wave functions cL exist as eigenfunctions.

Now the cL’s will be non-zero at all energies E, having peaks (whose sharpness
depends on the value of η) around the eigenvalues of (S∞

L )−1H∞
L .

B.2 One-probe setup

Before turning to the interesting two-probe system it is convenient to investigate
the simpler case of a central system connected to only one electrode. This
situation is illustrated as the L-C part of Fig. 3.4, and using Eq. (B.3) we can
write the Schrödinger equation for the composite system in two-block form,
given by (

(E + ı̂η)S∞
L − H∞

L H̄∞
L,C

H̄∞†
L,C H̄C

)(
cL + cr

cC

)
=

(
QL

0

)
, (B.4)

where HC is the Hamiltonian for the central region, H∞
L,C is the coupling matrix

between the electrode and the central region, and the notation H̄C ≡ ESC−HC

and H̄∞
L,C ≡ ES∞

L,C − H∞
L,C was adopted. The cC vector holds the expansion

coefficients of the wave function that is created inside the central region as a con-
sequence of it’s contact with the electrode 1. In turn this excites scattered waves
in the central region that are reflected back into the electrode, here represented
by the coefficients cref

C .
Assuming that the source term QL in the upper line of the block equation

Eq. (B.4) is constant and the same as in Eq. (B.3), we can easily eliminate it
from this line. Then it is possible to express cref

C in terms of cC , that is

[(E + ı̂η)S∞
L − H∞

L ]cref
C + H̄∞

L,CcC = 0 ⇔ cref
C = −GLH̄∞

L,Cc, (B.5)

where the semi-infinite Green’s function of the left electrode

GL ≡ [(E + ı̂η)S∞
L − H∞

L ]−1 (B.6)

has been defined. Substituting the expression for cref
C in Eq. (B.5) into the lower

line of the block equation Eq. (B.3) gives

H̄∞†
L,CcL + [H̄C − H̄∞†

L,CGLH̄∞
L,C ]cC = 0, (B.7)

1 This is called the “spilling over” of the electrode wave function in the Datta terminology!
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which can be rearranged and written as cC = GQ, where

G ≡ [H̄C − ΣL]−1, Q ≡ −H̄∞†
L,CcL, (B.8)

and the new quantity
ΣL ≡ H̄∞†

L,CGLH̄∞
L,C , (B.9)

is called the self-energy. As expected, cC = GQ has the form of a Schrödinger
equation describing an open system with a source term Q arising from the
reservoir electrode. A derivation for a right electrode yields similar formulas
with Q = −H̄∞

R,Ccref
C and a self-energy, given by ΣR ≡ H̄∞

R,CGRH̄∞†
R,C .

It is clear, that the size of the coupling matrix H̄∞
L,C between the left elec-

trode and the central region will be semi-infinite just like the electrode Hamil-
tonian matrix. This seems to prevent the calculation of the self-energy from
eq. Eq. (B.9), however, in our tight-binding setup (see fig. 4), the elements of
H̄∞

L,C are all zero except in the lower left corner where it is equal to H̄L,L of size

mL ×mL, where H̄L,L ≡ (E + ı̂η)SL,L − HL,L. This means we can calculate
the non-zero elements of the self-energy matrix from the finite matrix equation

[ΣL]mL×mL
= H̄†

L,LgLH̄L,L, (B.10)

where gL is the so-called surface Green’s function of the electrode corresponding
to the lower right mL ×mL submatrix of gL.

Notice that the self-energy ΣL is not hermitian because of ı̂η and as a result
the effective Hamiltonian of the composite system H̄C − ΣL is not hermitian
either, giving complex eigenvalues. It can be shown, that the real part of the self-
energy is responsible for shifting the energy levels of the central Hamiltonian,
while the imaginary part can be related to the lifetime of the levels [4]. As the
inverse lifetime is proportional to the broadening of a level, the anti-hermitian
component of the self-energy, given by

ΓL = ı̂(ΣL − Σ†
L), (B.11)

is called the broadening matrix and is to be used in the transmission expression
in Eq. (B.42) for the left electrode derived below.

B.3 Two-probe setup

We now consider the full two-probe system as shown in figure 5. Looking at the
results from the previous section it is reasonable to expect that the new right
electrode will influence the equations in a similar manner as the left electrode
did. A complete derivation of the two-probe expressions can be found in Datta’s
book and confirms this anticipation [4]. We can thus immediately write down the
expression corresponding to Eq. (B.8) for the resulting two-probe Schrödinger
equation by redefining the Green’s function G and the source term Q as

G = [H̄C − ΣL − ΣR]−1, Q = −H̄∞†
L,CcL − H̄∞

R,Ccref
C , (B.12)
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where ΣL and ΣR are the self-energies for the left and right electrodes, i.e.

ΣL ≡ H̄∞†
L,CGLH̄∞

L,C , ΣR ≡ H̄∞
R,CGRH̄∞†

R,C . (B.13)

As discussed for the one-probe setup, the self-energy matrices have onlymL×mL

and mR ×mR non-zero elements, respectively, that in practice are determined
by

[ΣL]mL×mL
= H̄†

L,LgLH̄L,L, [ΣR]mR×mR
= H̄R,RgRH̄†

R,R, (B.14)

where gL and gR are the surface Green’s functions corresponding to the lower
right mL ×mL submatrix of gL and the upper left mr ×mr submatrix of gR,
respectively.

In conclusion, we end up with a finite expression for the C region Green’s
function, which can be written

GC =





H̄1 − ΣL H̄1,2

H̄†
1,2

. . .
. . .

. . .
. . . H̄n−1,n

H̄†
n−1,n H̄n − ΣR





−1

, (B.15)

where H̄i and H̄i,i−1, i = 1, . . . ,n, are the diagonal and off-diagonal Hamiltonian
blocks describing the individual principal layers of C. The self-energy matrices
exist only in the corner blocks. This is exactly the same expression as obtained
in Eq. (3.23) from simple block Gaussian elimination arguments.

B.4 Spectral function

Another useful quantity in the NEGF formalism is the matrix corresponding to
the spectral function, defined as

A = 2π
∑

k

ckδ(E − ǫk)c
†
k, (B.16)

where the sum is over wave numbers k that designate the eigenvectors ck and
eigenvalues ǫk of the Schrödinger eigenvalue problem for the central region

H′
Cc = ǫSCc, (B.17)

where H′
C = HC −ΣL−ΣR is equal to the right-hand-side matrix of Eq. (B.15)

without the inversion operation. Subsequently, the trace of the spectral matrix
gives

D =
1

2π
Tr{A}, (B.18)
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as the LDOS. Also, notice that all solutions to Eq. (B.17) are available from A,
since the vector c = Ab is a solution for any choice of b.

Suppose that the spectral function is represented in the eigenbasis of H′
C ,

i.e., in the set of solutions {ck}. In this basis, Eq. (B.18) can be written as

A = 2πδ(ESC − H′
C), (B.19)

since SC is then the identity matrix and both H′
C and A are diagonal matrices

with elements ǫk and δ(E − ǫk) on the diagonal, respectively (i.e., the notation
δ(ESC − H̄′

C) means that δ works on each diagonal element separately). We
can now use the following identity for the Dirac delta function,

δ(x) =
1

π
lim
η→0

η

x2 + η2
=

ı̂

2π
lim
η→0

(
1

x+ ı̂η
− 1

x− ı̂η

)
, (B.20)

to write

A = ı̂
(
[(E + ı̂η)SC − H′

C)]
−1 − [(E − ı̂η)SC − H′

C)]
−1
)
, (B.21)

where η = 0+ is a positive infinitesimal number. It can be shown that the above
matrix equation is valid not only in the eigenbasis representation but in any
representation [4]. Consequently, by comparison with Eq. (B.12), we arrive at
an elegant expression for the spectral function in terms of Green’s functions:

A = ı̂ [Gr
C − Ga

C ] , (B.22)

where the retarded and advanced Green’s functions of the C region are defined

Gr
C = [(E + ı̂η)SC − H′

C)]
−1
, (B.23)

and
Ga

C = [(E − ı̂η)SC − H′
C)]

−1
, (B.24)

respectively. These matrices will have the same overall structure as given in
Eq. (B.15) but with added imaginary parts ±ı̂η to the energy. It is implicitly
assumed in the above derivation that the self-energy matrices ΣL and ΣR,
which enters in Eqs. (B.23) and (B.24) through H′

C , are defined with the same
imaginary part ±ı̂η as is explicit in the expressions for Gr

C and Ga
C . We also

note that Ga
C = (Gr

C)† for real E in this case, since Σa = (Σr)† and SC and
HC are symmetric [4].

B.5 Electron density

Consider now the wave function of the central region in the NEGF formalism,

cC = GCQ = −GC(H̄∞†
L,CcL + H̄∞

R,Ccref
C ) = c+

C + c−C , (B.25)
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where Q is the source term from Eq. (B.12) in the two-probe case. The wave
function is separated into independent parts originating from the left electrode
(+) and a the right electrode (−), respectively. Assuming that the electrons
are from corresponding electron reservoirs (like in the Landauer picture of
Sec. 3.1.2), the electron density matrix can be written as

n = n+ + n− = 2

∫ ∞

−∞

1

2π

(
A+f(E − µL) + A−f(E − µR)

)
dE (B.26)

where the factor 2 is from spin degeneracy, f is the Fermi function, and

A± = 2π
∑

k

c±C,kδ(E − E±
k )c±†

C,k (B.27)

are the spectral matrices corresponding the states originating from left (+) and
right (−). Furthermore, inserting explicitly the expressions for c+

C and c−C in
Eq. (B.25) into Eq. (B.27), yields

A+ = 2π
∑

k

GCH̄∞†
L,CcL,kδ(E − Ek)(GCH̄∞†

L,CcL,k)
†

= GCH̄∞†
L,C

(
2π
∑

k

cL,kδ(E − Ek)c
†
L,k

)
H̄∞

L,CG†
C

= GC

(
H̄∞†

L,CGr
LH̄∞

L,C − H̄∞†
L,CGa

LH̄∞
L,C

)
G†

C

= GCΓLG†
C

(B.28)

for the + states coming from the left electrode, where, in the second step, we
defined AL = 2π

∑
k cL,kδ(E − Ek)c

†
L,k and applied Eq. (B.22), and to obtain

the final expression, we used Eqs. (B.13) and (B.11) and that Ga = (Gr)† for
real E. A similar formula is obtained for the − states coming from the right
electrode, with the replacements H̄∞

L,C → H̄∞†
L,C and L→ R in Eq. (B.28).

An important special case of Eq. (B.27) is if µL = µR ≡ µ, that is, when
the entire system is in equilibrium. It can be shown [4, 39] that A+ + A− =

GC(ΓL + ΓR)G†
C = −Im{GC}, which leads to the expression

n = − 2

π

∫ ∞

−∞
Im{GC}f(E − µ) dE (B.29)

for the density matrix in equilibrium at the chemical potential µ.
The expressions derived above can also be written in the more convenient

notation of the so-called “lesser” Green’s function G< [44], in which we define

G< = Gr
CΣ<Ga

C , (B.30)

where (if there is no inelastic scattering)

Σ< = ı̂
(
ΓLf(E − µL) + ΓRf(E − µR)

)
, (B.31)
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is the lesser self-energy matrix. Subsequently, the density matrix can be evalu-
ated from the simple expression

n =
1

2πı̂

∫ ∞

−∞
G< dE. (B.32)

which is off course equivalent to Eq. (B.26).

B.6 Current and transmission function

In the case where the reservoirs providing the electrons to the electrodes have
different chemical potentials µL and µR, a current I will flow. To obtain this
current we have to take into account the time evolution of the wave function,
i.e., ı̂~ ∂

∂tcC = HcC . It can be shown [92], by considering the probability current
∂
∂t |c|2, which is conserved in a steady-state situation, that the flow of electrons
from the left electrode into the central region, at a given energy Ek, is

iL,k = − ı̂e
~

(
c†L,kH

∞
L,CcC,k − c†C,kH

∞†
L,CcL,k

)
, (B.33)

where iL,k is defined as positive for charge flowing into the device (we have
explicitly used SI units for this formula). A similar expression is obtained for
the right electrode, equal to L→ R in Eq. (B.33).

Suppose that an electron is incident from the left electrode in mode cL,k,
which according to Eq. (B.25) gives rise to the scattering state

cC,k = −GCH̄∞†
L,CcL,k, (B.34)

in the central region and subsequently

cR,k = −GRH̄∞
R,CcC,k, (B.35)

in the right electrode (for the latter we use arguments similar to those leading up
to Eq. (B.5)). Then, the right-going (+) current arising as this electron passes
all the way to the right electrode can be expressed as

i+k = − ı̂e
~

(
c†R,kH

∞
R,CcC,k − c†C,kH

∞†
R,CcR,k

)

= − e

~
c†C,kΓRcC,k

= − e

~
c†L,kH̄

∞
L,CG†

CΓRGCH̄∞†
L,CcL,k,

(B.36)

by combining Eqs. (B.33)–(B.35). In the same manner, we can write the left-
going (−) current of electrons originating from the right electrode, as

i−k = − e

~
c†R,kH̄

∞†
R,CG†

CΓLGCH̄∞
R,CcR,k. (B.37)
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The total current I through the two-probe system is subsequently obtained by
subtracting the right-going and left-going currents for all the modes, taking into
account that the electrons are provided by reservoirs at chemical potentials µL

and µR, i.e.,

I = 2

∫ ∞

−∞

(
I+f(E − µL) − I−f(E − µR)

)
dE (B.38)

where the factor 2 is from spin degeneracy, f is the Fermi function, and

I+ =
e

~

∑

k

δ(E − E±
k )i+k

=
e

2π~
Tr
{
H̄∞†

L,C

(
2π
∑

k

cL,kδ(E − Ek)c
†
L,k

)
H̄∞

L,CG†
CΓRGC

}

=
e

h
Tr{ΓLG†

CΓRGC}

(B.39)

using the same arguments as for Eq. (B.28) together with the fact that Tr{ba†} =
Tr{a†b} = a†b for any vectors a and b of equal size. In a completely similar
derivation, we can obtain

I− = − e

h
Tr{ΓRG†

CΓLGC} = I+, (B.40)

for the left-going current, again using the properties of the trace operator. Fi-
nally, we can rewrite the total the current formula in Eq. (B.36) in the familiar
form

I =
2e

h

∫ ∞

−∞
T (E) (f(E − µL) − f(E − µR)) dE, (B.41)

where
T (E) = Tr{ΓLG†

CΓRGC}, (B.42)

is called the transmission function. This expression, which is credited to Caroli
[57], can also be derived from the Landauer-Büttiker formalism [4, 55] and is
widely used in methods for quantum transport.



Appendix C

Solution of linearized QEPs

Several of the methods for calculating the transmission T (E) described in this
thesis rely heavily on the efficient and numerically stable solution of quadratic
eigenvalue problems. In this brief appendix, we show how to do this most
efficiently via standard lapack calls. A simple trick is described, that can be
characterized as a code optimization rather than a change to the theoretical
model itself. It is generally applicable to all QEPs.

C.1 Shift-and-invert QEP

The simplest and currently state-of-the-art way to solve a dense QEP of size N ,

(
λ2M + λC + K

)
x = 0, (C.1)

is by linearizing to a generalized eigenvalue problem of size 2N , given by [63]

Az = λBz, A =

(
0 I

−K −C

)
, B =

(
I 0
0 M

)
, (C.2)

where the 2N eigenvalues λ are unchanged and zT = (xT , λxT ) so that the
eigenvectors x can be selected as the first N elements of z.

Implementing this solution in practice using lapack routines 1 we found
that it was favorable to take advantage of the known block structure of the
matrices A and B by performing a shift-and-invert transformation and solve

Ãz = λ̃z, Ã = (A − σB)−1B (C.3)

where an eigenpair (λ̃, z) corresponds to an eigenpair (λ = λ̃−1 + σ, z) of
Eq. (C.2). The 2 × 2 block form of Ã can be determined using the identity

1We call zggev (based on QZ) and zgeev (based on QR) to solve Eq. (C.2) and Eq. (C.3),
respectively.
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for the inverse of a 2 × 2 block matrix given in Eq. (1.2). We get

Ã = (A − σB)−1B =

(
−σI I

−K −C − σM

)−1(
I 0
0 M

)

=

(
−σ−1I − σ−2S−1K σ−1S−1

−σ−1S−1K S−1

)(
I 0
0 M

)

=

(
−σ−1I − σ−1(σS)−1K (σS)−1M

−(σS)−1K σ(σS)−1M

)
,

(C.4)
where the Schur complement matrix is simply σS = −(σ2M + σC + K) and
assumed to be well-conditioned. Now all that is needed to setup matrix Ã

instead of A and B is to solve the two equations SX = K and SX = M of
size N × N . The solution of Eq. (C.3) is subsequently obtained by a standard
eigenproblem algorithm and then the eigenvalues λ̃ are back-transformed into
λ = λ̃−1 + σ one by one. Our profiling tests show, that in all but the smallest
cases, this is faster than solving the original generalized eigenvalue problem
Eq. (C.2) in spite of the additional overhead from setting up Ã.
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[35] N. Agräıt, A. L. Yeyati, and J. M. van Ruitenbeek. Quantum properties of
atomic-sized conductors. Phys. Rep, 377:81–279, April 2003.

[36] S. Douglas Stone and Aaron Szafer. What is measured when you measure a
resistance? The landauer formula revisited. IBM J. Res. Dev., 32(3):384–
413, 1988.

[37] K. Stokbro, J. Taylor, M. Brandbyge, and H. Guo. Ab-initio non-
equilibrium green’s function formalism for calculating electron transport
in molecular devices. In G. Cuniberti, K. Richter, and G. Fagas, editors,
Lecture Notes in Physics, Berlin Springer Verlag, volume 680 of Lecture
Notes in Physics, Berlin Springer Verlag, pages 117–151, 2005.

[38] M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov. Modeling of
Nanoscale Devices. ArXiv Condensed Matter e-prints, October 2006.



134 BIBLIOGRAPHY
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Abstract

A method for the inversion of block tridiagonal matrices encountered in electronic structure calculations is developed,
with the goal of efficiently determining the matrices involved in the Fisher–Lee relation for the calculation of electron
transmission coefficients. The new method leads to faster transmission calculations compared to traditional methods, as
well as freedom in choosing alternate Green’s function matrix blocks for transmission calculations. The new method also
lends itself to calculation of the tridiagonal part of the Green’s function matrix. The effect of inaccuracies in the electrode
self-energies on the transmission coefficient is analyzed and reveals that the new algorithm is potentially more stable
towards such inaccuracies.
� 2007 Elsevier Inc. All rights reserved.

PACS: 71.15.�m; 02.70.�c
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1. Introduction

Quantum transport simulations have become an important theoretical tool for investigating the electrical
properties of nanoscale systems, both in the semi-empirical approach [1–4] and full ab initio approach [5–8].
The basis for the approach is the Landauer–Büttiker model of coherent transport, where the electrical prop-
erties of a nanoscale constriction is described by the transmission coefficients of a number of one-electron
states propagating coherently through the constriction. The approach has been used successfully to describe
the electrical properties of a wide range of nanoscale systems, including atomic wires, molecules and interfaces
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[9–18]. In order to apply the method to semiconductor device simulation, it is necessary to handle systems
comprising millions of atoms, and this will require new, efficient algorithms for calculating the transmission
coefficient.

In this paper, ideas and calculations behind an algorithm that provides an improvement over a widely pop-
ular technique employed in the calculation of transmission coefficient of so-called two-probe systems [15] is
presented. A two-probe system consists of three regions: a left electrode region, a central scattering region
and a right electrode region. The electrode regions are semi-infinite periodic systems, and the scattering region
connects the two electrode regions. A one-electron tight-binding Hamiltonian is used to describe the electronic
structure of the system. The tight-binding Hamiltonian can be obtained from a semi-empirical tight-binding
description as obtained from an extended Hückel model [19] or through a first-principles approach as obtained
when using a self-consistent density-functional Kohn–Sham Hamiltonian [20].

In the pursuit of determining the electronic structure of molecules, bulk crystals and two-probe systems,
associated self-consistent DFT calculations, relevant Green’s functions and ultimately calculation of the trans-
mission of two-probe systems all involve the problem of matrix inversion in some form or another. This paper
deals with matrices of a block tridiagonal form, which lie at the center of the problems to be solved. Block
matrices will be denoted with uppercase bold letters, while lower case bold letters refer to sub-block matrices
of their uppercase counterparts.

Throughout this paper, it is assumed that block tridiagonal matrix, A, is dealt with and that it is to be
inverted in order to obtain the Green’s function matrix (or a part thereof). In the process of finding the
Green’s function matrix G ¼ A�1 that enters in DFT theory, the following equation sets up the problem [21]:

A ¼ eS�H� RL � RR: ð1Þ
In the above expression S is an overlap matrix, H is the Hamiltonian of the system and RL and RR are the

self-energies from the left and right semi-infinite electrodes, respectively. Furthermore, the matrix G depends
on the variable e that dictates the energy of an incoming one-electron coherent wave for which it is desired to
investigate the transmission through the system. The methods developed in this paper are designed for a fixed
value of e.

The individual blocks of the matrix A are denoted aij and are assumed to be dense, complex matrices along
the tridiagonal. The diagonal blocks are square matrices, while the off-diagonal blocks are typically rectangu-
lar. The structure of A for two relevant cases is shown in Figs. 1 and 2.

A method to obtain the Green’s function matrix G is now devised, much in the same spirit as [22]. In order
to do so, the matrix to be inverted, A, is augmented with the identity matrix, I.

Fig. 1. The block-tridiagonal and sparsity structure for the Au111–AR example [17]. The matrix is of dimension 1295� 1295, split up
along the diagonal in blocks of order 243, 162, 66, 79, 69, 84, 62, 62, 225, and 243 from upper left to lower right, along with corresponding
off-diagonal blocks.
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ð2Þ

Each diagonal block of the identity matrix, iii has the same square block size of the corresponding block aii of
the matrix A, and are themselves identity matrices.

The organization and shape of the matrix blocks in A are related to the topology of the two probe system.
Looking at, e.g. Fig. 1, portions of the electrodes can be identified as the regions comprised of larger blocks
towards the corner of the matrix, while the more sparsely populated central region of the system is identified as
a series of smaller matrix blocks in the center of A. The top left corner of A attaches to the left electrode, while
the lower right corner attaches to the right electrode.

The expression augmented matrix ½AjI� is equivalent to the equation AG ¼ I (cf. [23]). By manipulating the
augmented matrix through a series of operations such that the left side, A, is reduced to the identity matrix I,
we will obtain the augmented matrix ½IjG� where the inverse of A, namely G ¼ A�1, can be read on the right.
This is done by illustrating the forward and backward block Gaussian elimination steps, and then combining
the results.

Calculating all of G is ultimately not of interest. Only a block gij of G to be used in further transmission
calculations will be determined. It is the particular choice of gij and the procedure for its calculation that sep-
arates the new transmission calculation method from previous algorithms.

This paper is organized as follows. The notation and block Gaussian elimination technique on which
the methods used in this paper is based on is described in Section 2. Section 3 shows how the result
of block Gaussian elimination is used to generate the Green’s function matrix G. In Section 4, the
calculation of transmission values via a traditional method and a new method is explained. The new
method is then benchmarked against the traditional, baseline method, via a consideration of computa-
tional complexity, as well as measured speedup times in Section 5. The effects of perturbed surface Green’s
function matrices on the transmission accuracy, and conclusions on which portions of G would lead to
more accurate transmission calculations is considered in Section 6. Conclusions are finally presented in
Section 7.

Fig. 2. The block-tridiagonal and sparsity structure for the Au111–DTB example [18]. The matrix is of dimension 943� 943, split up
along the diagonal in blocks of order 243, 162, 88, 198 and 243 from upper left to lower right, along with corresponding off-diagonal
blocks.
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2. Forward and backward block Gaussian elimination

The forward procedure is characterized with the superscript L since the elimination procedure proceeds
from the left electrode towards the right.

A block Gaussian elimination step is performed on the matrix given in Eq. (2) by multiplying the first block
row by the matrix cL

1 ¼ �a21a�1
11 and subsequently adding it to the second block row. This produces a zero

block in the (2,1) position:

ð3Þ

Next, a block Gaussian elimination step is performed by multiplying the second row by the factor
cL

2 ¼ �a32ða22 � a21a�1
11 a12Þ�1 and subsequently adding it to the third row. This produces a zero block in

the (3,2) position. A recursive routine that will complete a full forward block Gaussian elimination is
now defined.

dL
11 ¼ a11 cL

1 ¼ �a21ðdL
11Þ
�1

dL
22 ¼ a22 � a21ðdL

11Þ
�1

a12 cL
2 ¼ �a32ðdL

22Þ
�1

dL
33 ¼ a33 � a32ðdL

22Þ
�1

a23 cL
3 ¼ �a43ðdL

33Þ
�1

..

. ..
.

dL
ii ¼ aii � ai;i�1ðdL

i�1;i�1Þ
�1

ai�1;i cL
i ¼ �aiþ1;iðdL

ii Þ
�1

..

. ..
.

dL
nn ¼ ann � an;n�1ðdL

n�1;n�1Þ
�1

an�1;n cL
n�1 ¼ �an;n�1ðdL

n�1;n�1Þ
�1

The matrices dL
ii are the diagonal blocks of the resulting matrix on the left. It can be seen that each diagonal

block is calculated from the following relation:

dL
ii ¼ aii þ cL

i�1ai�1;i; where i ¼ 2; 3; . . . ; n and dL
11 ¼ a11; ð4Þ

and each row multiplication factor is:

cL
i ¼ �aiþ1;iðdL

ii Þ
�1
; where i ¼ 1; 2; . . . ; n� 1: ð5Þ

The similar backward procedure is characterized with the superscript R since the elimination procedure
moves from the right electrode towards the left. The derivation of the backwards recursive expressions
follows that of the forward elimination. Each diagonal block can be calculated from the following
relation:

dR
ii ¼ aii þ cR

iþ1aiþ1;i; where i ¼ n� 1; . . . ; 2; 1 and dR
nn ¼ ann; ð6Þ
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and each row multiplication factor is:

cR
i ¼ �ai�1;iðdR

ii Þ
�1
; where i ¼ n; . . . ; 3; 2: ð7Þ

3. Combining the two procedures

After a complete forward and backward block Gaussian elimination sweep, the augmented matrices,
named ½DLjJL� and ½DRjJR�, respectively, will look as follows where the matrices JL and JR are lower and
upper block triangular, respectively:

ð8Þ

ð9Þ

Here, the following notation was introduced:

cR
1 cR

2 � � � cR
i ¼ cR

1;2;...;i

cL
i cL

i�1 � � � cL
1 ¼ cL

i;i�1;...;1

)
where i ¼ 1; 2; . . . ; n: ð10Þ

Combining the results obtained from Eqs. (2), (8), and (9) by employing the fact that

AG ¼ I; DLG ¼ JL; DRG ¼ JR; ð11Þ

the expression

ðA�DL �DRÞG ¼ I� JL � JR ð12Þ

is examined, which can be viewed as the following augmented matrix expression:

ð13Þ

where

B ¼

a11 � dL
11 � dR

11

a22 � dL
22 � dR

22

a33 � dL
33 � dR

33

. .
.

0BBBBB@

1CCCCCA ð14Þ
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and

F ¼

�i11 �cR
2 �cR

2;3 �cR
2;3;4 � � �

�cL
1 �i22 �cR

3 �cR
3;4 � � �

�cL
2;1 �cL

2 �i33 �cR
4 � � �

�cL
3;2;1 �cL

3;2 �cL
3 �i44 � � �

..

. ..
. ..

. ..
. . .

.

0BBBBBBBB@

1CCCCCCCCA
: ð15Þ

When B is subsequently reduced to the identity matrix I, F will simultaneously be transformed into the Green’s
function matrix G. In other words, the Green’s function matrix sought for can be expressed as G ¼ B�1F. The
Green’s function matrix is:

G ¼

g11 g11cR
2 g11cR

2;3 � � � g11cR
2;...;n

g22cL
1 g22 g22cR

3 � � � g22cR
3;...;n

g33cL
2;1 g33cL

2 g33 � � � g33cR
4;...;n

g44cL
3;2;1 g44cL

3;2 g44cL
3 � � � g44cR

5;...;n

..

. ..
. ..

. . .
. ..

.

gnncL
n�1;...;1 gnncL

n�1;...;2 gnncL
n�1;...;3 � � � gnn

0BBBBBBBBBB@

1CCCCCCCCCCA
; ð16Þ

where the following expression for the diagonal blocks of the Green’s function matrix is introduced:

gii ¼ �b�1
ii ¼ �aii þ dL

ii þ dR
ii

� ��1
where i ¼ 1; 2; . . . ; n: ð17Þ

Off-diagonal entries are then calculated via appropriate multiplications with calculated diagonal block matri-
ces and factors obtained during block Gaussian elimination as follows using the notation given in Eq. (10):

gij ¼ giic
R
iþ1;iþ2;...;j�1;j for i < j ð18Þ

gij ¼ giic
L
i�1;i�2;...;jþ1;j for i > j: ð19Þ

4. Computation of transmission

The calculation of transmission t, given by the following Fisher–Lee [24] relation obtained in non–equilib-
rium Green’s function theory, can be expressed as (cf. [21,25]):

t ¼ TrfGCLGyCRg: ð20Þ
Here ‘Tr’ denotes a matrix trace operation, and the dagger denotes Hermitian conjugation. Regarding
CL and CR, the superscripts indicate left and right electrode contact leads. These matrices are defined from
the electrode self-energy [21]:

CL ¼ ı̂ RL � RL
� �y� �

; CR ¼ ı̂ RR � RR
� �y� �

; ð21Þ

where ı̂ is the imaginary unit. These matrices are only non–zero in the ð1; 1Þ block for RL and CL, and in the
ðn; nÞ block for the case RR and CR (cf. [26–28]).

Two methods are now presented that can be used to calculate the transmission t given in Eq. (20).

4.1. Coupling method

The coupling method is by far the popular method of choice in the literature when transmission is to be
calculated via the Green’s function formalism (see [26–28]). The method is introduced here, and regarded
as the baseline method to compare the new transmission calculation method to later in the paper.
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In this method, the coupling between the left and right leads is calculated, and the transmission computed
accordingly. This coupling is denoted as gn1, and it resides as the lowest left corner of the Green’s function
matrix G. The calculation of transmission for a particular energy e then becomes (cf. [26]):

t ¼ Trfgn1c
L
11gyn1c

R
nng; ð22Þ

where cL
11 ¼ ½CL�11 and cR

nn ¼ ½CR�nn. Thus we introduce the notation ½��ij which delivers the ði; jÞ-block, with
respect to A’s block structure, of the bracketed expression. The main task is to find gn1. From Eq. (16) it is
seen that the expression for this matrix is:

gn1 ¼ gnncL
n�1cL

n�2 � � � cL
2 cL

1 ; ð23Þ

and we see that the only factors cL
i involved are all those computed in a downwards block Gaussian elimina-

tion sweep. The matrix gnn in Eq. (23) can be obtained by considering the nth block from Eq. (17):

gnn ¼ ð�ann þ dL
nn þ dR

nnÞ
�1 ¼ ðdL

nnÞ
�1
; ð24Þ

since dR
nn ¼ ann. This holds similarly for the first row of the Green’s function matrix. From this, it is seen that

the first and last diagonal blocks of the Green’s function matrix correspond to the final blocks of upwards and
downwards sweeps of block Gaussian elimination, respectively, in the following manner:

g11 ¼ ðdR
11Þ
�1 and gnn ¼ ðdL

nnÞ
�1
: ð25Þ

4.2. Overlap method

A new method that seeks to compute the transmission much like the baseline coupling method, however via
a different part of the Green’s function matrix, is now introduced.

Here, the idea is again based on the transmission formula Eq. (20), however the matrices dealt with change
from being a coupling between the leads to that of a coupling between two adjacent blocks somewhere in the
center of the system. This corresponds to centering calculations around a diagonal block of A. This will
require us to calculate the Green’s function for the kth block of interest, gkk.

The name of the method arises from the fact that calculation of a diagonal block involves a sweep of block
Gauss elimination from both the upper left and lower right of A which will overlap on the block of interest.

The motivation behind this approach is to avoid the work in having to calculate an off-diagonal block of
the Green’s function matrix after a series of block Gaussian elimination sweeps. This amounts to n� 1 matrix
multiplications. In the new method, overhead will arise due to calculations involving the self-energies
RL and RR, and the corresponding matrices CL and CR. However, these computations are less expensive
matrix addition operations, and they are negligible with increasing number of matrix blocks and block
sizes.

As we shall demonstrate below, it is advantageous to choose k corresponding to the smallest diagonal block
inside the block tridiagonal matrix A. Although this approach involves some additional computations with the
self-energy matrices and their corresponding coupling matrices, this overhead is acceptable due to the savings
involved in the cheaper matrix computations for the overlap method.

Choosing an arbitrary kth diagonal block, the transmission is given in the following expression, derived in
the appendix:

t ¼ Trfgkk½CL
#k�kkg

y
kk½CR

"k�kkg; ð26Þ

where the new self-energy related terms are given by Eqs. (48) and (49) in the Appendix. Using the nonzero
structure of the respective self-energies

PL and
PR we obtain the simpler relations

CL
#1

h i
11
¼ cL

11; CR
"1

h i
11
¼ ı̂ððdR

11Þ
y � dR

11Þ ð27Þ

CR
"n

h i
nn
¼ cR

nn; CL
#n

h i
nn
¼ ı̂ððdL

nnÞ
y � dL

nnÞ ð28Þ
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and for k = 2,. . .,n�1

½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � cR
kk; ½CR

"k�kk ¼ ı̂ððdR
kkÞ
y � dR

kkÞ � cL
kk: ð29Þ

5. Benchmark results

The methods introduced here were implemented in C++ within Atomistix’s Atomistix ToolKit, and comput-
ing times were obtained for calculating the transmission for 10 different energies e for several different systems.
These systems have been taken from the literature, and an overview of selected examples is presented in Table 1.

5.1. Operation count

In order to determine which transmission method may be algorithmically more efficient, the quantity of
matrix factorizations, multiplications and additions related to the three different methods available is recorded
in Table 2.

In Table 3 operation counts for the calculations of the full inverse of A as well as calculation of only the
block tridiagonal part of the inverse is included. This is done for both a Gauss elimination (GE) algorithm, as
well as the new method presented in this paper.

The block tridiagonal part of the inverse is of interest for further calculations carried out in Density Func-
tional Theory (DFT) via the Green’s function formalism, and results for the full inverse are included in order
to show how the new method in this paper, though suited for the block tridiagonal calculation, is ill-suited to
calculate the entire inverse, compared to traditional methods.

Looking at operation counts in Table 2 on obtaining various parts of the Green’s function matrix G, it is
seen that all choices require n LU factorizations, where n is the number of diagonal blocks in A.

Table 1
An overview of the test examples examined in this paper

Example systems

System Article Order n Block order

Al100+C7 [15] 444 5 128, 72, 16, 100, 128
AlLead+C7 [15] 296 5 72, 72, 20, 60, 72
Au111–AR [17] 1295 10 243, 162, 66, 79, 69, 84, 62, 62, 225, 243
Au111–TW [16] 1155 8 243, 162, 62, 70, 53, 70, 252, 243
Au111–DTB [18] 928 5 243, 162, 88, 198, 243
Fe–MgO–Fe [13,14] 228 5 54, 45, 30, 45, 54
nanotube4_4 – 576 4 128, 128, 192, 128

For each example the original paper related to the system, the dimension of the overall matrix A, the number of diagonal blocks n, and
finally the size of each of the diagonal blocks, from the upper left of A down to the lower right is listed.

Table 2
This table illustrates the amount of basic operations performed in calculating different blocks of G via either block Gauss elimination
(GE), the coupling method or overlap method

Green’s function sub-block operation count

Block Method LU-factorizations Multiplications Additions

gn1 GE n 3ðn� 1Þ n� 1
gnn GE n 2n� 1 n� 1
gkk GE n 4n� 2k � 1 2n� k � 1
gn1 Coupling n 3ðn� 1Þ n� 1
gnn Overlap n 2n� 1 n� 1
gkk Overlap n 2n� 1 nþ 1

The third, fourth and fifth columns refer to the basic matrix operations of LU-factorization, multiplication and addition. The term n is the
total amount of diagonal blocks in A; and k indicates which diagonal block in the Green’s function matrix G is used for transmission
calculations.
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In obtaining gn1, block Gauss elimination and the coupling method both require the same amount of oper-
ations to complete, and there is no advantage either way. Again, in obtaining the lower diagonal block gnn,
both block Gauss elimination and the overlap method require the same amount of matrix–matrix calculations.

The advantage of the overlap method over block Gauss elimination occurs when a central diagonal block
gkk is required. Here, only two more matrix–matrix additions over the overlap method for gnn is needed, while
for block Gauss elimination, a series of matrix–matrix multiplies and additions add up in order to back–solve
up towards the desired diagonal block. Thus the overlap method is better suited for determining diagonal
blocks than block Gauss elimination.

Looking at which block of the matrix G is cheapest to compute on the basis of Table 2, one would appar-
ently choose gnn. This, however, may not be the case since the table does not take into account differing block
sizes among the different sub-blocks in A and G. These differing sizes can lead to substantial changes in costs
regarding the basic operations of LU-factorization, matrix multiplication and matrix addition in the table.
The speedup results presented later in Section 5.2 and Table 4 will verify this.

With regard to the cost of the basic operations on a matrix block of order ni, then the amount of work for
each LU-factorization, multiplication and addition is on the order of 2=3n3

i , 2n3
i and 2n2

i , respectively.

5.1.1. Transmission calculation

To finally calculate transmission after successfully obtaining a sub-block of G, the Fisher–Lee relation (cf.
Eq. (20)) is invoked, and thus three matrix–matrix multiplications are incurred, as well as a matrix trace oper-
ation. However, the significant factor here among the different methods reviewed is that the final matrix block
dimensions in the Fisher–Lee relation may be different. Typically, due to the topology of the two-probe sys-
tem, the central region, and thus the kth diagonal block gkk, will be of smaller size than the corner blocks gnn or
gn1. Thus a significant prefactor cost in execution time can be saved by selecting the transmission method cen-
tered around the smallest Green’s function diagonal matrix block.

Table 3
This table illustrates the amount of basic operations performed in calculating either the full inverse G of A, or only the block tridiagonal
part of it, using different methods

Green’s function operation count

Calculation Method LU-factorizations Multiplications Additions

Full inv GE n 2n2 þ n� 2 1
2 ðn2 þ n� 2Þ

Trid inv GE n 1
2 ð3n2 þ 5n� 6Þ 1

2 ðn2 þ n� 2Þ
Full inv Paper 3n� 2 n2 þ 4n� 4 4n� 6
Trid inv Paper 3n� 2 7n� 6 4n� 6

The methods employed are block Gauss Elimination (GE), and the new method incorporating forward and backward Gaussian elimi-
nation sweeps (paper), as presented in Eq. (16). The third, fourth and fifth columns refer to the basic matrix operations of LU–
factorization, multiplication and addition. The term full inv refers to calculating the full inverse, while trid inv refers to obtaining only the
block tridiagonal part of the inverse. The term n is the total amount of diagonal blocks in A.

Table 4
This table illustrates the speedup achieved by using the new methods centered around diagonal blocks, relative to the baseline coupling
method using the off-diagonal block gn1

Speedup measurements

System Coupling – gn1 Overlap – gnn Overlap – gkk

Al100+C7 1.0000 1.2099 2.6557
AlLead+C7 1.0000 1.1916 2.0092
Au111–AR 1.0000 1.4211 3.2121
Au111–TW 1.0000 1.3721 2.8994
Au111–DTB 1.0000 1.3675 3.2537
Fe–MgO–Fe 1.0000 1.3064 1.8001
nanotube4_4 1.0000 1.2261 1.2477

The expression gn1 refers to the coupling method, while gnn and gkk refer to the overlap method performed on the nth and smallest
diagonal block, respectively. The overlap methods are always faster, and in particular those centred on the smallest, kth, diagonal block.
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Some overhead arises in choosing a central diagonal block in the shape of recalculating new matrices
½CL
#k�kk and ½CR

"k�kk for the transmission function Eq. (26) via Eqs. (27)–(29), but as these operations are cheaper
matrix–matrix addition operations on small matrices, this overhead is offset by the gains in being able to
employ smaller matrices in the more expensive matrix–matrix multiplication operations in the Fisher–Lee rela-
tion in Eq. (26).

5.1.2. Full inversion

With regard to determining the full inverse G from A, it is seen in Table 3 how block Gauss elimination
excels over the method in this paper in terms of costly LU factorizations. Although Gauss elimination has
about twice the number of matrix multiplies than the new method, Gauss elimination is still preferable when
taking into account that it only requires about a third LU factorizations compared to the new method. Thus
the new method is not suited for determining the full matrix G.

However, when requiring only the tridiagonal part of the inverse, as is the case for some DFT applications,
the new method is a better choice since it only requires on the order of n matrix–matrix multiplications, while
block Gauss elimination still requires on the order of n2 matrix–matrix multiplications.

5.2. Speedup results

For an overview of the speedup of the new methods relative to the baseline coupling method, see Table 4.
Overall, speedup improves in every case when moving from the coupling method to the overlap method. This
is not surprising, seeing how the main difference between these two methods, operation count–wise, is the lack
of extra matrix multiplications in order to obtain an off-diagonal Green’s function matrix block. Eliminating
this task will always lead to a faster method.

Performing calculations using the smallest diagonal block k over the first or nth block can also yield sig-
nificant improvements in execution time, depending on the topology of the two-probe system, and the subse-
quent block structure in A. The difference here is that it is no longer possible to ‘recycle’ one of the self-energy
terms that is assumed to be available from the outset, as well as different block size between gnn and gkk. Thus
in seeking a smaller diagonal matrix block to work with, appropriate self-energy terms must be determined
once again, and this leads to extra overhead.

However, it may pay off to select some central diagonal block over a corner diagonal block in order to cal-
culate transmission. This comes in the form of being able to work with smaller matrices, and thus matrix oper-
ation costs decrease. Crucially, matrix sizes may decrease such that memory requirements for matrix
operations can be fulfilled by lower level hardware caches, leading to significant speedup in execution time.
This effect is visible in Table 5, where significant speedup is achieved in the matrix–matrix operations involved
in the Fisher–Lee calculation.

Table 5
This table illustrates the speedup in the calculation of solely the Fisher–Lee relation (see Eq. (26)) achieved by using the new methods
centered around diagonal blocks, relative to the baseline coupling method using the off-diagonal block gn1

Speedup measurements – Fisher–Lee

System Coupling – gn1 Overlap – gnn Overlap – gkk Theoretical – n3

m3

Al100+C7 1.0000 1.0567 548.4500 512.000
AlLead+C7 1.0000 0.9546 47.4516 46.656
Au111–AR 1.0000 1.2654 170.6912 60.207
Au111–TW 1.0000 1.2788 275.6198 96.381
Au111–DTB 1.0000 1.2716 59.8502 21.056
Fe–MgO–Fe 1.0000 1.3186 7.1354 5.832
nanotube4_4 1.0000 0.9940 1.0178 1.000

The expression gn1 refers to the coupling method, while gnn and gkk refer to the overlap method performed on the nth and smallest
diagonal block, respectively. The final column indicates the theoretical speedup based on the Oðn3Þ cost of evaluating Eq. (26). The reason
for better speedup over theoretical prediction is due to improved cache usage by the smaller matrices dealt with when using gkk .
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Furthermore, as will be explored in Section 6 concerning transmission accuracy, depending on the system,
central matrix blocks may be less prone to perturbation from inaccurately calculated electrode surface Green’s
function matrices. This, however, varies from system to system, as well as incoming electron wave energies e.

6. Transmission accuracy

It has been shown that any block of the Green’s function matrix can be used in order to calculate trans-
mission and a new strategy employing diagonal blocks of G was developed. The question now is which part
of G might be used in order to achieve best accuracy in determining transmission. This section suggests that an
investigation of the accuracy achieved for a given block may lead to informed choices. The problem of the
selection of which matrix block is best concerning accuracy comes from the fact that in practice the self-ener-
gies of the electrodes, rL

11 and rR
nn, are not computed exactly. This is because in the Green’s function formalism

approach, the surface Green’s function matrices for the electrodes (and hence their corresponding self-ener-
gies) are typically determined through an iterative procedure [29] that only converges to the correct retarded
Green’s function matrix when a small positive imaginary perturbation is applied. This means that transmis-
sions are calculated for a slightly perturbed matrix eA, where the corner blocks a11 and ann are perturbed to
some degree through the inexact self-energies.

The matrix A here will denote the case when no imaginary perturbation is used and this can be done by
employing a different manner to converge the surface Green’s function matrices, such as a wave function
matching [30–32] approach. To investigate how this imaginary perturbation ultimately affects the Green’s func-
tion matrix that transmissions are calculated with, the inverses of an unperturbed case and a perturbed case are
compared. The perturbation on A is described as the added matrix P, defined as zero everywhere, except the
corner blocks p11 and pnn, that correspond to the corner blocks a11 and ann, both in size and location.

ð30Þ

The perturbation matrix, as seen in Eq. (30), is divided into 9 blocks, where the empty space denotes areas with
elements equal to zero. In a similar manner, the inverse G ¼ A�1 is subdivided into the same block sizes.

ð31Þ

To investigate the effect of the perturbation P the derivation of eG ¼ eA�1 is carried out:eG ¼ ½AðIþGPÞ��1 ¼ ðIþGPÞ�1
G: ð32Þ

If the perturbation is assumed to be small, such that the spectral radius satisfies qðGPÞ < 1, then the first
inverse term can be expressed via a geometric series.
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eG ¼ ðIþGPÞ�1
G ¼ G�GPGþGPGPG� � � � ð33Þ

Thus it can be seen that the difference in the perturbed and unperturbed inverses should be dominated by the
term GPG. If G is subdivided into row and column blocks, as follows, it will be possible to proceed and derive
a relatively compact expression for the structure of this first order correction term.

ð34Þ

such that

b1 ¼

g11

..

.

gn1

0BB@
1CCA; bn ¼

gn1

..

.

gnn

0BB@
1CCA ð35Þ

and

c1 ¼ g11 � � � g1nð Þ; cn ¼ gn1 � � � gnnð Þ: ð36Þ

With this notation, the first order perturbation term is written as follows:

GPG ¼ b1p11c1 þ bnpnncn: ð37Þ
It can be seen how the outer-product form of this expression will yield a dense matrix GPG, since G can

generally be assumed to be dense. This indicates that the correction term’s effect will depend directly on the
full structure of G, and thus no prediction can be made about the effect of the perturbation on G, without
calculating G itself.

We look at the first order perturbation at block ði; jÞ:
½GPG�ij ¼ ½b1p11c1 þ bnpnncn�ij ¼ gi1p11g1j þ ginpnngnj;

where the element gin describes the amplitude of an electron propagating from site i to site n in the system. For
most systems, this will decay as a function of the distance between orbitals at sites i and n, and thus the error
should be smallest for Green’s function blocks in the center of the cell, i.e., as far as possible from the elec-
trodes. Thus we can expect choosing central blocks in G should lead to more accurate transmission calcula-
tions for most systems.

6.1. Numerical example with random perturbation

The effect of a perturbation of the electrode’s surface Green’s function matrices on the Green’s function G

itself is here illustrated by a numerical example. The Hamiltonian matrix H and overlap matrix S associated
with Au111–AR is taken, and the matrix to be inverted is constructed as

A ¼ H� eS; where e ¼ 1:0: ð38Þ
The corner blocks of A, namely a11 and ann, are then perturbed with matrices p11 and pnn. The elements of

p11 and pnn are computed as:

p11  pij ¼ aijaij; where aij 2 a11; and ð39Þ
pnn  pkl ¼ aklakl; where akl 2 ann: ð40Þ

where the factors aij and akl are normally distributed with zero mean and standard deviation 10�5.
Fig. 3 shows the results of the average difference of 100 perturbed inversions eG compared to G. From this

figure, it is seen that for this particular choice of system (H and S) and energy (e), the perturbation from the
iterated self-energies cause the inverse to be most inaccurate at the corner diagonal blocks. Thus, choosing the
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overlap method as the transmission calculation method would be on average best served by choosing a block
towards the center of the matrix, where the perturbation has the least effect. This choice is further motivated
by the fact that the center blocks typically are of smaller size, and matrix operations would be faster than oper-
ations with the corner diagonal blocks.

A problem with this analogy lies in the fact that one can not predict which Green’s function matrix block
would provide more accurate transmission results (see Eq. (37)), without calculating the Green’s function
matrix in the first place. This lends prediction to be prohibitive in general, when computing transmissions.
The best choice of action is then relying on the usual behavior of most two-probe systems as well as choosing
the fastest calculation method, leading us to pick a diagonal block towards the center of the system, which are
typically the least affected by the electrodes as well as the smallest in size.

7. Conclusion

This paper developed and introduced a new, faster method of calculating transmission for two-probe sys-
tems by using diagonal block matrices from the Green’s function matrix, gii, rather than the coupling method
found extensively in the literature that uses the corner off-diagonal block gn1.

This is done by developing a method for calculating any block matrix from the Green’s function matrix G

based on a series of Gauss eliminations carried out on the original matrix A.
To calculate transmission via a diagonal block of the Green’s function matrix G, upwards and downwards

block Gaussian elimination is performed that terminates overlapping over akk; and gkk is calculated (cf. Eq.
(17)).

Furthermore, the related coupling matrices (usually obtained via self-energy) used in the transmission for-
mula Eq. (26) are calculated via Eqs. (27)–(29), for the new, extended electrodes. This approach dispenses with
the need of a series of matrix–matrix multiplications compared to the coupling method (cf. Eq. (23)) in
exchange for cheaper matrix–matrix addition operations.

Execution time measurements indicated that centering transmission calculations on the Green’s function
matrix’s diagonal blocks was preferable, in that a series of matrix–matrix multiplications would be saved as

Fig. 3. The figure above illustrates the average element-wise difference expressed as log½meanðG� eGðpÞÞ� for p ¼ 1; . . . ; 100. The matrix G

corresponds to the Au111–AR example [17]. Element-wise differences range from about the same order down to about 18 orders of
magnitude smaller. The dark lines outline the original block tridiagonal structure of the original matrix A. The logarithm employed is the
base 10 logarithm. In this particular example for choice of electron energy e and A, the diagonal blocks in the center of the matrix suffer
least in terms of accuracy.
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well as centering on smaller diagonal matrix blocks offset the cost of re-calculating self-energy matrices. Fur-
thermore, the ability to choose smaller block matrices lends itself to the possibility of far better cache usage,
and hence greater performance gains.

Perturbation analysis revealed that it is not possible to determine the effect of perturbation in the electrode
self-energy matrices on the accuracy of the Green’s function, without explicitly calculating the Green’s func-
tion matrix. This eliminates the ability to predict which Green’s function matrix block would be an ideal
choice for the calculation of a two-probe system’s transmission with respect to accuracy. However, due to
the behavior of most two-probe systems, a central diagonal block choice is expected to yield more accurate
results.
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Appendix. Derivation of Eq. (26) for the Transmission

We commence with the expression in Eq. (1). As shown in (e.g., Golub and Van Loan [33]) Section 3.2.1, we
can represent a Gauss-elimination step as a matrix multiplication with a ‘‘Gauss transformation”. The same is
true for the block Gauss-elimination steps we use here, and thus we express a series of downwards Gauss-elim-
inations that terminate on row k by E#k. Similarly, a series of upwards Gauss-eliminations terminating on row
k is denoted by E"k. We then write the combination of Gauss-elimination sweeps that produce a matrix Zk as
follows:

Zk ¼ E#kAE"k: ð41Þ
Due to the structure of A, the matrix Zk is block diagonal as shown in Fig. 4. Given Zk, we can write the

Green’s function matrix as

G ¼ A�1 ¼ E"kZ�1
k E#k: ð42Þ

We can then insert this expression into the Fisher–Lee relation from Eq. (20), to obtain

t ¼ TrfðE"kZ�1
k E#kÞCLðE"kZ�1

k E#kÞyCRg ¼ TrfE"kZ�1
k E#kC

LEy#kðZ�1
k Þ
y
Ey"kC

Rg

¼ TrfZ�1
k E#kC

LE
y
#kðZ�1

k Þ
y
E
y
"kC

RE"kg ¼ TrfZ�1
k CL

#kðZ�1
k Þ
yCR
"kg ð43Þ

where we have introduced

CL
#k ¼ E#kC

LE
y
#k and CR

"k ¼ E
y
"kC

RE"k: ð44Þ

To derive Eq. (43) we used that the trace is invariant under matrix commutation [34].

Fig. 4. The zero/nonzero structure of Zk and Z�1
k .
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Eq. (43) can be further simplified. First note that both Zk and Z�1
k have the special zero/nonzero structure

shown in Fig. 4. Next, note that CL has nonzero elements in its (1,1)-block only, and hence the nonzeros in CL
#k

are confined to upper left blocks, as shown in Fig. 5. Similarly, the nonzeros of CR
"k are confined to the bottom

right blocks. Using the zero/nonzero structure of these matrices, it follows from the derivation illustrated in
Fig. 6 that:

t ¼ TrfZ�1
k CL

#kðZ�1
k Þ
yCR
"kg ¼ Trf½Z�1

k �kk½CL
#k�kk½Z

�1
k �
y
kk½CR

"k�kkg: ð45Þ

Fig. 5. The zero/nonzero structure of CL and CL
#k .

Fig. 6. Illustration of the derivation of Eq. (45) using the zero/nonzero structure of Figs. 4 and 5.
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Hence, we require only the kth diagonal block of Z�1
k , and we note that this corresponds to the kth diagonal

block of the Green’s function matrix G via Eq. (17). Thus ½Z�1
k �kk ¼ gkk; and ½Z�1

k �
y
kk ¼ g

y
kk.

Next we consider ½CL
#k�kk and ½CR

"k�kk. By means of Eq. (1) we can obtain the expression of a self-energy, e.g.,
RL, and via Eq. (21) we now determine our desired matrix for the transmission calculation:

½CL
#k�kk ¼ ½E#k ı̂ðRL � ðRLÞyÞEy#k�kk ¼ ı̂½E#kððeS�H� RR � AÞ � ðeS�H� RR � AÞyÞEy#k�kk

¼ ı̂½E#kðAy � A� ðRR � ðRRÞyÞÞEy#k�kk

¼ ı̂ð½E#kAEy#k�
y
kk � ½E#kAEy#k�kkÞ � ı̂½E#kðRR � ðRRÞyÞEy#k�kk: ð46Þ

Here we used that both S and H are Hermitian and therefore vanish in the expression. The first term
involving A is simplified via the fact that the ðk; kÞ-subblock of the block tridiagonal E#kA remains invariant
under the column operations by Ey#k, and thus ½E#kAEy#k�kk ¼ dL

kk. The last term, involving self-energies, is sim-
plified via Eq. (21). We get

½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � ½E#kCREy#k�kk: ð47Þ

Since E#k represents downwards elimination, the ðk; kÞ-block in E#kC
REy#k is left unaltered, i.e.,

½E#kCREy#k�kk ¼ ½CR�kk ¼ cR
kk. Hence:

½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � cR
kk: ð48Þ

Following a similar procedure, we obtain:

½CR
"k�kk ¼ ı̂ððdR

kkÞ
y � dR

kkÞ � cL
kk: ð49Þ

Thus we have all the terms necessary for the calculation of transmission via Eq. (43).
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The Wave Function Matching (WFM) technique has recently been developed for the calculation
of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable with
the widely used Green’s function approach. The WFM formalism presented so far requires the
evaluation of all the propagating and evanescent bulk states of the left and right electrodes in order
to obtain the correct coupling between device and electrode regions. In this paper we will describe
a modified WFM approach that allows for the exclusion of the vast majority of the evanescent
states in all parts of the calculation. This approach makes it feasible to apply iterative techniques
to efficiently determine the few required bulk states, which allows for a significant reduction of the
computational expense of the WFM method. We illustrate the efficiency of the method on a carbon
nanotube field-effect-transistor (FET) device displaying band-to-band tunneling and modeled within
the semi-empirical Extended Hückel theory (EHT) framework.

PACS numbers: 73.40.-c, 73.63.-b, 72.10.-d, 85.35.Kt, 85.65.+h

I. INTRODUCTION

Quantum transport simulations have become an im-
portant theoretical tool for investigating the electrical
properties of nano-scale systems.1–5 The basis for the
approach is the Landauer-Büttiker picture of coherent
transport, where the electrical properties of a nano-scale
constriction is described by the transmission coefficients
of a number of one-electron states propagating coher-
ently through the constriction. The approach has been
used successfully to describe the electrical properties of
a wide range of nano-scale systems, including atomic
wires, molecules and interfaces.6–15 In order to apply the
method to semiconductor device simulation, it is neces-
sary to handle systems comprising millions of atoms, and
this will require new efficient algorithms for calculating
the transmission coefficient.

Our main purpose in this paper is to give details
of a method we have developed, based on the WFM
technique,16–18, which is suitable for studying electronic
transport in large-scale atomic two-probe systems, such
as large carbon nanotubes or nano-wire configurations.

To our knowledge, the WFM schemes presented so far
in the literature requires the evaluation of all the Bloch
and evanescent bulk modes of the left and right elec-
trodes in order to obtain the correct coupling between
device and electrode regions. The reason for this is that
it requires the complete set of bulk modes to be able to
represent the proper reflected and transmitted wave func-
tions. In this paper we will describe a modified WFM
approach that allows for the exclusion of the vast major-

Device Bulk electrodeBulk electrode

FIG. 1: (Color online) Schematic illustration of a nano-scale
two-probe system in which a device is sandwiched between
two semi-infinite bulk electrodes.

ity of the evanescent modes in all parts of the calculation
by simply extending the central region with a few layers.
This approach makes it feasible to apply iterative tech-
niques (e.g, as described in19) to efficiently determine the
relatively few bulk modes of interest, which allows for a
significant reduction of the computational expense of the
WFM method in practice.

We adopt the many-channel formulation of Landauer
and Büttiker to describe electron transport in nano-scale
two-probe systems composed of a left and a right elec-
trode attached to a central device, see Fig. 1. In this for-
mulation, the conduction G of incident electrons through
the device is intuitively given in terms of transmission
and reflection matrices, t and r, that satisfy the unitar-
ity condition t†t+ r†r = 1 in the case of elastic scatter-
ing. The matrix element tij is the probability amplitude
of an incident electron in a state i in the left electrode
being scattered into a state j in the right electrode, and
correspondingly rik is the probability of it being reflected



back into state k in the left electrode. This simple inter-
pretation yields the Landauer-Büttiker formula3

G =
2e2

h
Tr[t†t], (1)

which holds in the limit of infinitesimal voltage bias and
zero temperature.

The WFM method is based upon direct matching of
the bulk modes in the left and right electrode to the scat-
tering wave function of the central region. For the most
part this involves two major tasks; obtaining the bulk
electrode modes and solving a system of linear equa-
tions. The available modes in the left and right elec-
trodes are the solutions from the corresponding ideal
electrodes. These solutions can be characterized as ei-
ther propagating or evanescent (exponentially decaying)
states but only the propagating states contribute to G in
Eq. (1). We may write G = (2e2/h)T , where

T =
∑

kk′

|tkk′ |
2 (2)

is the total transmission and the sum is limited to prop-
agating states k and k′ in the left and right electrode,
respectively. Notice, however, that the evanescent states
are still needed in order to obtain the correct matrix el-
ements tkk′ . We will discuss this matter in Sect. III C.

The rest of the paper is organized as follows. The
WFM formalism used to obtain t and r is introduced in
Sect. II. In Sect. III we present our method to effectively
exclude the rapidly decaying evanescent states from the
two-probe transport calculations. Numerical results are
presented in Sect. IV. and the paper ends with a short
summary and outlook.

II. FORMALISM

In this section we give a minimal review of the formal-
ism and notation that is used in the current work. To
determine the transmission and reflection matrices t and
r for our two-probe systems we will apply the recently de-
veloped wave function matching (WFM) method.16–18,20

This technique has several attractive features compared
to the more widely used and mathematically equiva-
lent Green’s function approach.1,2 Most importantly, the
transparent Landauer picture of electrons scattering via
the central region between Bloch states of the electrodes
is retained throughout the calculation. Moreover, WFM
allows one to consider the significance of each available
state individually in order to achieve more efficient nu-
merical procedures to obtain t and r.

A. Wave function matching

Let us assume a tight-binding setup for the two-probe
systems in which the infinite structure is divided into

L C R
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

ψ0 ψ1 ψ2 ψn ψn+1ψn−1

In-
coming

Re-
flected

Trans-
mitted

Zero

· · ·

FIG. 2: (Color online) Schematic representation of WFM ap-
plied to layered two-probe systems, where the central device
region, consisting of layers i = 1, . . . , n, is attached to left
and right semi-infinite electrodes. The incoming propagating
state from the left electrode is scattered in the central re-
gion and end up as reflected and transmitted superpositions
of propagating and evanescent states.

principle layers numbered i = −∞, . . . ,∞ and com-
posed of a finite central (C) region containing the de-
vice and two semi-infinite left (L) and right (R) elec-
trode regions, see Fig. 2. The wave function is ψi(x) =
∑mi

j ci,jχi,j(x −Xi,j) in layer i, where χi,j denotes lo-
calized non-orthogonal atomic orbitals and Xi,j are the
positions of the mi atoms. We represent ψi(x) by a
column vector of the expansion coefficients, given by
ψi = [ci,1, . . . , ci,mi

]T , and write the wave function ψ ex-
tending over the entire system as ψ = [ψT

−∞, . . . ,ψT
∞]T.

We also assume that the border layers 1 and n of the
central region are always identical to a layer of the con-
necting electrodes.

We refer the reader to Refs. 16–18 for details on how
to employ WFM to our setup. Here and in the rest of
this paper, we will use the following notation for the key
elements: The matrices Φ±

L = [φ±L,1, . . . ,φ
±
L,mL

] contain

in their columns the full set of mL left-going (−) and mL

right-going (+) bulk states φ±L,k of the left electrode, and

the diagonal matrices Λ±
L = diag[λ±L,1, λ

±
L,2, . . . , λ

±
L,mL

]

hold the corresponding Bloch factors.29 If trivial states
with |φ+

L,k| = 0 or |φ−L,k| = inf occur in practice these
are simply rejected. We assume that all the evanescent

bulk states are (state-)normalized φ±†L,kφ
±
L,k = 1, while all

the Bloch bulk states are flux-normalized30 φ
±†
L,kφ

±
L,k =

dL/v±L,k, where v±L,k are the group velocities15,21 and dL is
the layer thickness. Similarly for the right electrode the
matrices Φ±

R and Λ±
R are formed. We can then define

the Bloch matrices17 as B±
L = Φ±

LΛ±
L (Φ±

L )−1 and B±
R =

Φ±
RΛ±

R(Φ±
R)−1. The system of linear equations for ψC is

subsequently written as

(ESC −HC)ψC = b, (3)

where E is the energy, ψC = [ψT
1 , . . . ,ψT

n ]T is the central



region wave function, and SC and

HC =












H1 + ΣL H1,2

H
†
1,2 H2

. . .

. . .
. . .

. . .
. . . Hn−1 Hn−1,n

H
†
n−1,n Hn + ΣR












(4)
are the tight-binding overlap and Hamiltonian matrices
of the central region. The right-hand side source term
b = [bT1 ,0T, . . . ,0T]T is specified by the expression

b1 = −(H̄†
0,1 + ΣLB

+
L )ψ0, (5)

where ψ0 is the incoming wave function (notice that this
source term is defined for layer 1 and not layer 0, as is the
case in Refs. 18 and 17). In Eq. (5) we have introduced
the overline notation H̄i ≡ ESi−Hi and H̄i,j ≡ ESi,j−
Hi,j (also used below) to enhance the readability.

The matrices ΣL and ΣR are the left and right self-
energy matrices. We stress that for the current setup,
these matrices are identical to the self-energy matri-
ces introduced in the Green’s function formalism1 (to
within an infinitesimal imaginary shift of E), and may
be evaluated by well-known recursive techniques22,23 or,
more conveniently for WFM, in terms of the Bloch
matrices:16,17

ΣL = H̄
†
0,1(H̄1 + H̄†

0,1(B
−
L )−1)−1H̄0,1, (6)

and

ΣR = H̄n,n+1(H̄n + H̄n,n+1B
+
R )−1H̄

†
n,n+1, (7)

For notational simplicity in the following sections, we
leave out the implied subscripts L or R, indicating the left
or right electrode, whenever the formalism is the same for
both (e.g, for symbols m, λk,φk,Φ±,Λ±,B±,Σ, etc.).

B. Transmission and reflection coefficients

As a final step we want to determine the t and r ma-
trices from the boundary wave functions ψ1 and ψn that
have been obtained by solving Eq. (3).

When the incoming wave ψ0 is specified to be the kth
right-going state φ+

L,k of the left electrode, we can eval-
uate the kth column of the transmission matrix tk by
solving

Φ+
Rtk = ψn, (8)

where Φ+
R is the mR × mR column matrix holding the

right-going bulk states of the right electrode (and here
assumed to be non-singular). Similarly the kth column
of the reflection matrix rk is given by

Φ−
Lrk = ψ1 − λ+

L,kφ
+
L,k, (9)

where Φ−
L holds the left-going bulk states of the left elec-

trode. The flux normalization ensures that t†t + r†r =
1.1

TABLE I: CPU times in seconds when using WFM for calcu-
lating t and r at 20 different energies inside E ∈ [−2 eV; 2 eV]
for various two-probe systems. The numbers of atoms in the
central region (electrode unit cell) are indicated. The two
right-most columns show the percentage of the CPU time
used for computing the electrode bulk states with dgeev vs.
solving the central region linear systems in Eq. (3).

System Atoms CPU dgeev Eq. (3)

Li–Li 32(8) 0.1 92% 7%

Li–C chain 91(54|2) 2.8 91% 8%

Al–C×7–Al 74(18) 6.5 87% 11%

Au–BDT–Au 102(27) 171.3 90% 8%

Au–CNT(8,0)×5–Au 268(27) 241.8 65% 34%

CNT(8,0)–CNT(8,0) 192(64) 257.9 95% 4%

CNT(5,0)–CNT(10,0) 300(40|80) 255.1 79% 18%

CNT(18,0)–CNT(18,0) 576(144) 994.1 90% 8%

III. EXCLUDING EVANESCENT STATES

The most time consuming task of the WFM method
is to determine the electrode states, which requires solv-
ing a quadratic eigenvalue problem.16 As examples, see
the profiling results listed in Table I, where we have used
the method to compute t and r for a selection of two-
probe systems.31 The CPU timings show that to deter-
mine the electrode states by employing the state-of-the-
art lapack eigensolver dgeev is, in general, much more
expensive than to solve the system of linear equations
in Eq. (3). We expect this trend to hold for larger sys-
tems as well. Therefore, in the attempt to model signifi-
cantly larger devices (thousands of atoms), it is of essen-
tial interest to reduce the numerical cost of the electrode
states calculation. We argue that a physically reason-
able approach is to limit the number of electrode states
taken into account, e.g., by excluding the least important
evanescent states. In this section, a new technique to do
this in a rigorous and systematic fashion is presented.

A. Decay of evanescent states

The procedure to determine the Bloch factors λk and
non-trivial states φk of an ideal electrode and subse-
quently characterize these as right-going (+) or left-going
(−) is well described in the literature.16–18,24 We note
that only the obtained propagating states with |λk| = 1
are able to carry charge deeply into the electrodes and
thus enter the Landauer expression in Eq. (2). The
evanescent states with |λk| 6= 1, on the other hand, de-
cay exponentially but can still contribute to the current
in a two-probe system, as the “tails” may reach across
the central region boundaries.

Consider a typical example of an electrode states eval-
uation: We look at a gold electrode with 27 atoms in the
unit cell represented by 9 (sp3d5) orbitals for each Au-
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FIG. 3: (Color online) (a) Positions of the Bloch factors λk

(|λk| ≤ 1) obtained for a bulk Au(111) electrode with 27
atoms per unit cell at E = −1.5 eV. (b) Amplitudes of the
corresponding normalized electrode states φk moving through
10 layers of the ideal bulk electrode. A total of 243 states are
shown of which 3 are propagating (colored/dashed) and the
rest are evanescent (circles/black).

atom. Such a system results in 243 right-going and 243
left-going states. Fig. 3a shows the positions in the com-
plex plane of the Bloch factors corresponding the right-
going states (i.e., |λk| ≤ 1) for energy E = −1.5 eV. We
see that there are exactly three propagating states, which
have Bloch factors located on the unit circle. The re-
maining states are evanescent, of which many have Bloch
factors with small magnitude very close to the origin.

Fig. 3b illustrates how the 243 left-going states would
propagate through 10 successive gold electrode unit cells.
The figure shows that the amplitudes of the three propa-
gating states are unchanged, while the evanescent states
are decaying exponentially. In particular, we note that
the evanescent states with Bloch factors of small mag-
nitude are very rapidly decaying and vanishes in com-
parison to the propagating states after only a few lay-
ers. In the following, we will exploit this observation
and attempt to exclude such evanescent states from the
WFM calculation altogether. Formally this can be ac-
complished if only the electrode states φk with Bloch

factors λk satisfying

λmin ≤ |λk| ≤ λ−1
min, (10)

are computed and subsequently taken into account, for a
reasonable choice of 0 < λmin < 1. Eq. (10) is therefore
adopted in the coming sections as the key relation to
select a particular subset of the available electrode states.

B. Extra electrode layers

We will denote the state matrices from which the
rapidly decaying evanescent states are excluded via
Eq. (10), and also the Bloch matrices and self-energy ma-

trices obtained from these, with a tilde, i.e., as Φ̃±, B̃±

and Σ̃. The state matrices holding the excluded states
are denoted by a math-ring accent Φ̊±, so that

Φ± = [Φ̃±, Φ̊±], (11)

is the assumed splitting of the full set. All expressions
to evaluate the Bloch and self-energy matrices are un-
changed as given in Sect. II (now (Φ̃±)−1 merely rep-

resents the pseudo-inverses of Φ̃±). However, since the

column spaces of Φ̃± are not complete, there is no longer
any guaranty that WFM can be performed so that the
resulting self-energy matrices and, in turn, the solution
ψC = [ψT

1 , . . . ,ψT
n ]T of the linear system in Eq. (3), are

correct. In addition, it is clear that errors can occur in
the calculation of t and r from Eqs. (8) and (9) because
the boundary wave functions ψ1 and ψn might not be
fully represented in the reduced sets Φ̃+

R and Φ̃−
L .

As explicitly shown in Refs. 16–18, the key to deriving
Eq. (3) is twofold: fixing the layer wave functions coming
into the C region (e.g., in our case ψ+

1 = λ+
L,kφ

+
L,k and

ψ−
n = 0) and matching the layer wave functions across

the C region boundaries (we remind the reader that our
setup has one more electrode layer on both sides of C
compared to the setup of Refs. 18 and 17).

The matching is accomplished by using the B± ma-
trices, which by construction propagate the layer wave
functions in the bulk electrode,16–18 i.e.,

ψ±
j = (B±)j−iψ±

i , (12)

where subscript L is implied for the left electrode (i, j ≤
1), and R for the right electrode (i, j ≥ n). Notice that
the Bloch matrices are always square and also invertible
since any trivial electrode are rejected from the outset in
the current formalism. When the reduced Bloch matrices
B̃± are used instead of B±, however, the possible com-
ponents of the wave functions outside the column spaces
of Φ̃± are not properly matched, and the boundary con-
ditions are not necessarily satisfiable.

In order to diminish the errors introduced by excluding
evanescent states, we propose to insert additional elec-
trode layers in the central region, see Fig. 4. As illus-
trated in the previous section, this would quickly reduce
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FIG. 4: (Color online) Two-probe system in which the C
region boundaries are expanded by l extra electrode layers.

the imprint of the rapidly decaying evanescent states in
the boundary layer wave functions ψ̃1 and ψ̃n, which
means that the critical components outside the column
spaces Φ̃± becomes negligible at an exponential rate in
terms of the number of additional layers. We empha-
size that the inserted layers may be “fictitious” in the
sense that they can be accommodated by simple block-
Gaussian-eliminations prior to the solving of Eq. (3) for
the original system.

The above statements are confirmed by the following
analysis. In the particular case, where l extra electrode
layers are inserted and the border layers of the C region
are identical to the connecting electrode layers, we can
write the boundary matching equations as16–18

ψ0 = (B̃+
L )−1ψ

(l)+
1 + (B̃−

L )−1ψ
(l)−
1 (13)

for the left boundary and

ψn+1 = B̃+
Rψ

(l)+
n + B̃−

Rψ
(l)−
n (14)

for the right boundary, where ψ
(l)+
1 = λ+

L,kφ
+
L,k and

ψ
(l)−
n = 0 are fixed as boundary conditions. We point

out, that the l extra layers are bulk layers extending from
each electrode and therefore connected via the relation in
Eq. (12) for L and R, respectively. Moreover, since the
electrode wave functions can always be expanded in the
corresponding complete set of bulk states, we may write

ψ±
i = Φ±a±i = [Φ̃±, Φ̊±]

[

ã±i
å±i

]

, (15)

where a±i = [ã±T
i , å±T

i ]T are vectors that contain the ex-
pansion coefficients and subscript L is implied for the left
electrode (i ≤ 1), and R for the right electrode (i ≥ n).
Thus we may consider the (unfixed) boundary wave func-
tions entering Eqs. (13) and (14), by explicitly writing

ψ
(l)−
1 = (B−

L )−lψ−
1 = [Φ̃−

L , Φ̊−
L ]

[

(Λ̃−
L )−lã−1

(Λ̊−
L )−lå−1

]

, (16)

and

ψ(l)+
n = (B±

R )lψ+
n = [Φ̃+

R, Φ̊+
R]

[

(Λ̃+
R)lã+

n

(Λ̊+
R)lå+

n

]

, (17)

using the definition B± = Φ±Λ±(Φ±)−1. This shows
that the critical components outside the column spaces
of Φ̃±

L and Φ̃±
R are given by coefficients (Λ̊−

L )−lå−1 and

(Λ̊+
R)lå+

n , respectively, and assuming we exclude fastest
decaying of the evanescent states according to Eq. (10),

that is, |λk| > λ−1
min for the diagonal elements of Λ̊−

L

and |λk| < λmin for the diagonal elements of Λ̊+
R, where

λmin is less than 1, these coefficients always decrease as
a function of l.

We conclude that WFM with the reduced Bloch matri-
ces B̃± approaches the exact case with B± if additional
electrode layers are inserted as suggested, and therefore,
that the solution ψ̃C obtained from Eq. (3) when only a
reduced set of bulk states are used, approaches the cor-
rect solution ψC accordingly.

C. Accuracy

Since it is clear that the exclusion of some of the
evanescent states may introduce errors when using the
WFM method, it is important to be able to estimate and
monitor the accuracy of the results obtained. We now
discuss how this can be done in a systematic fashion in
terms of the parameter λmin and the number l of extra
electrode layers.

Let us first consider the accuracy of the transmission
matrix t. Suppose that the rapidly decaying evanescent
states Φ̊± are excluded in the WFM as demonstrated
in Sect. III B, but still available to evaluate the trans-
mission coefficients with Eq. (8), which here becomes

tk = [Φ̃+
R, Φ̊+

R]−1ψ
(l)+
n , since ψ

(l)−
n = 0 from the bound-

ary conditions. Inserting Eq. (17) in this expression, we
see that the first m̃R elements of the column vector tk
are given by t̃k = (Λ̃+

R)lã+
n . These coefficients are ex-

act, assuming that enough extra layers are inserted to
accomodate accurate WFM for the system.

We now wish to compare the exact coefficients with the

ones obtained from t̃′k = (Φ̃+
R)−1ψ

(l)+
n , that is, when the

rapidly decaying evanescent states are excluded from the
calculations altogether. In order to do this, we use the
property of the pseudo-inverse which allows us to write

(Φ̃+
R)−1[Φ̃+

R, Φ̊+
R] = [Ĩ, (Φ̃+

R)−1Φ̊+
R], (18)

where Ĩ is the identity matrix of order equal to the
number of included states m̃R. From the expression in
Eq. (17) it then follows that

t̃′k = t̃k + (Φ̃+
R)−1Φ̊+

R(Λ̊+
R)lå+

n , (19)

which corresponds to the correct coefficients t̃k plus an
error term.

We have already established in the previous section
that the (Λ̊+

R)lå+
n factor in the error term will decrease

as a function of l. To ascertain that the total error
term also decreases we look at the 2-norm of (Φ̃+

R)−1Φ̊+
R,

which will satisfy ||(Φ̃+
R)−1Φ̊+

R||2 ≤ m̊
1
2

R||(Φ̃
+
R)−1||2, since



||Φ̊+
R||2 ≤ m̊

1
2

R when all evanescent states are assumed

normalized. The norm ||(Φ̃+
R)−1||2 can be readily evalu-

ated and depends on the set of states included via the pa-
rameter λmin but not on l. We then have that (Φ̃+

R)−1Φ̊+
R

is independent of l.

Writing Eq. (19) as t̃′k = t̃k + ǫ̃k, where ǫ̃k holds the
errors on the coefficients of the kth column, we further
obtain that the corresponding total transmission T ′ ob-
tained from Eq. (2) can be expressed as

T ′ = T +
∑

kk′

(t̃∗kk′ ǫ̃kk′ + ǫ̃∗kk′ t̃kk′ + |ǫ̃kk′ |
2) (20)

where T is the exact result and the summation is over
the Bloch states k and k′ in the left and right electrode,
respectively.

In the attempt to estimate the order of the error term
in Eq. (20) we may (as a worst case approximation) take

all diagonal elements of Λ̊+
R to be equal to the maximum

range λmin of Eq. (10), which makes all elements ǫ̃kk′ pro-
portional to λl

min. Thus we arrive at the simple relation

|T ′ − T | ∼ λl
min +O

(
(λl

min)
2
)
, (21)

which shows that the error decreases exponentially in
terms of the number of extra layers l.

In practice, Eq. (21) can be adopted as a reasonable
order of magnitude estimate of the accuracy of T ′. Al-
ternatively, we are able to directly monitor the error aris-
ing on the boundary conditions, e.g., in terms of the co-

efficient vectors b̃L,k ≡ (Φ̃+
R)−1(ψ

(l)+
1 − λ+

L,kφ
+
L,k) and

b̃R,k ≡ (Φ̃−
R)−1ψ

(l)−
n , where ψ

(l)+
1 and ψ

(l)−
n are given by

solving Eq. (3). It is clear that |b̃L,k| = 0 and |b̃R,k| = 0
in the case where the boundary conditions are exactly
satisfied. Taking into account the similarity in the ex-
pressions for t̃′k and b̃R,k and assuming a similar order

of errors in ψ
(l)+
n and ψ

(l)−
n , we would also expect the

same order of magnitude of |ǫ̃k| and |b̃R,k|. This sug-
gests another order of magnitude accuracy estimate from
Eq. (20), which is strait forward to monitor using the re-
sults available with the reduced set of bulk states:

|T ′−T | ≤
∑

k

(2|t̃k||ǫ̃k|+|ǫ̃k|
2) ∼

∑

k

(2|t̃k||b̃R,k|+|b̃R,k|
2),

(22)
where all the vector norms (e.g., |t̃k|

2 =
∑

k′ |t̃kk′ |
2) are

assumed to be taken over the elements corresponding to
propagating bulk states k′ only.

Finally, we note without explicit derivation, that sim-
ilar arguments for the reflection matrix with columns

r̃′k = (Φ̃−
L )−1(ψ

(l)−
1 − λ+

L,kφ
+
L,k) and the total reflection

coefficient R′, as presented above for t̃′k and T ′, results in
the same accuracy expressions for |R′−R| as for |T ′−T |
in Eqs. (21) and (22), if we substitute t̃k → r̃k and

b̃R,k → b̃L,k.
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FIG. 5: (Color online) Error (absolute) in the calculated total
transmission and reflection coefficients T ′ and R′ as a function
of l. The panels show the cases of λmin set to 0.5, 0.3 and 0.1,
which corresponds to 3, 14 and 31 Au bulk states (out of 243,
see Fig. 3) taken into account, respectively. The dashed line
indicate the theoretical accuracy estimate λl

min.

D. Example

To end this section, we exemplify the previous discus-
sion quantitatively by looking at the Au(111) electrode
described earlier, and assuming a 128 atom (4 unit cells)
device of zigzag-(8,0) carbon nano tube (CNT), see the
configuration in Fig. 1. For energy E = −1.5 eV, we have
calculated the deviation between the total transmission
obtained when all bulk states are taken into account (T )
and when some evanescent states are excluded (T ′) as
specified with different settings of λmin. Deviations are
also determined for the corresponding total reflection co-
efficients (R and R′). Fig. 5 shows the results as a func-
tion of l, together with the estimate λl

min of Eq. (21) and
the estimate of Eq. (22) both for the transmission and
reflection coefficients, where the higher order terms have
been neglected,

We observe that the absolute error in the obtained
transmission coefficients (red curves) and reflection coef-
ficients (blue curves) are generally decreasing as a func-
tion of l, following the same convergence rate as λl

min

(dashed line). Looking closer at results for neighbor l
values, we see that the errors initially exhibit wave-like
oscillations. This is directly related to the wave form
of the evanescent states that have been excluded (see
the propagation of the slowest decaying black curves in
Fig. 3(b)), since the representation of these states in the



FIG. 6: (Color online) Schematic illustration of a carbon nan-
otube (8,4) band-to-band tunneling device. The carbon nan-
otube is positioned on Li surfaces next to an arrangement of
three gates.

reduced spaces Φ̃± (i.e., the expansion coefficients in ǫ̃k)
may shift when l is increased. In other words, although
the norm of the errors |ǫ̃k| are decreasing as a function
of l, the specific error ǫ̃kk′ on a given (large) coefficient
of t̃′kk′ or r̃′kk′ may increase, which means that the overall
error term in Eq. (20) can go up. Fortunately, however,
this is only a local phenomenon with the global trend
being rapidly decreasing errors.

Consider also the quality of the simple accuracy esti-
mate of λl

min and the estimates expressed by Eq. (22)
for the transmission coefficients (green curves) and re-
flection coefficients (yellow curves), respectively. For rel-
atively large λmin all estimates are very good. However,
for smaller values of λmin, only the latter two retain a
high quality while the λl

min estimate tends to be overly
pessimistic. It is important to remember, that these es-
timates are by no means strict conditions but very rea-
sonable to make an order of magnitude estimate of the
accuracy.

We note in passing, that the results in the top panel of
Fig. 5 corresponds to using only the propagating Bloch
states in the transmission calculation. Still we are able to
compute T and R to an absolute accuracy of three digits
by inserting 2× 5 extra electrode layers in the two-probe
system. This is quite remarkable and shows promise for
large-scale systems, e.g., with nano-wire electrodes, for
which the total number of evanescent states available be-
comes exceedingly great.

IV. APPLICATION

In this section we will apply the developed method to
a nano-device consisting of a CNT stretched between to
two metal electrodes and controlled by three gates. The
setup is inspired by Appenzeller et al.25, and we expect
this particular arrangement to be able to display so-called
band-to-band (BTB) tunneling, where one observes gate
induced tunneling from the valence band into the con-
duction band of a semi-conducting CNT and vice versa.

We show the configuration of the band-to-band tunnel-
ing two-probe system in Fig. 6. The device configuration
contains 10 principal layers of a CNT(8,4), having 112
atoms in each. The diameter of the tube and layer thick-
ness are 8.3 Å and 11.3 Å, respectively. The electrodes
consist of CNT(8,4) resting on a thin surfaces of Li, where
the lattice constant of the Li layers is stretched to fit the
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FIG. 7: (Color online) Conduction as a function of the Gate-A
voltage in units of the conductance quantum G0. In the cal-
culations we use a dielectric constant of 4, VGate−A = −2.0 V,
and vary VGate−B from −2.0 V to 4.0 V as indicated.

layer thickness of the CNT. The central region of the
two-probe system comprises a total of 1440 atoms. An
arrangement of rectangular gates are positioned below
the carbon nanotube as indicated on the figure. In the
plane of the illustration (length × height) the dimensions
are as follows: Dielectric 108 Å×5 Å; Gate-A 108 Å×5 Å;
Gate-B 20 Å× 5 Å. All the regions are centered with re-
spect to the electrodes so that the complete setup has
mirror symmetry. In the direction perpendicular to the
illustration the configuration is assumed repeated every
19.5 Å as a super-cell.

We have obtained the electronic density of the BTB
device by combining the NEGF formalism with a semi-
empirical Extended Hückel theory model (EHT) using
the parameterization of Hoffmann.26 In order to adjust
the charge transfer between the CNT and the Li elec-
trodes, such that the Fermi level is just below the con-
duction band of CNT(8,4) we add the term δǫS to the Li
parameters. This corresponds to an n-type doping. At
self-consistency, the average charge transfer from Li to
the nanotube is 0.002 e per carbon atom in the electrode
and the Fermi energy is located at −4.29 eV, which is
only 0.07 eV below the conduction band of CNT(8,4).
The electrostatic treatment of the dielectric and gates
as part of the self-consistent procedure for obtaining the
electronic density is described in our recent publication
Stokbro et al..27

In the following we show results from a calculation of
the transmission spectrum T (E) for VGate−A = −2.0 V
and a dielectric constant of 4. To begin with we calculate
the electronic conductance for different Gate-B voltages
in the range [−2 V, 4 V]. The results for temperature
T = 0 K, in terms of the unit conduction G0 are dis-
played with the black curve in Fig. 7. It shows an initial
conductance for VGate−B = −2.0 V of the order of one,
a subsequent drop by four orders of magnitude around
VGate−B = 2.0 V, and a final increase of one order of
magnitude towards VGate−B = 4.0 V. In addition to the
zero temperature conduction which is equal to T (EF ),



where EF is the Fermi energy, we also display the results
at room temperature T = 0 K (red curve), which can be
obtained from linear response as

G =

∫

dE T (E)
e(E−EF )/kBT

(1 + e(E−EF )/kBT)2
(23)

The overall trend of the conduction curve is similar for
room temperature, and can be explained as band-to-band
tunneling which is tuned by the gate potentials.

In order for BTB tunneling to appear in CNFETs,
fields along the length of the tube have to be created
that are strong enough to shift the conductance or va-

lence bands by at least the gap energy of the CNT. In
the case of CNT(8,4) the band gap is ∼ 0.8 eV which can
be transcended via the three-gate arrangement. More
specifically, we present in the left part of Fig. 8 the total
potential induced by the three gates on the carbon atoms
in CNT over the full extension of the device. Along with
this, in the right part of Fig. 8, we show the correspond-
ing transmission spectrum T (E), for four gate voltages
VGate−B = −2.0 V, 1.0 V, 2.0 V, and 4.0 V, which rep-
resent significantly different locations on the conduction
curves in Fig. 7.
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FIG. 8: (Color online) Fields induced along the length of
the device (left panel) and the transmission spectrum (right
panel) for the various gate voltages VGate−B from −2.0 V to
4.0 V as indicated.

From Fig. 8 we can see how the bands are shifted up-
wards by an increasing amount as the Gate-B voltage
in turned up. To begin with, e.g., for VGate−B = 1 V,
this results in lower conduction since the conduction
band bends away from the Fermi level, which is indi-
cated by the dotted line. When the gate voltage is at
VGate−B = 2 V the valence band almost reaches the con-
duction band in which case BTB tunneling becomes pos-
sible. By increasing the gate voltage further more bands
become available for BTB tunneling and the effect is vis-
ible as a steady increase in the calculated transmission
T (E) just above the Fermi level.

We would like to point out that the results presented
here have all been calculated with the modified WFM
method using parameters λmin = 0.1 and l = 1. More-
over, we have verified the transmission results presented
in Fig. 8 by applying also the standard WFM method,
and obtain identical transmissions curves to within at

least three significant digits. We also emphasize, that
the total CPU time required for calculating the 16 trans-
mission spectra used for Fig. 7 (∼ 53 hours) is less than
half the time needed for calculating the four transmission
curves with the standard WFM method (∼ 141 hours)
which were used for verification. The overall time saving
achieved with the developed WFM method was therefore
more than an order of magnitude for this application.

V. SUMMARY

We have developed an efficient approach for calculat-
ing quantum transport in nano-scale systems based on
the WFM scheme originally proposed by Ando in refer-
ence [16]. In the standard implementation of the WFM
method for two-probe systems, all bulk modes of the elec-
trodes are required in order to represent the transmitted



and reflected waves in a complete basis. By extending the
central region of two-probe system with extra electrode
principal layers, we are able to exclude the vast majority
of the evanescent bulk modes from the calculation alto-
gether. Our final algorithm is therefore highly efficient,
and most importantly, errors and accuracy can be closely
monitored.

We have applied the developed WFM algorithm to a
CNFET in order to study the mechanisms of band-to-
band tunneling. The setup was inspired by reference [25]
and the results of this paper confirmed. By measuring
the CPU-times for calculating transmission spectra of the
CNFET two-probe system and comparing to cost of the

standard WFM method we have observed a speed-up by
more than a factor of 10. We therefore believe that this
is an ideal method to be used with ab initio transport
schemes for large-scale simulations.
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φ±L,k → (dL/v±L,k)
1
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appropriate for showing the overall trend in the computa-
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I. INTRODUCTION

Quantum transport has been an important research subject
for more than a decade due to the ever-growing interest in
simulating and fabricating nanoscale electronic devices. In
particular, the experimental and theoretical investigation of
current-voltage �I-V� characteristics for molecules and
atomic structures placed between conducting electrodes has
attracted much effort.1–11 Most theoretical approaches are
based on the Landauer-Büttiker formulation of quantum
transport,12 where the electrical properties of a central inter-
face are described by the transmission coefficients of a num-
ber of one-electron states propagating coherently through the
system. The widely used Green’s function method13,14 and
the wave function matching method15–17 are two such tech-
niques. To apply these in practice and determine the current
through a device under finite bias, it is necessary to evaluate
the bulk modes or, correspondingly, the self-energy matrices
of each electrode for a considerable number of different en-
ergies �chemical potentials� and possibly k points.18 In many
cases, this represents the dominant part of the computational
work associated with electron transport calculations, assum-
ing that the Hamiltonian of the system has been provided.

In this paper we develop an efficient method for comput-
ing the self-energy matrices using an iterative Krylov sub-
space technique. The foundation of the method is the evalu-
ation of the self-energy matrices for the semi-infinite
electrodes from the solutions of the quadratic eigenvalue
problem �QEP� that arises for infinite periodic systems. This
approach has been suggested by Ando19 and studied by sev-
eral authors.15,16,20–23 It has been shown16,24 to be equivalent
to well-established iterative and recursive schemes.25,26 A
disadvantage of the latter schemes from a computational
point of view is the need to introduce a small imaginary part
in the energy in order to ensure that the iterations converge to
the correct retarded surface Green’s function. This imaginary
part forces complex arithmetic in the numerical algorithms

used, which is not always the case in the eigenproblem
approach.15,19

The key motivation for developing the proposed method
is the physical observation that only the propagating and the
slowly decaying evanescent modes in the bulk electrodes
contribute to the transmission of electrons through a semi-
conductor device of some extension.8 These modes corre-
spond to the solutions of the QEP that have complex eigen-
values in the vicinity of the unit circle. As recently suggested
by Khomyakov et al.,15 this makes it plausible to generate
reduced self-energy matrices on the basis of a few selected
solutions of the QEP, which include all the electrode-device
coupling information that is necessary to determine the cor-
rect transmission. To really exploit such an approach in prac-
tice, an algorithm to search for and compute only the desired
quadratic eigenpairs is required.

We will here consider the Arnoldi method27 combined
with a shift-and-invert strategy in order to obtain the QEP
solutions. These techniques have proven effective in obtain-
ing selected interior eigenvalues of large-scale general com-
plex eigenproblems.28–30 In addition, the recent surge of pa-
pers studying the Arnoldi procedure applied specifically to
polynomial matrix problems indicates that this is a success-
ful technique to build the Krylov subspace for QEPs.31–34

The algorithm we develop assumes real Hamiltonian matri-
ces �generalization to the complex case is described in Ap-
pendix A 2�, and targets the complex eigenvalues which are
on or inside the unit circle by applying shift-and-invert spec-

tral transformations to �1 /�2 and î /�2, where î is the imagi-
nary unit, and subsequently generating a Krylov subspace for
each with the Arnoldi method. Ritz pairs obtained by project-
ing the QEP onto the three Krylov subspaces give good ap-
proximations to the eigenpairs with eigenvalues close to the
corresponding shifts. We will show that this method of pro-
ceeding is both rigorous and efficient by applying it to vari-
ous Hamiltonians obtained using density functional theory
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�DFT� calculations with a localized basis of atomic
orbitals.35

This paper is organized as follows. In Sec. II we give a
brief exposition of our formalism for electron transport. The
Krylov subspace method is introduced in Sec. III with details
on its key parts: the Arnoldi method, the spectral transforma-
tions, and the convergence criterion. Typical convergence be-
havior is discussed in Sec. IV. The paper ends with numerical
examples in Sec. V and a few concluding remarks.

II. ELECTRON TRANSMISSION AND SELF-ENERGY
MATRICES

In this section we introduce our formalism, which com-
bines the well-established Green’s function method used for
electron transport calculations13,14,36 with the self-energy ma-
trices obtained with the eigenvalue approach of Ando19 as
used in the wave function matching �WFM� method.15–17

Our goal in combining the methods is to obtain, in the most
efficient way, the spectrum of transmission coefficients T�E�
for two-probe systems �see top illustration in Fig. 1� in order
to calculate the current I=2e / h�−�

� T�E��nF�E−�L�−nF�E
−�R��dE through the device, where E are the energies, nF is
the Fermi function, and �L and �R are the chemical poten-
tials of the left �L� and right �R� electron reservoirs.13,14

A. Two-probe setup

Consider a two-probe system, as illustrated in the lower
part of Fig. 1, where the device corresponds to the central
region �C� and the reservoirs are two semi-infinite electrodes
�L and R�. The system has been divided into principal layers
that interact only with nearest-neighbor layers and each layer
is assumed to be described by appropriate Hamiltonian Hi
and overlap Si matrices, where i is the layer number, as rep-
resented, e.g., in a basis of localized nonorthogonal atomic
orbitals. In this manner the Hamiltonian and overlap matrices

are block-tridiagonal infinite matrices, where the off-
diagonal blocks may be written Hi,j and Si,j. For the elec-
trode Hamiltonian and overlap matrices we use subscripts L
and R instead of numbers i , j. Notice also that the C region in
this setup contains at least one layer of each electrode, which
means that H1=HL and Hn=HR.

We refer the reader to Refs. 13, 14, and 36 for details on
how to apply the Green’s function method to the current
setup. Here we limit ourselves to writing the primary results:
First, the finite central region part of the infinite retarded
Green’s function matrix can be obtained as

GC
r = ��E + î��S − HC − �L − �R�−1, �1�

where � is an infinitesimal quantity, HC is the central region
Hamiltonian, and the effect of the semi-infinite electrodes is
accommodated through self-energy matrices �L and �R. Sec-
ond, the total transmission coefficient T�E� is then given by

T�E� = Tr��LGC
r �RGC

a � , �2�

where �L/R= î��L/R−�L/R
† � are coupling matrices and GC

a is
the advanced central Green’s function matrix, which is ob-

tained from Eq. �1� by using −î� as the infinitesimal imagi-
nary component in all terms �i.e., implicitly in �L and �R�.

We find that an efficient approach �see Appendix A 1� to
applying Eqs. �1� and �2� is to compute only a single diago-
nal block of GC

r in order to evaluate T�E�. The question
remains how to calculate the required self-energy matrices
�L/R in the most efficient manner.

B. Electrode self-energy matrices from QEPs

It is known that the surface Green’s function matrices for
a semi-infinite ideal electrode can be evaluated by recursive
techniques that take 2n−1 electrode layers into account in n
iterations.25,26 This is a fast and widely used approach to
obtain the self-energy matrices when employing the Green’s
function method.1,37

Another approach has been proposed by Ando,19 where
one constructs and solves an appropriate QEP �introducing
notation H	ES−H�

HL,L
† �k + �kHL�k + �k

2HL,L�k = 0, �3�

for k=1, . . . ,2ML, where ML is the number of orbitals local
to the unit cell of the left electrode and similarly for the right
electrode with L→R. The procedure to determine the non-
trivial solutions �i.e., the Bloch factors �k and electrode
modes �k� from Eq. �3�, and subsequently characterize these
as propagating or evanescent, right-going �+� or left-going
�−�, is well described in the literature �we refer the reader to
details in Refs. 15 and 16�.

Applying Ando’s approach via the formalism of the WFM
method yields expressions16

�0
L = − HL,L

† �BL
−�−1, �4�

�n+1
R = − HR,RBR

+ �5�

for the electrode self-energy matrices in the layers 0 and n

.... ........

I

µL µR

Vb

VbDevice

HL HL HRHRH1 H2 H3 Hn−2Hn−1Hn

L C R

−∞, . . . , 0, 1, 2, . . . , n − 1, n, n + 1, . . . ,∞

FIG. 1. �Color online� Schematic representation of a two-probe
device with applied bias Vb. The top figure illustrates the Landauer-
Büttiker picture of coherent scattering between electron reservoirs
kept at chemical potentials �L and �R. The bottom figure shows the
device part modeled by two semi-infinite electrodes �L and R� and a
central region �C�, each divided into principal layers that interact
only with nearest-neighbor layers. The layers are described by
square Hamiltonian matrices Hi of varying sizes and numbered
i=−� , . . . ,�, as indicated.
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+1 just outside the C region, where BL/R
� are the Bloch ma-

trices constructed from the solutions �k and �k �see the ex-
pressions in Ref. 16, in which the notation is FL/R��� for the
Bloch matrices, and �n��� and un��� for the solutions�. Af-
ter evaluating these self-energy matrices we use them in the
Green’s function method described above �we set �=0 in
this case, since the retarded Green’s function is already
uniquely defined by the self-energies16,21� and follow the
steps outlined in Appendix A 1.

C. Reduced self-energy matrices

From a numerical perspective, it is convenient to keep
only those eigenpairs from Eq. �3� that have eigenvalues �k
within specific intervals15

�min 	 
�k
+
 	 1, 1 	 
�k

−
 	 �min
−1 , �6�

for a reasonable choice of �min. Evanescent modes with 
�k

outside these intervals are decaying or growing so fast that
they have negligible influence in a two-probe setup like ours.
The decisive factor in choosing �min is that the sets ��k

+� and
��k

−� of electrode modes included must be complete in the
sense that they can fully represent the transmitted and re-
flected waves �cf. the WFM formalism�.

In what follows, we exploit that a reasonable choice of
�min for transmission calculations with our setup is often of
the order 0.1.38 For example, in the case of the polar plot in
Fig. 2, where the Bloch factors with 
�k
	1 of a 27-atom
Au�111� electrode unit cell are shown, the computationally
significant modes can be identified as the eigenvalues inside
the shaded area �i.e., by setting �min=0.1�. The numerical
results given in Sec. V illustrate this observation quantita-
tively. A proper formal analysis is left for a future
publication.39

III. KRYLOV SUBSPACE METHOD

In this section, we describe the Krylov subspace method
for evaluating the electrode self-energy matrices �0

L and
�n+1

R . The crucial assumption in the approach is that we may
strip the less important modes from the sets ��k

+� and ��k
−�,

and still obtain a good approximation to the self-energy ma-
trix to be used in transmission calculations. For simplicity,
we also assume that the electrode Hamiltonians are real, and
give in Appendix A 2 a prescription to generalize to the
complex case. Our current method, which targets the specific
modes that are most important, can be characterized as a
shift-and-invert Arnoldi method with adaptive subspace size.
We will describe the key ingredients of the method: the Ar-
noldi procedure, the spectral transformations, and the con-
vergence criterion. The goal is to present an alternative for
obtaining the self-energy matrices, which is faster than exist-
ing techniques.

A. Arnoldi procedure

The Krylov subspace of dimension m generated by an n

n matrix A and an initial vector v1 is given by
Km�A ,v1�	span�v1 ,Av1 ,A2v1 , . . . ,Am−1v1�.40 In order to
determine this space we apply the Arnoldi procedure27 which
generates an orthonormal basis �v1 , . . . ,vm� for Km�A ,v1�.
We use the numerically most stable scheme that employs the
modified Gram-Schmidt orthogonalization to successively
construct the orthonormal vectors vi. Algorithm I below lists
the steps of a continuable version of the Arnoldi procedure
which is initially called with a parameter k=1 and a random
starting vector v1. After m−1 iterations the n
m matrix
Vm= �v1 , . . . ,vm� is available.

The projection of the matrix A onto Km�A ,v1� is then
Hm=Vm

† AVm, where Hm is m
m and upper Hessenberg �i.e.,
it has zeros below its lower bidiagonal�. The matrix Hm is
also constructed by Algorithm I. Approximate solutions of
the eigenproblem Ax=�x can subsequently be obtained as
the so-called Ritz eigenpairs �� ,Vmy� of the projected eigen-
problem Hmy=�y. As m increases the Ritz pairs become in-
creasingly better approximations to certain eigenpairs of A
�we point to Refs. 38 and 39 for details�.

Algorithm I: Arnoldi procedure (continuable). Input:
k ,m�Z , A�Rn,n, Vk�Rn,k , Hk�Rk,k. Output:
Vm+1�Rn,m+1 , Hm+1�Rm+1,m+1.

�1� If k=1, v1=v1 / �v1�2
�2� for j=k ,k+1, . . . ,m do
�3� v=Av j
�4� for i=1,2 , . . . , j do
�5� hij =vi

Tv
�6� v=v−hijvi
�7� end
�8� hj+1,j = �v�2
�9� if hj+1,j =0, m= j, stop
�10� v j+1=v /hj+1,j
�11� end
One cannot know in advance how many steps will be

needed before the eigenpairs of interest are well approxi-
mated by Ritz pairs. If many steps are necessary, then solv-
ing the projected eigenvalue problem becomes costly. More-

0.2
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Re(λ)

Im(λ)
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FIG. 2. �Color online� Positions of the 243 complex eigenvalues
�blue �circles�� inside the unit disk for a Au�111� electrode with 27
atoms per unit cell at E=−2 eV. The 21 eigenvalues corresponding
to propagating modes �red �filled� dots� are located on the unit
circle. The modes of most significance in transmission calculations
are located within the green �shaded� area given by 0.1	 
�
	1.
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over, when applying our Krylov method to evaluate the self-
energy matrices, we do not know the exact number of
eigenpairs wanted and cannot estimate the required dimen-
sion of the Krylov subspace.

The first difficulty can be circumvented by restarting the
Arnoldi method after a certain number of iterations using the
obtained information to generate a better starting vector, or
by deflating particular eigenvalues.41 However, this will not
improve on the second difficulty which requires an adaptive
maximum dimension of the Krylov subspace. In addition, we
observe in most of our applications that the gain from an
efficient restart procedure �e.g., as devised by Morgan and
Zeng42� does not outweigh the computational expense of the
restarting overhead. The typical size of the self-energy ma-
trices encountered is too small to make it beneficial to use
such techniques, which have been developed for large-scale
applications.

Therefore, we have chosen to employ a simple continua-
tion scheme instead of restarting, where a check for conver-
gence is performed after a given number of Arnoldi itera-
tions, and if we are not satisfied, the procedure simply
continues where it was left off. With the input parameter k,
the listed Arnoldi algorithm is able to generate an initial
Krylov subspace Km of a given dimension m, but also to
continue the process, augmenting the space with subsequent
calls. This allows us to perform iterations as long as the
approximations are unsatisfactory and/or there is doubt
whether all wanted eigenpairs have been found.

An important special case to be considered when applying
the Arnoldi procedure to solve an eigenvalue problem is that
of algebraically multiple eigenvalues. A Krylov subspace
method will, in theory, produce only one eigenvector corre-
sponding to a multiple eigenvalue. So determination of mul-
tiplicity is quite difficult. Several approaches exist that deal
with this problem, including deflation combined with effects
of round-off error,41 block Arnoldi procedures,41 and so-
called random restarts.42,43 The present Krylov method does
not incorporate any mechanisms to take algebraic multiplic-
ity into account because such cases do not occur in practice
for the applications of this work �eigenvalues will not be
identical to machine precision in any of the numerical ex-
amples, but only to within �10–11 digits; see Sec. IV�.

B. Shift-and-invert transformations

Iterative methods based on Krylov subspaces produce
Ritz values that converge fastest to the dominant part of the
eigenvalue spectrum given by the extremal eigenvalues.40 In
the current application, it is the interior of the eigenvalue
spectrum that is of interest, in particular the eigenvalues �
that satisfy �min	 
�
	�min

−1 . To be able to find this part of the
spectrum efficiently, we employ a shift-and-invert strategy
which implies that the QEP in Eq. �3� is rewritten as

��2M + �C + K�c0 = 0, �7�

where

M = HL,L
T + �HL + �2HL,L, �8�

C = HL + 2�HL,L, �9�

K = HL,L, �10�

and

� =
1

� − �
. �11�

With this approach, the eigenvalues � of Eq. �3� have been
shifted by � and inverted while the eigenvectors c0 are un-
changed. Thus the dominant part of the spectrum of Eq. �7�
now corresponds to the eigenvalues of the original QEP clos-
est to the shift �.

The simplest and currently state-of-the-art technique for
solving Eq. �7� is by linearizing it to a generalized eigen-
value problem of twice the size.44 In our case M is nonsin-
gular and has size ML. Therefore, a linearization results in a
standard eigenvalue problem of size 2ML:

Ax = �x , �12�

where A is given by

A =  0 I

− M−1K − M−1C
� , �13�

and the 2ML eigenvalues � are identical to the ones of Eq.
�7�. The eigenvectors of Eq. �12� are given by xT= �c0

T ,�c0
T�,

so that the original eigenvectors c0 can be selected as the first
ML elements of x.

If we assume that the Hamiltonian and overlap matrices
for the electrodes are real, then the spectrum of the QEP in
Eq. �3� is symmetric with respect to the real axis of the
complex plane, and the eigenvalues either are real or occur in
complex conjugate pairs.44 In addition, as seen by transpos-
ing Eq. �3�, the eigenvalues in this case also come in pairs, �
and 1 /�. We will use these properties to present a simplified
method for the extraordinary case of real HL and HL,L, and
subsequently discuss the steps required for the general com-
plex case in Appendix A 2.

The purpose of the current method is thus to determine
the eigenpairs �� ,c0� of Eq. �3� that satisfy �min	 
�
	1 for
a given �min0 �the pairs that satisfy 1	 
�
	�min

−1 can sub-
sequently be obtained as ��−1 ,c0��. As is apparent from the
polar plot example in Fig. 2, the majority of the eigenvalues
with 
�
	1 are located near the origin. Therefore, it is not
efficient to apply the shift �=0 in order to obtain the wanted
eigenvalues, which lie in the outskirts of the unit disk. In-
stead we may apply four different shifts, given by �

= �1 /�2 and �= � î /�2, in four separate Arnoldi proce-
dures. Each of these then covers a quarter slice of the unit
disk and produces Ritz values that converge fast to eigenval-
ues close to the given shift. Simple sorting techniques can be
employed in each Arnoldi procedure to take into account
only the portion of the Ritz pairs that is covered by a given
shift.

When applying the shift-and-invert strategy devised, two
of the shifts have to be complex. In practice this means
working in complex arithmetic or doubling the size of the
problem.45 However, in the case of real Hamiltonians it is
advantageous to search for the complex eigenvalues in con-
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jugate pairs and thereby eliminate one of the complex shifts.
Moreover, this can be done almost entirely in real arithmetic
as follows.

Notice that Eq. �12� was obtained by linearizing the
shifted-and-inverted QEP written in Eq. �7�. We may also
reverse the order of the linearization and shift-and-invert op-
erations. By performing, e.g., a first companion linearization

of Eq. �3� that results in an eigenproblem Âx=�x of double
size, and subsequently a shift-and-invert transformation ar-

riving at �Â−�I�−1x=�x, we see that the matrix applied in
the Arnoldi procedures can also be written44

�Â − �I�−1 =  − M−1Ĉ − M−1K

I − �M−1Ĉ − �M−1K
� , �14�

where

Ĉ = HL + �HL,L. �15�

The eigenpairs �� ,x� of �Â−�I�−1x=�x are exactly the
same as those of Eq. �12�. In addition, we may now consider
the combined spectral transformation for two conjugate
shifts � and ��, given by

T = �Â − �I�−1�Â − ��I�−1 =
Im��Â − �I�−1�

Im���
, �16�

which was originally proposed by Parlett and Saad.45 Apply-
ing the matrix T in the Arnoldi procedure generates approxi-
mate solutions to Tx=��x, where the eigenvalues are given
by

�� =
1

�� − ���� − ���
, �17�

which becomes extreme for conjugate eigenvalues � and ��

of Eq. �3� that are close to � and ��. In our case, the complex

shifts are purely imaginary: �= î�, where � is real. Then we
have ��= ��2+�2�−1 and, more importantly, the matrix T is
simply given by �−1 times the imaginary part of Eq. �14�,
written as

T = − �−1 Im�M−1Ĉ� − �−1Im�M−1K�

Re�M−1Ĉ� Re�M−1K�
� , �18�

which is purely real. This makes it feasible to use real arith-
metic in all parts of the algorithm except for the initial com-
plex LU factorization of M, which is required for the matrix
multiplications by M−1.

C. Algorithm and convergence criterion

The algorithm for our Krylov method is composed of two
main parts, an iterative part that determines the wanted Ritz
pairs �� ,c0� which approximate the eigenpairs of the QEP in
Eq. �3�, and a noniterative part that sets up the Bloch matri-
ces and evaluates the self-energy matrix from these by direct
methods. The iterative part is organized as three independent
computations, one for each of the used shifts �. It consists of
the application of the Arnoldi procedure together with a

check for convergence plus the initial work to construct the
input matrices for Algorithm I. As described in the previous
section, the actual calculations will depend on whether the
shift is real or imaginary.

The key steps of the Krylov method for evaluating the
self-energy matrix �L of the left electrode are presented in
Algorithm II below. It is important to stress that the details of
each step are kept at a minimum to enhance the readability.
Furthermore, for evaluating the self-energy matrix �R of the
right electrode, the steps are exactly the same, except for the
substitution L→R of all super- and subscripts and the re-
moval of line 1 �this line is only required for left electrodes
in order to obtain �L from solutions ��−1 ,c0�, e.g., by trans-
posing Eq. �3��. In the rest of this section we will discuss the
main aspects of the algorithm.

Algorithm II: Krylov method to evaluate �L. Input: m�Z,
�min� �0,1�, HL ,HL,L ,HL,L

T �RML,ML. Output: �L�CML,ML.
�1� Exchange matrices HL,L and HL,L

T

�2� for �=1 /�2,−1 /�2, î /�2 do
�3� if � is real, calculate A from Eq. �13�
else calculate T from Eq. �18� and set A=T
�4� select random vector v1 of size 2ML
�5� apply Algorithm I to generate Km�A ,v1�
�6� solve the projected eigenproblem Hmy=�y
�7� if � is real, select all �� ,y� that satisfy �min	 
�−1

+�
	1+�, and store the Ritz pairs �� ,c0�= ��−1+� ,Vmy�
that have Re���Re���� 
�
 / 2

else select all �� ,y� that satisfy �min	 
�−1+�2
1/2	1+�,
and evaluate the eigenvalues � with the MR-2 method of
Ref. 44 and store the Ritz pairs �� ,c0�= �� ,Vmy� that have

Im���Im���
 
�
 / 2 .

�8� for all stored Ritz pairs �� ,c0�, find residual ��HL,L
T

+�HL+�2HL,L�c0�2, and check for convergence. If not satis-
fied, increase m appropriately and go to step 5

�9� end
�10� for all stored Ritz pairs �� ,c0� having �1+��−1	�

	1+�, calculate group velocity v �see Ref. 15�; discard the
pairs with v�0 �i.e., the left-going modes�

�11� evaluate BL
+ and �L=−HL,LBL

+ from the remaining
pairs

First consider the steps 3–8 composing the body of the
FOR loop, which are independently executed for the three
given shifts �. Each execution of these steps will determine
Ritz pairs that are located in the corresponding quarter-slices
of the unit disk. An illustration is shown in Fig. 3 for an
Al�100� electrode, where the distinct slices are indicated by
shaded areas and the current shifts by crosses. All wanted
Ritz pairs found independently for the given shifts are as-
sumed to be collected in a combined set when exiting the
loop at step 9.

Initially, in step 3, the linearized and shifted-and-inverted
matrix A to be applied in the Arnoldi procedure is deter-
mined from Eq. �13� if � is real and from Eq. �18� if � is
complex. Then a starting vector v1 is selected randomly in
step 4. A random starting vector is a reasonable choice in our
case, where no prior information about the approximated
eigenspace is available. In step 5 the Arnoldi procedure of
Algorithm I is called to generate a Krylov subspace of size
m, and in step 6, the corresponding eigenpairs �� ,y� of the
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shifted-and-inverted problem are found by solving the pro-
jected eigenproblem with a direct method. This is followed
by an elaborate selection scheme to determine which of the
available solutions �� ,y� correspond to wanted Ritz pairs
�� ,c0� that are located inside the valid quarter slice.

The selection scheme, as outlined in step 7, can be imple-
mented as two separate processes. The first selection process
is designed to identify those solutions �� ,y� that correspond
to eigenpairs of the original QEP which satisfy �min	 
�

	1. It is important to realize, however, that, since all com-
putations are done in finite-precision arithmetic, there is no
guarantee that the propagating Bloch modes of the electrode
will have magnitudes 
�
 exactly equal to 1. Even the left-
going propagating modes that are targeted in our case can
have 
�
1. In practice, we therefore define the propagating
modes to be those Ritz pairs �� ,c0� that satisfy

�1 + ��−1 	 
�
 	 1 + � �19�

where � is a small infinitesimal �set to 10−8 in our implemen-
tation�. In order to make sure that all propagating modes are
taken into consideration it is thus necessary to select all Ritz
pairs that satisfy �min	 
�
	1+�.

To obtain the Ritz values � used in the selection process,
we have to transform the solutions �� ,y� of the projected
eigenproblem to the corresponding Ritz pairs �� ,c0� by re-
versing the shift-and-invert operation. The transformation
again depends on whether the shift � is real or imaginary. In
the case of real �, we have �=�−1+� from Eq. �11�. For

imaginary �, Eq. �17� can be rearranged to �2=�−1+�2,
which has two solutions of equal magnitude. This is suffi-
cient to allow selection on the basis of the magnitude 
�
;
however, when it comes to obtaining the Ritz values � them-
selves, it is necessary to use other means for imaginary �,
e.g., by forming the Rayleigh quotient.40 In our case, and for
QEPs in particular, it is possible and computationally advan-
tageous to use alternatives to the Rayleigh quotient that work
with vectors and matrices of size ML instead of 2ML. Several
such techniques that are both fast and accurate have recently
been devised by Hochstenbach and van der Vorst.46 We will
adopt the MR-2 method of that paper, which yields �=� / �,
for � and � defined as

�

�
� = − Z̃HL,L

T c0, �20�

where Z̃ is the pseudoinverse of Z= �HL,Lc0 ,HLc0�. Since all
eigenvectors are unchanged by the shift-and-invert operation,
the c0 vectors applied here are the first ML elements of the
Ritz vectors Vmy.

The remaining selection process in step 7 should single
out the Ritz pairs that are inside the valid slice of the unit
disk. To this end, we can apply the inner product of
�Re��� , Im���� and �Re��� , Im����, given by

Re���Re��� + Im���Im��� = 
�

�
cos � , �21�

where � is the angle between � and � in a polar representa-
tion of the complex plane. In order for � to be inside the
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FIG. 3. �Color online� Illustra-
tion of the complex eigenvalues
�blue �circles�� for the Al�100�
electrode at E=3 eV. The eigen-
values corresponding to the
wanted right-going modes �red
�filled� dots� can be separated ac-
cording to their location within
three distinct green �shaded� areas
of the unit disk and determined ef-
ficiently using shift-and-invert
spectral transformations to �1 /�2

and î /�2 �crosses�.
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quarter slice that has � on the bisector we must have 
�

	� /4 or equivalently cos ��1 /�2. For real shifts �
= �1 /�2, this observation yields the condition

Re���Re���

�


�
1

2
, �22�

and similarly for imaginary shift �= î /�2,


Im���Im���


�



1

2
, �23�

where the absolute value of the left-hand side is taken to
allow � to be in both the top and the bottom quarter slices.
Notice that the equality is removed since the �very rare�
event of � lying exactly on the border of two slices is already
taken into account in the condition for real �.

In step 8 of Algorithm II the check for convergence is
carried out. For each shift, the convergence condition is re-
garded as satisfied when all the Ritz pairs of interest that are
also located inside the valid quarter slice are identified and
accurate to a given tolerance. We estimate the accuracy of
the obtained pairs �� ,c0� by evaluating the corresponding
relative residual norm, which yields the following conver-
gence criterion:

��HL,L
T + �HL + �2HL,L�c0�2

norm�HL�
	 tol �24�

where tol is the convergence tolerance and norm�HL� is an
appropriate norm for matrix HL. In our implementation we
set tol=10−11 and apply the approximation norm�HL�
��diag�HL��2, that is, we include only the diagonal entries
of the two-norm of HL. These choices require very low com-
putational effort and give the correct result for all numerical
examples we have investigated.

In the event that the convergence check in step 8 of Al-
gorithm II is not satisfied, we assume that the dimension m
of the Krylov subspace Km�A ,v1� generated in step 5, is
insufficient. Therefore, we increase m by some fixed amount
and go back to step 5 to continue the Arnoldi procedure
where it was left off. In the current implementation, we
chose to increase the size of the Krylov subspace by �m
=m /2, where m is the initial value of m given as input. Our
experiments show that, for optimal efficiency with this �m,
it is favorable to have the initial m within the range 30–50 if
the sizes of the input matrices are of order less than 1000.
After convergence has been achieved, the final steps 10–11
of Algorithm II present the operations required to collect the
Ritz pairs that have been determined and subsequently obtain
the self-energy matrix.

IV. TYPICAL CONVERGENCE BEHAVIOR

In this section, we briefly exemplify the typical conver-
gence behavior of Algorithm II by monitoring the relative
residual norm of the wanted eigenpairs as a function of the
number of iterations. An expression for this norm for a given
eigenpair �� ,c0� is available as the left-hand side of Eq. �24�.
We will consider the Al�100� electrode at E=3 eV and pa-

rameter �min=0.1, which requires a total of 13 eigenpairs to
be determined �eight propagating modes and five evanescent
modes� from the three separate Arnoldi procedures. This ex-
ample corresponds to the situation illustrated in Fig. 3 and
represents a typical calculation for an Al�100� electrode with
18 atoms per unit cell �the size of the self-energy matrix is
72�.

In Fig. 4 we present curves showing the history of the
residual norms for the wanted eigenpairs in each of the sepa-
rate shift-and-invert Arnoldi procedures. We show only the
45 first iterations since this number is enough for conver-
gence in all cases. Also, only residuals for eigenpairs corre-
sponding to right-going modes are displayed.

The top figure of Fig. 4 illustrates the results from apply-
ing the shift �=1 /�2 and shows that the Arnoldi procedure
determines four different Ritz pairs with individual conver-
gence curves. Comparing with the corresponding polar plot
in Fig. 3 �top left�, we observe a fifth eigenvalue ��=0.95

+0.31î� located inside the valid quarter slice. This fifth ei-
genvalue represents a left-going mode and is thus discarded
in step 10 of Algorithm II. We also see by comparison with
Fig. 3 that the eigenpair with eigenvalues furthest from the
current shift �the cross� in the complex plane, in this case �4,
is the slowest to converge.
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FIG. 4. �Color online� Convergence behavior of the Krylov al-
gorithm for the Al�100� electrode at E=3 eV. The figures show the
residual norm as a function of iterations for Ritz pairs that satisfy
0.1	 
�
	1+�, in the case of shift-and-invert transformations to

�1 /�2 and î /�2, respectively.

KRYLOV SUBSPACE METHOD FOR EVALUATING THE… PHYSICAL REVIEW B 77, 155301 �2008�

155301-7



The middle figure of Fig. 4 shows the convergence of the
two Ritz pairs that are covered by the Arnoldi procedure with
�=−1 /�2 and correspond to right-going modes in the
present example. We note that �5 and �6 are nearly multiple
eigenvalues, and that the behavior of the residual norms,
where one eigenpair is available many iterations before its
counterpart, is typical in such a case. Here, in particular, we
see that eigenvalue �5 is determined to an accuracy of
�10−11 after 18 iterations before �6 even shows up as a Ritz
value of the projected eigenproblem. This indicates that �5
and �6 must be identical to around ten significant digits, and
that they cannot be distinguished in our Arnoldi procedure
before this accuracy is achieved. Without additional mecha-
nisms to deal with multiple eigenvalues this then implies an
upper bound condition on the value of the tol parameter.

The bottom figure of Fig. 4 shows the residual norm his-
tory of the remaining seven Ritz pairs required in the current
example. These are determined by the Arnoldi procedure

with imaginary shift �= î /�2 and correspond to filled dots in
the bottom polar plot of Fig. 3 which represent right-going
modes. We observe that the eigenvalue closest to �, here
denoted by �8, constitutes a complex conjugate pair together
with �9, and that these have exactly the same residual norm
curve �indistinguishable in the figure�, although they are ob-
tained separately as individual Ritz pairs in the algorithm.

In all residual norm figures, we see the trend that the
eigenvalues located far from the position of the shift are slow
to converge. This suggests that eigenvalues located in the
vicinity of the intersections between the unit circle and the
dividing lines of the four quarter slices will be the most
difficult to determine since they are furthest from the corre-
sponding shifts. The maximum distance from such an eigen-
value to � is 1 /�2, which is the same as from � to the origin.
This raises concern whether the many unwanted eigenvalues
close to the origin can become dominant compared to the
wanted border eigenvalues. Fortunately, this is not the case
because the unwanted eigenvalues close to the origin are
clustered and therefore easy to represent in the Krylov sub-
space with only a few iterations.40 We observe this in prac-
tice, e.g., from the bottom figure of Fig. 4, where the Ritz
pair corresponding to �12, which lies close to the worst-case
position on the unit circle, initially converges only slightly
slower than the Ritz pair for �8 positioned right next to the
shift.

V. NUMERICAL EXAMPLES

To illustrate the accuracy and practical aspects of the pro-
posed Krylov subspace method we present transmission cal-
culations for a metal-device-metal system that has been
widely studied in the literature. In addition, we compute the
current through this system at 1 and 2 V biases, and use the
parameter �min to investigate the significance of the evanes-
cent modes in obtaining the correct currents. Last, we apply
the method to evaluate the self-energy matrices of a variety
of electrodes �different types and sizes� and compare the ac-
tual measured CPU times47 with those required by conven-
tional methods.

A. Carbon wire between aluminum electrodes

To demonstrate the applicability of the proposed Krylov
subspace method, we first consider carbon chains coupled to
metallic electrodes, which have been investigated in detail
recently.1,5,6 Carbon atomic wires are interesting conductors
since the equilibrium conductance of short monatomic chains
varies with their length in an oscillatory fashion. We will
examine the two-probe system shown in Fig. 5 correspond-
ing to a straight wire of seven carbon atoms attached to
Al�100� electrodes �lattice constant 4.05 Å�. This structure
exhibits a local maximum in the oscillatory conductance
since it represents an odd-numbered C chain.5 In our con-
figuration, we fix the C-C distance to 2.5 bohrs and the dis-
tance between the ends of the carbon chain and the first plane
of Al atoms at 1.0 Å. We use single-� basis sets for both
types of atoms. The considered Al�100� electrode unit cell
consists of 18 atoms in four layers with identical unit cells
for the left and right electrodes. Notice that we do not use
any symmetry properties of the metallic electrode to reduce
the lateral size of the cells �as done, e.g., in Ref. 17� but
rather use the full size matrices in Algorithm II. The same
system has been studied by Brandbyge et al.1

We apply the proposed Krylov subspace method to calcu-
late the self-energy matrices �L and �R of the left and right
electrodes for a range of energies E� �−4 eV,4 eV� and for
different choices of the parameter �min. The self-energy ma-
trices are then used in the evaluation of the corresponding
transmission coefficients T�E�.

Figure 6 presents the results for bias voltages Vb=0, 1,
and 2 V in three cases of �min. These significant bias settings
are chosen for benchmarking and comparison reasons. The
�black� full curves corresponding to �min=0.1 reproduce the
transmission spectra obtained in Ref. 1 �for 0 and 1 V� ex-
actly except for the peak at E=3.63 eV �for 0 V�, which is
probably due to finer sampling in our work. In addition, we
have calculated the similar curve with the full sets of elec-
trode modes and the results are indistinguishable from those
with the setting �min=0.1 �and therefore not displayed in the
figure�. We note this as quantitative verification that the ex-
clusion of the rapidly decaying evanescent modes is plau-
sible in our setup.

We also see in Fig. 6 that the curves for the parameter
�min set to 0.1 �black �full�� and 0.5 �red �dashed�� are almost
identical, which indicates that the vast majority of the eva-
nescent modes �those satisfying 
�
�0.5� have very little
influence on T�E� in the energy regime considered. However,
when �min is set to 0.99 �blue �dotted curves��, in which case
only propagating modes and very close to propagating
modes are included in the evaluation of self-energy matrices,

L C R

FIG. 5. Schematic illustration of the Al�100�-C7-Al�100� two-
probe system.
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there are several noticeable deviations from the other curves.
Also inside the bias windows and especially for Vb=2 V, the
disregard of the evanescent modes produces errors in the
obtained transmission coefficients T�E�.

The deviations become even more evident in Fig. 7,
where the current is displayed as a function of the parameter
�min for nonzero bias voltages. As the value of �min is in-
creased from around 0.5 to 1, the computed current I starts to

depart significantly from the correct value. Therefore, we
anticipate that at least some slowly decaying evanescent
modes must be taken into account in order to describe the
transmission properties of the Al�100�-C7-Al�100� system.
Moreover, we see that this can be achieved in a rigorous and
systematic fashion by selecting �min appropriately when us-
ing the proposed Krylov subspace method to calculate the
self-energy matrices.

B. CPU run times

In this section we focus on the typical savings in the com-
putational time that can be achieved when computing the
self-energy matrices �L and �R with the proposed Krylov
subspace method. We will compare run times directly with
some conventional schemes usually applied in electron trans-
port calculations. Our aim is to illustrate a significant
speedup in calculating the self-energy matrices. This is of
interest in future efforts to model much larger systems, and,
in particular, for electrode unit cells that do not have any
lateral symmetry properties.

Table I presents the profiling results when applying three
different methods to calculate the same left self-energy ma-
trix �L for common types of electrodes and various matrix
sizes N. In every case we consider only the � point and use
single-� basis sets, except for Au�111� where a double-
�-polarized set is used. Since the computational cost can vary
significantly with E, the seconds listed represent the accumu-
lated time of 20 independent calculations at equidistant en-
ergies in the interval E� �−2 eV,2 eV�. We focus on the
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FIG. 6. �Color online� Transmission spectrum of the Al�100�-
C7-Al�100� system for different bias voltages Vb. The self-energy
matrices used in the T�E� calculations have been obtained at the �
point by the proposed Krylov subspace method with parameter �min

at several settings: 0.1 �black �full� curve�, 0.5 �red �dashed� curve�,
and 0.99 �blue �dotted� curve�. The bias windows are indicated by
the vertical dashed lines.
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FIG. 7. �Color online� Current as a function of the parameter
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TABLE I. CPU times in seconds for computing the left self-
energy matrix �L at 20 different energies E between −2 and 2 eV
for selected electrode types and matrix sizes N. The parameter �min

was set to 0.1.

Electrode type Size 2n iterative DGEEV Krylov

Lia 16 0.1 0.0 0.0

Feb 54 4.2 2.3 0.6

Al�100�c 72 4.9 3.3 0.8

Al�100�c 128 27.9 17.5 3.6

Au�111�d 243 167.2 73.7 11.5

�2,2� CNTe 64 3.6 2.4 0.7

�4,4� CNTe 128 26.0 14.4 2.9

�8,8� CNTe 256 208.8 118.8 17.0

�12,12� CNTe 384 608.4 373.6 45.6

�16,16� CNTe 512 1230.0 1403.9 121.5

�20,20� CNTe 640 1542.3 1125.7 148.0

aMeasurements from transmission calculations for ideal Li system.
bMeasurements from transmission calculations for Fe-MgO-Fe; see
geometry description in Ref. 10.
cMeasurements from transmission calculations for Al�100�-C7-
Al�100� described in this work �see also Ref. 1�.
dMeasurements from transmission calculations for Au�111�-BDT-
Au�111�; see, e.g., description in Ref. 11.
eMeasurements from transmission calculations for ideal armchair
�n ,n� carbon nanotubes; see, e.g., description in Ref. 4.
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profiling for general electrode configurations and do not use
lattice symmetries to reduce the order of the unit cells to
elementary size even when this is possible.17

In the third column of Table I the run times to compute
the correct self-energy matrices with the widely used itera-
tive scheme of López Sancho et al.26 are displayed. As the
error in �L obtained by this technique is reduced by 1 /2n

after n iterations �we denote this method as 2n iterative�, it
generally converges in n�22 steps. In addition, run times
for the conventional eigenvalue approach to evaluating the
self-energy matrices, in which a standard eigensolver is used
to determine the full set of modes, are presented in the fourth
column. For this version, we simply substituted part of our
Krylov subspace algorithm �steps 1–9 of Algorithm II� with
the state-of-the-art LAPACK routine DGEEV.47 In the last col-
umn the time required by the proposed Krylov subspace
method is shown. In all cases of the latter the parameter �min
was set to 0.1.

From the profiling results in Table I we see that the com-
putational time of the Krylov subspace method is signifi-
cantly reduced compared with the presently widely used
2n-iterative technique. Also the conventional eigensolver
scheme using DGEEV is typically faster than the 2n-iterative
algorithm �the exception for the �16,16� carbon nanotube
�CNT� is related to cache usage48�. A comparison of the tim-
ings in the last two columns verifies that the cost to evaluate
the self-energy matrices from only the few most important
modes of the electrodes, as in our Krylov subspace method,
is in general much lower than required by a direct eigen-
solver to determine all possible modes.

In order to illustrate the computational complexity of the
methods we show the CNT run times as a function of the
matrix size N in a logarithmic plot in Fig. 8. Clearly, all
methods have O�N3� complexity; however, the Krylov sub-
space method initially follows the typical O�N2� complexity
of the Arnoldi procedure49 until the cost of the shift-and-
invert operations becomes dominant. For N500 we ob-

serve effects due to more and sometimes less favorable cache
usage. Overall, we see that the Krylov subspace method is
fastest by an order of magnitude for all but the smallest
cases.

It is important to point out that the obtained self-energy
matrices �L are in all cases applied in a subsequent transmis-
sion calculation of T�E� for the two-probe systems indicated
in Table I, and the results then checked against those of the
conventional methods �the resulting transmissions T�E� are
identical for the three methods in all cases of E to at least
three decimals�. Furthermore, the setting of the parameter
�min to 0.1 yields self-energy matrices evaluated from all the
modes that have phases � satisfying 0.1� 
�
�1+�. This is
more than adequate for obtaining correct results to an accu-
racy of three decimals for all the systems considered in this
section. In practice, the parameter �min can often be selected
0.1 if lower accuracy in the T�E� calculation is satisfactory,
and this would show off the approach as even faster.

VI. CONCLUSIONS

In conclusion, we have developed an efficient and robust
Krylov subspace method for evaluating the self-energy ma-
trices that are required in electron transport calculations of
nanoscale devices. The method exploits the observation that
only the propagating and slowly decaying evanescent modes
in the electrodes are computationally significant for deter-
mining the transmission coefficients when the system is ap-
propriately set up.

The proposed method is based on the Arnoldi procedure
and applies carefully chosen shift-and-invert spectral trans-
formations to enhance the convergence toward the wanted
interior eigenpairs that correspond to significant modes. We
have investigated the convergence properties and shown that
the accuracy and efficiency are mainly controlled by two
parameters: the tolerance tol to be satisfied by of the relative
residuals of the obtained Ritz values and the parameter �min
that implicitly sets the number of modes taken into account.

In Sec. V we tested the Krylov subspace method on a
metal-device-metal system and compared it to conventional
methods. The applications show that the proposed method
can be applied to calculate the transmission characteristics in
a rigorous and systematic fashion and that the basic assump-
tion of only including selective solutions in the electrode
self-energy matrix is valid for many two-probe systems. The
overall saving in computational time achieved by the Krylov
subspace method is significant and in most cases more than
an order of magnitude in comparison with conventional
methods.
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APPENDIX A: COMPUTATIONAL DETAILS

1. Fast transmission calculation

We give the numerical steps to efficiently evaluate T�E�
via Eqs. �1� and �2�. From the outset, the computational costs
are reduced by taking into account that the self-energy ma-
trices are nonzero only in the corner blocks, that is,

GC =�
H1 − �1

L H1,2

H1,2
† H2 �

� � �

� Hn−1 Hn−1,n

Hn−1,n
† Hn − �n

R
�

−1

,

�A1�

where the self-energy blocks are numbered similarly to the
Hamiltonian blocks. We then select a given diagonal block k
and define self-energy matrices for every layer of the system,
as50–52

�i
L = Hi−1,i

† �Hi−1 − �i−1
L �−1Hi−1,i, − � � i 	 k , �A2�

�i
R = Hi,i+1�Hi+1 − �i+1

R �−1Hi,i+1
† , k 	 i � � , �A3�

which can be used to recursively evaluate the self-energy
matrices �k

L and �k
R when the matrices �1

L and �n
R �or �0

L and
�n+1

R of the semi-infinite electrodes� are available. The kth
block of the Green’s function matrix is now given by

Gk,k = �Hk − �k
L − �k

R�−1, �A4�

which corresponds to inverting the block of smallest size in
the system, if k is chosen accordingly. Finally Eq. �2� is
applied in a simplified version

T�E� = Tr��k
LGk,k �k

RGk,k
† � , �A5�

where the relation Gk,k
a = �Gk,k

r �† between the advanced �a�
and retarded �r� Green’s functions is used �Ga= �Gr�† is valid
when E is real, since H is Hermitian and �a= ��r�†; see Ref.
13�.

2. Generalization to complex Hamiltonian matrices and
k-point sampling

In the Krylov subspace method presented in this paper we
have assumed that the electrode Hamiltonian matrices are
real in order to simplify the computational procedures. We
now discuss the steps required to handle the case of complex
HL and HL,L, which is the case, e.g., when applying k-point
sampling �Algorithm II works only for the � point�.

As noted in Sec. III B, the assumption of real HL and HL,L
leads to simplifications with the shift-and-invert operations:

First, we may consider only right-going modes �� ,c0� with

�
	1 since the left-going modes are uniquely related as
��−1 ,c0�, and, second, we can use the spectral transformation
T in Eq. �18� to determine the wanted eigenpairs for the two
imaginary shifts �= � î /�2 simultaneously and in real arith-
metic.

In order to generalize the Krylov subspace method to
complex Hamiltonian matrices, it is thus necessary to deter-
mine the left-going modes satisfying 1	 
�
	�min

−1 �i.e, lo-
cated outside the unit circle� directly, since there is no gen-
eral relation to the right-going modes �we note that it is
advantageous to change the shift positions to be outside the
unit circle, although this is not necessary for good conver-
gence�. Furthermore, we must abandon the T matrix and per-
form two independent shift-and-invert operations for �

= � î /�2. It is clear that all this is now done in complex
arithmetic and that the extra shift required will make the
general algorithm a little more expensive �as shown in Sec.
V B, the LU factorization required for each shift-and-invert
operation is the dominant cost of our approach�.

We have implemented the generalization and can illustrate
its applicability by converging the transmission spectrum of
the benzene di-thiol �BDT� molecule coupled to gold �111�
surfaces in Fig. 9 by 3
3 and 7
7 k-point sampling of the
Monkhorst type.53 The calculation setup used is exactly the
same as in Ref. 11 and the results can be confirmed.3,11 Also,
we have computed T�E� for each E and k with self-energy
matrices of both the 2n-iterative method and the Krylov sub-
space method and checked that the results are identical to
within three decimals. The CPU times required for, e.g., the
3
3 curve �eight k points� were 167 and 32 min for the two
methods, respectively, while the �-point curve takes 2.7 min
with Algorithm II. We conclude that the generalized Krylov
subspace algorithm is, in this case, 1.5 times slower �per k
point� than the real matrix version presented in Sec. III but
still more than five times faster than the commonly used
2n-iterative approach.

−4 −3 −2 −1

25 k-points
8 k-points
Γ-point

0 1 2 3 4
0

0.5

1

1.5

2

E − EF (eV)

T
(E

)

L C R

FIG. 9. �Color online� Transmission spectrum of the Au�111�-
BDT-Au�111� system for different k-point samplings and Vb=0.
The self-energy matrices used in the T�E� calculations have been
obtained by the generalized Krylov subspace method with param-
eter �min=0.1.
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