2,771 research outputs found

    Preconditioning harmonic unsteady potential flow calculations

    Get PDF
    This paper considers finite element discretisations of the Helmholtz equation and its generalisation arising from harmonic acoustics perturbations to a non-uniform steady potential flow. A novel elliptic, positive definite preconditioner, with a multigrid implementation, is used to accelerate the iterative convergence of Krylov subspace solvers. Both theory and numerical results show that for a model 1D Helmholtz test problem the preconditioner clusters the discrete system's eigenvalues and lowers its condition number to a level independent of grid resolution. For the 2D Helmholtz equation, grid independent convergence is achieved using a QMR Krylov solver, significantly outperforming the popular SSOR preconditioner. Impressive results are also presented on more complex domains, including an axisymmetric aircraft engine inlet with non-stagnant mean flow and modal boundary conditions

    Low-rank Linear Fluid-structure Interaction Discretizations

    Full text link
    Fluid-structure interaction models involve parameters that describe the solid and the fluid behavior. In simulations, there often is a need to vary these parameters to examine the behavior of a fluid-structure interaction model for different solids and different fluids. For instance, a shipping company wants to know how the material, a ship's hull is made of, interacts with fluids at different Reynolds and Strouhal numbers before the building process takes place. Also, the behavior of such models for solids with different properties is considered before the prototype phase. A parameter-dependent linear fluid-structure interaction discretization provides approximations for a bundle of different parameters at one step. Such a discretization with respect to different material parameters leads to a big block-diagonal system matrix that is equivalent to a matrix equation as discussed in [KressnerTobler 2011]. The unknown is then a matrix which can be approximated using a low-rank approach that represents the iterate by a tensor. This paper discusses a low-rank GMRES variant and a truncated variant of the Chebyshev iteration. Bounds for the error resulting from the truncation operations are derived. Numerical experiments show that such truncated methods applied to parameter-dependent discretizations provide approximations with relative residual norms smaller than 10−810^{-8} within a twentieth of the time used by individual standard approaches.Comment: 30 pages, 7 figure

    Boundary Treatment and Multigrid Preconditioning for Semi-Lagrangian Schemes Applied to Hamilton-Jacobi-Bellman Equations

    Get PDF
    We analyse two practical aspects that arise in the numerical solution of Hamilton-Jacobi-Bellman (HJB) equations by a particular class of monotone approximation schemes known as semi-Lagrangian schemes. These schemes make use of a wide stencil to achieve convergence and result in discretization matrices that are less sparse and less local than those coming from standard finite difference schemes. This leads to computational difficulties not encountered there. In particular, we consider the overstepping of the domain boundary and analyse the accuracy and stability of stencil truncation. This truncation imposes a stricter CFL condition for explicit schemes in the vicinity of boundaries than in the interior, such that implicit schemes become attractive. We then study the use of geometric, algebraic and aggregation-based multigrid preconditioners to solve the resulting discretised systems from implicit time stepping schemes efficiently. Finally, we illustrate the performance of these techniques numerically for benchmark test cases from the literature

    Sensitivity of Markov chains for wireless protocols

    Get PDF
    Network communication protocols such as the IEEE 802.11 wireless protocol are currently best modelled as Markov chains. In these situations we have some protocol parameters α\alpha, and a transition matrix P(α)P(\alpha) from which we can compute the steady state (equilibrium) distribution z(α)z(\alpha) and hence final desired quantities q(α)q(\alpha), which might be for example the throughput of the protocol. Typically the chain will have thousands of states, and a particular example of interest is the Bianchi chain defined later. Generally we want to optimise qq, perhaps subject to some constraints that also depend on the Markov chain. To do this efficiently we need the gradient of qq with respect to α\alpha, and therefore need the gradient of zz and other properties of the chain with respect to α\alpha. The matrix formulas available for this involve the so-called fundamental matrix, but are there approximate gradients available which are faster and still sufficiently accurate? In some cases BT would like to do the whole calculation in computer algebra, and get a series expansion of the equilibrium zz with respect to a parameter in PP. In addition to the steady state zz, the same questions arise for the mixing time and the mean hitting times. Two qualitative features that were brought to the Study Group’s attention were: * the transition matrix PP is large, but sparse. * the systems of linear equations to be solved are generally singular and need some additional normalisation condition, such as is provided by using the fundamental matrix. We also note a third highly important property regarding applications of numerical linear algebra: * the transition matrix PP is asymmetric. A realistic dimension for the matrix PP in the Bianchi model described below is 8064×8064, but on average there are only a few nonzero entries per column. Merely storing such a large matrix in dense form would require nearly 0.5GBytes using 64-bit floating point numbers, and computing its LU factorisation takes around 80 seconds on a modern microprocessor. It is thus highly desirable to employ specialised algorithms for sparse matrices. These algorithms are generally divided between those only applicable to symmetric matrices, the most prominent being the conjugate-gradient (CG) algorithm for solving linear equations, and those applicable to general matrices. A similar division is present in the literature on numerical eigenvalue problems

    Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

    Get PDF
    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally-resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest number of iterations that is essentially independent of the number of particles. For unbounded suspensions and suspensions sedimented against a single no-slip boundary, we rely on existing analytical expressions for the Rotne-Prager tensor combined with a fast multipole method or a direct summation on a Graphical Processing Unit to obtain an simple yet efficient and scalable implementation. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently-developed rigid-body immersed boundary method to suspensions of freely-moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid body equations converges in a bounded number of iterations regardless of the system size. We optimize a number of parameters in the iterative solvers and apply our method to a variety of benchmark problems to carefully assess the accuracy of the rigid multiblob approach as a function of the resolution. We also model the dynamics of colloidal particles studied in recent experiments, such as passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods sedimented against a wall.Comment: Under revision in CAMCOS, Nov 201
    • …
    corecore