5,338 research outputs found

    Quantum Kolmogorov Complexity

    Get PDF
    In this paper we give a definition for quantum Kolmogorov complexity. In the classical setting, the Kolmogorov complexity of a string is the length of the shortest program that can produce this string as its output. It is a measure of the amount of innate randomness (or information) contained in the string. We define the quantum Kolmogorov complexity of a qubit string as the length of the shortest quantum input to a universal quantum Turing machine that produces the initial qubit string with high fidelity. The definition of Vitanyi (Proceedings of the 15th IEEE Annual Conference on Computational Complexity, 2000) measures the amount of classical information, whereas we consider the amount of quantum information in a qubit string. We argue that our definition is natural and is an accurate representation of the amount of quantum information contained in a quantum state.Comment: 14 pages, LaTeX2e, no figures, \usepackage{amssymb,a4wide}. To appear in the Proceedings of the 15th IEEE Annual Conference on Computational Complexit

    Kolmogorov Complexity of Categories

    Full text link
    Kolmogorov complexity theory is used to tell what the algorithmic informational content of a string is. It is defined as the length of the shortest program that describes the string. We present a programming language that can be used to describe categories, functors, and natural transformations. With this in hand, we define the informational content of these categorical structures as the shortest program that describes such structures. Some basic consequences of our definition are presented including the fact that equivalent categories have equal Kolmogorov complexity. We also prove different theorems about what can and cannot be described by our programming language.Comment: 16 page

    Kolmogorov Complexity and Solovay Functions

    Get PDF
    Solovay proved that there exists a computable upper bound f of the prefix-free Kolmogorov complexity function K such that f (x) = K(x) for infinitely many x. In this paper, we consider the class of computable functions f such that K(x) <= f (x)+O(1) for all x and f (x) <= K(x) + O(1) for infinitely many x, which we call Solovay functions. We show that Solovay functions present interesting connections with randomness notions such as Martin-L\"of randomness and K-triviality

    Kolmogorov complexity

    Get PDF
    In dieser Dissertation werden neue Ergebnisse über Kolmogorovkomplexität diskutiert. Ihr erster Teil konzentriert sich auf das Studium von Kolmogorovkomplexität ohne Zeitschranken. Hier beschäftigen wir uns mit dem Konzept nicht-monotoner Zufälligkeit, d.h. Zufälligkeit, die von Martingalen charakterisiert wird, die in nicht-monotoner Reihenfolge wetten dürfen. Wir werden in diesem Zusammenhang eine Reihe von Zufälligkeitsklassen einführen, und diese dann von einander separieren. Wir präsentieren auß erdem einen systematischen überblick über verschiedene Traceability-Begriffe und charakterisieren diese durch (Auto-)Komplexitätsbegriffe. Traceabilities sind eine Gruppe von Begriffen, die ausdrücken, dass eine Menge beinahe berechenbar ist. Der zweite Teil dieses Dokuments beschäftigt sich mit dem Thema zeitbeschränkter Kolmogorovkomplexität. Zunächst untersuchen wir den Unterschied zwischen zwei Arten, ein Wort zu beschreiben: Die Komplexität, es genau genug zu beschreiben, damit es von anderen Wörter unterschieden werden kann; sowie die Komplexität, es genau genug zu beschreiben, damit das Wort aus der Beschreibung tatsächlich generiert werden kann. Diese Unterscheidung ist im Falle zeitunbeschränkter Kolmogorovkomplexität nicht von Bedeutung; sobald wir jedoch Zeitschranken einführen, wird sie essentiell. Als nächstes führen wir den Begriff der Tiefe ein und beweisen ein ihn betreffendes Dichotomieresultat, das in seiner Struktur an Kummers bekanntes Gap-Theorem erinnert. Zu guter Letzt betrachten wir den wichtigen Begriff der Solovayfunktionen. Hierbei handelt es sich um berechenbare obere Schranken der Kolmogorovkomplexität, die unendlich oft scharf sind. Wir benutzen sie, um in einem gewissen Zusammenhang Martin-Löf-Zufälligkeit zu charakterisieren, und um eine Charakterisierung von Jump-Traceability anzugeben

    Shannon Information and Kolmogorov Complexity

    Full text link
    We compare the elementary theories of Shannon information and Kolmogorov complexity, the extent to which they have a common purpose, and where they are fundamentally different. We discuss and relate the basic notions of both theories: Shannon entropy versus Kolmogorov complexity, the relation of both to universal coding, Shannon mutual information versus Kolmogorov (`algorithmic') mutual information, probabilistic sufficient statistic versus algorithmic sufficient statistic (related to lossy compression in the Shannon theory versus meaningful information in the Kolmogorov theory), and rate distortion theory versus Kolmogorov's structure function. Part of the material has appeared in print before, scattered through various publications, but this is the first comprehensive systematic comparison. The last mentioned relations are new.Comment: Survey, LaTeX 54 pages, 3 figures, Submitted to IEEE Trans Information Theor

    Topological arguments for Kolmogorov complexity

    Full text link
    We present several application of simple topological arguments in problems of Kolmogorov complexity. Basically we use the standard fact from topology that the disk is simply connected. It proves to be enough to construct strings with some nontrivial algorithmic properties.Comment: Extended versio

    Game interpretation of Kolmogorov complexity

    Full text link
    The Kolmogorov complexity function K can be relativized using any oracle A, and most properties of K remain true for relativized versions. In section 1 we provide an explanation for this observation by giving a game-theoretic interpretation and showing that all "natural" properties are either true for all sufficiently powerful oracles or false for all sufficiently powerful oracles. This result is a simple consequence of Martin's determinacy theorem, but its proof is instructive: it shows how one can prove statements about Kolmogorov complexity by constructing a special game and a winning strategy in this game. This technique is illustrated by several examples (total conditional complexity, bijection complexity, randomness extraction, contrasting plain and prefix complexities).Comment: 11 pages. Presented in 2009 at the conference on randomness in Madison
    • …
    corecore