153 research outputs found

    Kochen-Specker Sets and the Rank-1 Quantum Chromatic Number

    Full text link
    The quantum chromatic number of a graph GG is sandwiched between its chromatic number and its clique number, which are well known NP-hard quantities. We restrict our attention to the rank-1 quantum chromatic number χq(1)(G)\chi_q^{(1)}(G), which upper bounds the quantum chromatic number, but is defined under stronger constraints. We study its relation with the chromatic number χ(G)\chi(G) and the minimum dimension of orthogonal representations ξ(G)\xi(G). It is known that ξ(G)χq(1)(G)χ(G)\xi(G) \leq \chi_q^{(1)}(G) \leq \chi(G). We answer three open questions about these relations: we give a necessary and sufficient condition to have ξ(G)=χq(1)(G)\xi(G) = \chi_q^{(1)}(G), we exhibit a class of graphs such that ξ(G)<χq(1)(G)\xi(G) < \chi_q^{(1)}(G), and we give a necessary and sufficient condition to have χq(1)(G)<χ(G)\chi_q^{(1)}(G) < \chi(G). Our main tools are Kochen-Specker sets, collections of vectors with a traditionally important role in the study of noncontextuality of physical theories, and more recently in the quantification of quantum zero-error capacities. Finally, as a corollary of our results and a result by Avis, Hasegawa, Kikuchi, and Sasaki on the quantum chromatic number, we give a family of Kochen-Specker sets of growing dimension.Comment: 12 page

    A Generalization of Kochen-Specker Sets Relates Quantum Coloring to Entanglement-Assisted Channel Capacity

    Get PDF
    We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. Here, the quantum chromatic number is defined via a nonlocal game based on graph coloring. We further show that from any graph with separation between these two quantities, one can construct a classical channel for which entanglement assistance increases the one-shot zero-error capacity. As an example, we exhibit a new family of classical channels with an exponential increase.Comment: 16 page

    Quantum measurements with prescribed symmetry

    Full text link
    We introduce a method to determine whether a given generalised quantum measurement is isolated or it belongs to a family of measurements having the same prescribed symmetry. The technique proposed reduces to solving a linear system of equations in some relevant cases. As consequence, we provide a simple derivation of the maximal family of Symmetric Informationally Complete measurements (SIC)-POVM in dimension 3. Furthermore, we show that the following remarkable geometrical structures are isolated, so that free parameters cannot be introduced: (a) maximal sets of mutually unbiased bases in prime power dimensions from 4 to 16, (b) SIC-POVM in dimensions from 4 to 16 and (c) contextuality Kochen-Specker sets in dimension 3, 4 and 6, composed of 13, 18 and 21 vectors, respectively.Comment: 10 pages, 2 figure

    Entanglement and nonclassical properties of hypergraph states

    Full text link
    Hypergraph states are multi-qubit states that form a subset of the locally maximally entangleable states and a generalization of the well--established notion of graph states. Mathematically, they can conveniently be described by a hypergraph that indicates a possible generation procedure of these states; alternatively, they can also be phrased in terms of a non-local stabilizer formalism. In this paper, we explore the entanglement properties and nonclassical features of hypergraph states. First, we identify the equivalence classes under local unitary transformations for up to four qubits, as well as important classes of five- and six-qubit states, and determine various entanglement properties of these classes. Second, we present general conditions under which the local unitary equivalence of hypergraph states can simply be decided by considering a finite set of transformations with a clear graph-theoretical interpretation. Finally, we consider the question whether hypergraph states and their correlations can be used to reveal contradictions with classical hidden variable theories. We demonstrate that various noncontextuality inequalities and Bell inequalities can be derived for hypergraph states.Comment: 29 pages, 5 figures, final versio

    On small proofs of Bell-Kochen-Specker theorem for two, three and four qubits

    Get PDF
    The Bell-Kochen-Specker theorem (BKS) theorem rules out realistic {\it non-contextual} theories by resorting to impossible assignments of rays among a selected set of maximal orthogonal bases. We investigate the geometrical structure of small vlv-l BKS-proofs involving vv real rays and ll 2n2n-dimensional bases of nn-qubits (1<n<51< n < 5). Specifically, we look at the parity proof 18-9 with two qubits (A. Cabello, 1996), the parity proof 36-11 with three qubits (M. Kernaghan & A. Peres, 1995 \cite{Kernaghan1965}) and a newly discovered non-parity proof 80-21 with four qubits (that improves work of P. K Aravind's group in 2008). The rays in question arise as real eigenstates shared by some maximal commuting sets (bases) of operators in the nn-qubit Pauli group. One finds characteristic signatures of the distances between the bases, which carry various symmetries in their graphs.Comment: version to appear in European Physical Journal Plu

    Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8) by entangling gates

    Full text link
    Peres/Mermin arguments about no-hidden variables in quantum mechanics are used for displaying a pair (R, S) of entangling Clifford quantum gates, acting on two qubits. From them, a natural unitary representation of Coxeter/Weyl groups W(D5) and W(F4) emerges, which is also reflected into the splitting of the n-qubit Clifford group Cn into dipoles C±\pmn . The union of the three-qubit real Clifford group C+ 3 and the Toffoli gate ensures a orthogonal representation of the Weyl/Coxeter group W(E8), and of its relatives. Other concepts involved are complex reflection groups, BN pairs, unitary group designs and entangled states of the GHZ family.Comment: version revised according the recommendations of a refere
    corecore