20 research outputs found

    Knowledge-aware Assessment of Severity of Suicide Risk for Early Intervention

    Get PDF
    Mental health illness such as depression is a significant risk factor for suicide ideation, behaviors, and attempts. A report by Substance Abuse and Mental Health Services Administration (SAMHSA) shows that 80% of the patients suffering from Borderline Personality Disorder (BPD) have suicidal behavior, 5-10% of whom commit suicide. While multiple initiatives have been developed and implemented for suicide prevention, a key challenge has been the social stigma associated with mental disorders, which deters patients from seeking help or sharing their experiences directly with others including clinicians. This is particularly true for teenagers and younger adults where suicide is the second highest cause of death in the US. Prior research involving surveys and questionnaires (e.g. PHQ-9) for suicide risk prediction failed to provide a quantitative assessment of risk that informed timely clinical decision-making for intervention. Our interdisciplinary study concerns the use of Reddit as an unobtrusive data source for gleaning information about suicidal tendencies and other related mental health conditions afflicting depressed users. We provide details of our learning framework that incorporates domain-specific knowledge to predict the severity of suicide risk for an individual. Our approach involves developing a suicide risk severity lexicon using medical knowledge bases and suicide ontology to detect cues relevant to suicidal thoughts and actions. We also use language modeling, medical entity recognition and normalization and negation detection to create a dataset of 2181 redditors that have discussed or implied suicidal ideation, behavior, or attempt. Given the importance of clinical knowledge, our gold standard dataset of 500 redditors (out of 2181) was developed by four practicing psychiatrists following the guidelines outlined in Columbia Suicide Severity Rating Scale (C-SSRS), with the pairwise annotator agreement of 0.79 and group-wise agreement of 0.73. Compared to the existing four-label classification scheme (no risk, low risk, moderate risk, and high risk), our proposed C-SSRS-based 5-label classification scheme distinguishes people who are supportive, from those who show different severity of suicidal tendency. Our 5-label classification scheme outperforms the state-of-the-art schemes by improving the graded recall by 4.2% and reducing the perceived risk measure by 12.5%. Convolutional neural network (CNN) provided the best performance in our scheme due to the discriminative features and use of domain-specific knowledge resources, in comparison to SVM-L that has been used in the state-of-the-art tools over similar dataset

    Knowledge-aware Assessment of Severity of Suicide Risk for Early Intervention

    Get PDF
    Mental health illness such as depression is a significant risk factor for suicide ideation, behaviors, and attempts. A report by Substance Abuse and Mental Health Services Administration (SAMHSA) shows that 80% of the patients suffering from Borderline Personality Disorder (BPD) have suicidal behavior, 5-10% of whom commit suicide. While multiple initiatives have been developed and implemented for suicide prevention, a key challenge has been the social stigma associated with mental disorders, which deters patients from seeking help or sharing their experiences directly with others including clinicians. This is particularly true for teenagers and younger adults where suicide is the second highest cause of death in the US. Prior research involving surveys and questionnaires (e.g. PHQ-9) for suicide risk prediction failed to provide a quantitative assessment of risk that informed timely clinical decision-making for intervention. Our interdisciplinary study concerns the use of Reddit as an unobtrusive data source for gleaning information about suicidal tendencies and other related mental health conditions afflicting depressed users. We provide details of our learning framework that incorporates domain-specific knowledge to predict the severity of suicide risk for an individual. Our approach involves developing a suicide risk severity lexicon using medical knowledge bases and suicide ontology to detect cues relevant to suicidal thoughts and actions. We also use language modeling, medical entity recognition and normalization and negation detection to create a dataset of 2181 redditors that have discussed or implied suicidal ideation, behavior, or attempt. Given the importance of clinical knowledge, our gold standard dataset of 500 redditors (out of 2181) was developed by four practicing psychiatrists following the guidelines outlined in Columbia Suicide Severity Rating Scale (C-SSRS), with the pairwise annotator agreement of 0.79 and group-wise agreement of 0.73. Compared to the existing four-label classification scheme (no risk, low risk, moderate risk, and high risk), our proposed C-SSRS-based 5-label classification scheme distinguishes people who are supportive, from those who show different severity of suicidal tendency. Our 5-label classification scheme outperforms the state-of-the-art schemes by improving the graded recall by 4.2% and reducing the perceived risk measure by 12.5%. Convolutional neural network (CNN) provided the best performance in our scheme due to the discriminative features and use of domain-specific knowledge resources, in comparison to SVM-L that has been used in the state-of-the-art tools over similar dataset

    Explainable AI Using Knowledge Graphs

    Get PDF
    During the last decade, traditional data-driven deep learning (DL) has shown remarkable success in essential natural language processing tasks, such as relation extraction. Yet, challenges remain in developing artificial intelligence (AI) methods in real-world cases that require explainability through human interpretable and traceable outcomes. The scarcity of labeled data for downstream supervised tasks and entangled embeddings produced as an outcome of self-supervised pre-training objectives also hinders interpretability and explainability. Additionally, data labeling in multiple unstructured domains, particularly healthcare and education, is computationally expensive as it requires a pool of human expertise. Consider Education Technology, where AI systems fall along a “capability spectrum” depending on how extensively they exploit various resources, such as academic content, granularity in student engagement, academic domain experts, and knowledge bases to identify concepts that would help achieve knowledge mastery for student goals. Likewise, the task of assessing human health using online conversations raises challenges for current statistical DL methods through evolving cultural and context-specific discussions. Hence, developing strategies that merge AI with stratified knowledge to identify concepts that would delineate healthcare conversation patterns and help healthcare professionals decide. Such technological innovations are imperative as they provide consistency and explainability in outcomes. This tutorial discusses the notion of explainability and interpretability through the use of knowledge graphs in (1) Healthcare on the Web, (2) Education Technology. This tutorial will provide details of knowledge-infused learning algorithms and its contribution to explainability for the above two applications that can be applied to any other domain using knowledge graphs

    Measuring Pain in Sickle Cell Disease using Clinical Text

    Full text link
    Sickle Cell Disease (SCD) is a hereditary disorder of red blood cells in humans. Complications such as pain, stroke, and organ failure occur in SCD as malformed, sickled red blood cells passing through small blood vessels get trapped. Particularly, acute pain is known to be the primary symptom of SCD. The insidious and subjective nature of SCD pain leads to challenges in pain assessment among Medical Practitioners (MPs). Thus, accurate identification of markers of pain in patients with SCD is crucial for pain management. Classifying clinical notes of patients with SCD based on their pain level enables MPs to give appropriate treatment. We propose a binary classification model to predict pain relevance of clinical notes and a multiclass classification model to predict pain level. While our four binary machine learning (ML) classifiers are comparable in their performance, Decision Trees had the best performance for the multiclass classification task achieving 0.70 in F-measure. Our results show the potential clinical text analysis and machine learning offer to pain management in sickle cell patients.Comment: The 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Societ

    "Is depression related to cannabis?": A knowledge-infused model for Entity and Relation Extraction with Limited Supervision

    Get PDF
    With strong marketing advocacy of the benefits of cannabis use for improved mental health, cannabis legalization is a priority among legislators. However, preliminary scientific research does not conclusively associate cannabis with improved mental health. In this study, we explore the relationship between depression and consumption of cannabis in a targeted social media corpus involving personal use of cannabis with the intent to derive its potential mental health benefit. We use tweets that contain an association among three categories annotated by domain experts - Reason, Effect, and Addiction. The state-of-the-art Natural Langauge Processing techniques fall short in extracting these relationships between cannabis phrases and the depression indicators. We seek to address the limitation by using domain knowledge; specifically, the Drug Abuse Ontology for addiction augmented with Diagnostic and Statistical Manual of Mental Disorders lexicons for mental health. Because of the lack of annotations due to the limited availability of the domain experts' time, we use supervised contrastive learning in conjunction with GPT-3 trained on a vast corpus to achieve improved performance even with limited supervision. Experimental results show that our method can significantly extract cannabis-depression relationships better than the state-of-the-art relation extractor. High-quality annotations can be provided using a nearest neighbor approach using the learned representations that can be used by the scientific community to understand the association between cannabis and depression better.Comment: Accepted to AAAI-2021 Symposiu

    ALONE: A Dataset for Toxic Behavior among Adolescents on Twitter

    Get PDF
    The convenience of social media has also enabled its misuse, potentially resulting in toxic behavior. Nearly 66% of internet users have observed online harassment, and 41% claim personal experience, with 18% facing severe forms of online harassment. This toxic communication has a significant impact on the well-being of young individuals, affecting mental health and, in some cases, resulting in suicide. These communications exhibit complex linguistic and contextual characteristics, making recognition of such narratives challenging. In this paper, we provide a multimodal dataset of toxic social media interactions between confirmed high school students, called ALONE (AdoLescents ON twittEr), along with descriptive explanation. Each instance of interaction includes tweets, images, emoji and related metadata. Our observations show that individual tweets do not provide sufficient evidence for toxic behavior, and meaningful use of context in interactions can enable highlighting or exonerating tweets with purported toxicity.Comment: Accepted: Social Informatics 202

    Is depression related to cannabis? : A Knowledge-infused Model for Entity and Relation Extraction with Limited Supervision

    Get PDF
    With strong marketing advocacy of the benefits of cannabis use for improved mental health, cannabis legalization is a priority among legislators. However, preliminary scientific research does not conclusively associate cannabis with improved mental health. In this study, we explore the relationship between depression and consumption of cannabis in a targeted social media corpus involving personal use of cannabis with the intent to derive its potential mental health benefit. We use tweets that contain an association among three categories annotated by domain experts - Reason, Effect, and Addiction. The state-of-the-art Natural Langauge Processing techniques fall short in extracting these relationships between cannabis phrases and the depression indicators. We seek to address the limitation by using domain knowledge; specifically, the Drug Abuse Ontology for addiction augmented with Diagnostic and Statistical Manual of Mental Disorders lexicons for mental health. Because of the lack of annotations due to the limited availability of the domain experts’ time, we use supervised contrastive learning in conjunction with GPT-3 trained on a vast corpus to achieve improved performance even with limited supervision. Experimental results show that our method can significantly extract cannabis-depression relationships better than the state-of-the-art relation extractor. High-quality annotations can be provided using a nearest neighbor approach using the learned representations that can be used by the scientific community to understand the association between cannabis and depression better

    ALONE: A Dataset for Toxic Behavior among Adolescents on Twitter

    Get PDF
    The convenience of social media has also enabled its misuse, potentially resulting in toxic behavior. Nearly 66% of internet users have observed online harassment, and 41% claim personal experience, with 18% facing severe forms of online harassment. This toxic communication has a significant impact on the well-being of young individuals, affecting mental health and, in some cases, resulting in suicide. These communications exhibit complex linguistic and contextual characteristics, making recognition of such narratives challenging. In this paper, we provide a multimodal dataset of toxic social media interactions between confirmed high school students, called ALONE (AdoLescents ON twittEr), along with descriptive explanation. Each instance of interaction includes tweets, images, emoji and related metadata. Our observations show that individual tweets do not provide sufficient evidence for toxic behavior, and meaningful use of context in interactions can enable highlighting or exonerating tweets with purported toxicity
    corecore