3 research outputs found

    Knowledge-based interoperability for mathematical software systems

    Get PDF
    Funding: OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541) and DFG project RA-18723-1 OAF.There is a large ecosystem of mathematical software systems. Individually, these are optimized for particular domains and functionalities, and together they cover many needs of practical and theoretical mathematics. However, each system specializes on one area, and it remains very difficult to solve problems that need to involve multiple systems. Some integrations exist, but the are ad-hoc and have scalability and maintainability issues. In particular, there is not yet an interoperability layer that combines the various systems into a virtual research environment (VRE) for mathematics. The OpenDreamKit project aims at building a toolkit for such VREs. It suggests using a central system-agnostic formalization of mathematics (Math-in-the-Middle, MitM) as the needed interoperability layer. In this paper, we conduct the first major case study that instantiates the MitM paradigm for a concrete domain as well as a concrete set of systems. Specifically, we integrate GAP, Sage, and Singular to perform computation in group and ring theory. Our work involves massive practical efforts, including a novel formalization of computational group theory, improvements to the involved software systems, and a novel mediating system that sits at the center of a star-shaped integration layout between mathematical software systems.Postprin

    Knowledge-based interoperability for mathematical software systems

    No full text
    There is a large ecosystem of mathematical software systems. Individually, these are optimized for particular domains and functionalities, and together they cover many needs of practical and theoretical mathematics. However, each system specializes on one area, and it remains very difficult to solve problems that need to involve multiple systems. Some integrations exist, but the are ad-hoc and have scalability and maintainability issues. In particular, there is not yet an interoperability layer that combines the various systems into a virtual research environment (VRE) for mathematics. The OpenDreamKit project aims at building a toolkit for such VREs. It suggests using a central system-agnostic formalization of mathematics (Math-in-the-Middle, MitM) as the needed interoperability layer. In this paper, we conduct the first major case study that instantiates the MitM paradigm for a concrete domain as well as a concrete set of systems. Specifically, we integrate GAP, Sage, and Singular to perform computation in group and ring theory. Our work involves massive practical efforts, including a novel formalization of computational group theory, improvements to the involved software systems, and a novel mediating system that sits at the center of a star-shaped integration layout between mathematical software systems
    corecore