6 research outputs found

    Component-based Segmentation of words from handwritten Arabic text

    Get PDF
    Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition

    Non-english and non-latin signature verification systems: A survey

    Full text link
    Signatures continue to be an important biometric because they remain widely used as a means of personal verification and therefore an automatic verification system is needed. Manual signature-based authentication of a large number of documents is a difficult and time consuming task. Consequently for many years, in the field of protected communication and financial applications, we have observed an explosive growth in biometric personal authentication systems that are closely connected with measurable unique physical characteristics (e.g. hand geometry, iris scan, finger prints or DNA) or behavioural features. Substantial research has been undertaken in the field of signature verification involving English signatures, but to the best of our knowledge, very few works have considered non-English signatures such as Chinese, Japanese, Arabic etc. In order to convey the state-of-the-art in the field to researchers, in this paper we present a survey of non-English and non-Latin signature verification systems

    Knowledge-based baseline detection and optimal thresholding for words segmentation in efficient pre-processing of handwritten arabic text

    No full text
    Techniques on detecting baseline and segmenting words in handwritten Arabic text are presented in this paper. Instead of using pure projection, knowledge of the location of the baseline is utilized for accurate baseline detection. Then, distances between words and subwords are respectively analyzed, and their statistical distributions are obtained to decide an optimal threshold in segmenting words. Results on IFN/ENIT database have validated our methods in terms of improved baseline detection and words segmentation for further recognitio

    Novel word recognition and word spotting systems for offline Urdu handwriting

    Get PDF
    Word recognition for offline Arabic, Farsi and Urdu handwriting is a subject which has attained much attention in the OCR field. This thesis presents the implementations of offline Urdu Handwritten Word Recognition (HWR) and an Urdu word spotting technique. This thesis first introduces the creation of several offline CENPARMI Urdu databases. These databases were necessary for offline Urdu HWR experiments. The holistic-based recognition approach was followed for the Urdu HWR system. In this system, the basic pre-processing of images was performed. In the feature extraction phase, the gradient and structural features were extracted from greyscale and binary word images, respectively. This recognition system extracted 592 feature sets and these features helped in improving the recognition results. The system was trained and tested on 57 words. Overall, we achieved a 97 % accuracy rate for handwritten word recognition by using the SVM classifier. Our word spotting technique used the holistic HWR system for recognition purposes. This word spotting system consisted of two processes: the segmentation of handwritten connected components and diacritics from Urdu text lines and the word spotting algorithm. A small database of handwritten text pages was created for testing the word spotting system. This database consisted of texts from ten Urdu native speakers. The rule-based segmentation system was applied for segmentation (or extracting) for handwritten Urdu subwords or connected components from text lines. We achieved a 92% correct segmentation rate for 372 text lines. In the word spotting algorithm, the candidate words were generated from the segmented connected components. These candidate words were sent to the holistic HWR system, which extracted the features and tried to recognize each image as one of the 57 words. After classification, each image was sent to the verification/rejection phase, which helped in rejecting the maximum number of unseen (raw data) images. Overall, we achieved a 50% word spotting precision at a 70% recall rat

    End-Shape Analysis for Automatic Segmentation of Arabic Handwritten Texts

    Get PDF
    Word segmentation is an important task for many methods that are related to document understanding especially word spotting and word recognition. Several approaches of word segmentation have been proposed for Latin-based languages while a few of them have been introduced for Arabic texts. The fact that Arabic writing is cursive by nature and unconstrained with no clear boundaries between the words makes the processing of Arabic handwritten text a more challenging problem. In this thesis, the design and implementation of an End-Shape Letter (ESL) based segmentation system for Arabic handwritten text is presented. This incorporates four novel aspects: (i) removal of secondary components, (ii) baseline estimation, (iii) ESL recognition, and (iv) the creation of a new off-line CENPARMI ESL database. Arabic texts include small connected components, also called secondary components. Removing these components can improve the performance of several systems such as baseline estimation. Thus, a robust method to remove secondary components that takes into consideration the challenges in the Arabic handwriting is introduced. The methods reconstruct the image based on some criteria. The results of this method were subsequently compared with those of two other methods that used the same database. The results show that the proposed method is effective. Baseline estimation is a challenging task for Arabic texts since it includes ligature, overlapping, and secondary components. Therefore, we propose a learning-based approach that addresses these challenges. Our method analyzes the image and extracts baseline dependent features. Then, the baseline is estimated using a classifier. Algorithms dealing with text segmentation usually analyze the gaps between connected components. These algorithms are based on metric calculation, finding threshold, and/or gap classification. We use two well-known metrics: bounding box and convex hull to test metric-based method on Arabic handwritten texts, and to include this technique in our approach. To determine the threshold, an unsupervised learning approach, known as the Gaussian Mixture Model, is used. Our ESL-based segmentation approach extracts the final letter of a word using rule-based technique and recognizes these letters using the implemented ESL classifier. To demonstrate the benefit of text segmentation, a holistic word spotting system is implemented. For this system, a word recognition system is implemented. A series of experiments with different sets of features are conducted. The system shows promising results
    corecore