55,308 research outputs found

    Knowledge transformation and fusion in diagnostic systems

    Get PDF
    Diagnostic systems depend on knowledge bases specifying the causal, structural or functional interactions among components of the diagnosed objects. A diagnostic specification in a diagnostic system is a semantic interpretation of a knowledge base. We introduce the notion of diagnostic specification morphism and some operations of diagnostic specifications that can be used to model knowledge transformation and fusion, respectively. The relation between diagnostic methods in the source system and the target system of a specification morphism is examined. Also, representations of diagnostic methods in a composed system modelled by operations of specifications are given in terms of the corresponding diagnostic methods in its component systems. © 2004 Elsevier B.V. All rights reserved

    A Methodology for the Diagnostic of Aircraft Engine Based on Indicators Aggregation

    Full text link
    Aircraft engine manufacturers collect large amount of engine related data during flights. These data are used to detect anomalies in the engines in order to help companies optimize their maintenance costs. This article introduces and studies a generic methodology that allows one to build automatic early signs of anomaly detection in a way that is understandable by human operators who make the final maintenance decision. The main idea of the method is to generate a very large number of binary indicators based on parametric anomaly scores designed by experts, complemented by simple aggregations of those scores. The best indicators are selected via a classical forward scheme, leading to a much reduced number of indicators that are tuned to a data set. We illustrate the interest of the method on simulated data which contain realistic early signs of anomalies.Comment: Proceedings of the 14th Industrial Conference, ICDM 2014, St. Petersburg : Russian Federation (2014

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Deep Multi-Modal Classification of Intraductal Papillary Mucinous Neoplasms (IPMN) with Canonical Correlation Analysis

    Full text link
    Pancreatic cancer has the poorest prognosis among all cancer types. Intraductal Papillary Mucinous Neoplasms (IPMNs) are radiographically identifiable precursors to pancreatic cancer; hence, early detection and precise risk assessment of IPMN are vital. In this work, we propose a Convolutional Neural Network (CNN) based computer aided diagnosis (CAD) system to perform IPMN diagnosis and risk assessment by utilizing multi-modal MRI. In our proposed approach, we use minimum and maximum intensity projections to ease the annotation variations among different slices and type of MRIs. Then, we present a CNN to obtain deep feature representation corresponding to each MRI modality (T1-weighted and T2-weighted). At the final step, we employ canonical correlation analysis (CCA) to perform a fusion operation at the feature level, leading to discriminative canonical correlation features. Extracted features are used for classification. Our results indicate significant improvements over other potential approaches to solve this important problem. The proposed approach doesn't require explicit sample balancing in cases of imbalance between positive and negative examples. To the best of our knowledge, our study is the first to automatically diagnose IPMN using multi-modal MRI.Comment: Accepted for publication in IEEE International Symposium on Biomedical Imaging (ISBI) 201
    • …
    corecore