Pancreatic cancer has the poorest prognosis among all cancer types.
Intraductal Papillary Mucinous Neoplasms (IPMNs) are radiographically
identifiable precursors to pancreatic cancer; hence, early detection and
precise risk assessment of IPMN are vital. In this work, we propose a
Convolutional Neural Network (CNN) based computer aided diagnosis (CAD) system
to perform IPMN diagnosis and risk assessment by utilizing multi-modal MRI. In
our proposed approach, we use minimum and maximum intensity projections to ease
the annotation variations among different slices and type of MRIs. Then, we
present a CNN to obtain deep feature representation corresponding to each MRI
modality (T1-weighted and T2-weighted). At the final step, we employ canonical
correlation analysis (CCA) to perform a fusion operation at the feature level,
leading to discriminative canonical correlation features. Extracted features
are used for classification. Our results indicate significant improvements over
other potential approaches to solve this important problem. The proposed
approach doesn't require explicit sample balancing in cases of imbalance
between positive and negative examples. To the best of our knowledge, our study
is the first to automatically diagnose IPMN using multi-modal MRI.Comment: Accepted for publication in IEEE International Symposium on
Biomedical Imaging (ISBI) 201