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Abstract

Diagnostic systems depend on knowledge bases specifying the causal, structural or functional
interactions among components of the diagnosed objects. A diagnostic specification in a diagnos-
tic system is a semantic interpretation of a knowledge base. We introduce the notion of diagnostic
specification morphism and some operations of diagnostic specifications that can be used to model
knowledge transformation and fusion, respectively. The relation between diagnostic methods in the
source system and the target system of a specification morphism is examined. Also, representations
of diagnostic methods in a composed system modelled by operations of specifications are given in
terms of the corresponding diagnostic methods in its component systems.
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1. Introduction
To diagnose is to determine the nature of a trouble (for example, a disease) from ob-
servations of signs and symptoms, and it is an important human ability, with important
applications in medicine, industrial processes and computer software, among others. Due
to its importance, diagnostic reasoning has long been an active research area of Artificial
Intelligence. Throughout the 1970’s, several expert systems aimed in whole or in part at di-
agnosis were developed (e.g., MYCIN [21]), exploring different knowledge representation
and reasoning techniques, but the field lacked unified underlying principles.

One of the first formal theories of diagnosis is Reggia, Nau and Wang’s set-covering
model for diagnostic expert systems [18], where causal knowledge of abnormality is
represented by binary relations. Diagnosis then reduces to determining whether actually
observed findings can be inferred from observed defects and the causal relations.

In 1987, a logical theory of diagnosis was proposed by Reiter [19], and it is usually
called the theory of consistency-based diagnosis. This theory was largely extended by de
Kleer et al. [10] in 1992. Their main idea is to establish a model of the normal structure
and behavior of the diagnosed objects. Diagnosis is then modelled as finding a discrepancy
between the normal behavior predicted from the model and the actually observed abnormal
behavior. The discrepancy in this approach is formalized as logical inconsistency.

Another logical theory of diagnosis, called abductive diagnosis, was developed by Cox
and Pietrzykowski [9], Console et al. [3,7,8] and others around 1990. They used logi-
cal implications from causes to effects to represent causal knowledge, and a diagnosis is
then formalized as reasoning from effects (observed findings) to causes (abnormalities or
faults).

Lucas [13] recently introduced a framework allowing these and other formal theories
(for example, heuristic classification [6], goal-directed diagnosis [20] and explicit means-
end model [12]), to be compared in a unified way. It consists mainly of two parts: (1)
diagnostic specification, a mapping from defects to observable findings, specifying the
causal relation from defects to findings; and (2) notion of diagnosis, a mapping from ob-
served findings to defects, modelling how to get a diagnostic solution from the observed
findings. This is a high-level formalism of diagnosis, and various formal theories of diag-
nosis can be expressed in it, including consistency-based diagnosis, abductive diagnosis
and heuristic classification. In this framework a diagnostic specification need not corre-
spond to a unique notion of diagnosis. Different strategies of diagnosis can be introduced
according to varied philosophical considerations or practical purposes. In [13], given a di-
agnostic specification, Lucas proposed a hierarchy consisting of six notions of diagnosis
induced by it, namely, most general subset diagnosis, most general superset diagnosis,
most general intersection diagnosis, most specific subset diagnosis, most specific superset
diagnosis as well as most specific intersection diagnosis. The six notions of diagnosis form
a flexible spectrum in which one notion may refine another. Thus, they provide the user
with an opportunity to choose a diagnosis method suited to his own criterion.

A diagnostic specification in Lucas’s formalism is intended to serve as a semantic in-
terpretation of the knowledge base in a diagnostic system. But the cost of gathering and
processing knowledge is often very high. Such a situation makes effective reuse of knowl-
edge essential. One of the mechanisms that support reuse of knowledge is knowledge
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transformation which maps various different knowledge bases to each other, enabling a

common interfaces between different domains and application systems. Many different
formal representations of knowledge transformation have already been proposed; for ex-
ample, conditional rules [4], function [5], logical relations [11], and tables and procedures
[22]. Another important mechanism for effective use and reuse of knowledge is the fusion
and merging of different knowledge resources, often represented in terms of operations
on knowledge bases. Examples include Stanford’s ontology algebra [24] and Barwise and
Seligman’s theory of information flow [1].

This leads us to explore the possibility of reusing knowledge in diagnostic systems.
In this paper, we consider the following two problems concerning change, evolution of
knowledge for diagnosis as well as gathering and combining diagnostic knowledge from
multiple sources: (1) if the knowledge base in one diagnostic system is transformed into
the knowledge base in another, then to what extent can the diagnostic method adopted
in the first system be reused in the second? and (2) if the knowledge bases in a set of
diagnostic systems are fused or merged to construct a larger one, how we can produce
a suitable diagnostic method for the composed system from the diagnostic methods of
its components? In order to solve the first problem, the notion of diagnostic specification
morphism is introduced. As a solution to the second problem, some algebraic operations of
diagnostic specifications are proposed to model the construction of a complex diagnostic
system composed from simpler ones.

This paper is organized as follows: in Section 2, we recall some basic notions from [13].
We also present some new results in this section. First, it is shown that some global proper-
ties such as monotonicity and interaction freeness of partial diagnostic specifications, can
be extended to the whole specifications generated by them. Second, for the six diagnostic
notions in the Lucas refinement diagnosis spectrum, some properties of the Galois con-
nection style are observed. Third, some necessary and sufficient conditions under which
the six diagnostic notions respects the given diagnostic specification are found. Fourth, we
show that certain relations between diagnostic specifications are preserved and some global
properties of diagnostic specifications are inherited by the six diagnostic notions induced
from them. These results are useful in the analysis and comparison of various notions of
diagnosis. In Section 3, the notion of diagnostic specification morphism is introduced for
modelling transformations of knowledge bases in different diagnostic systems. It is shown
that the relation that a notion of diagnosis respects a diagnostic specification can be pre-
served by some morphisms. Also, it is demonstrated that certain global properties of the
source diagnostic specification may be transferred by a specification morphism to the tar-
get specification. Thus, some diagnosis methods depending heavily on these properties can
be safely reused after knowledge transformation. We prove that some partial specification
morphism can be smoothly extended to a specification morphism. This gives a conve-
nient technique for constructing specification morphisms because in many applications
diagnostic knowledge bases are often specified only partially. The relationship between
the diagnostic strategies in the source diagnostic system and the target system of a mor-
phism is thoroughly analyzed. The obtained results provide us with a logical support for
knowledge reuse in diagnostic systems. Section 4 is devoted to examining carefully various
operations of diagnostic specifications. These operations aim at describing different ways
to fuse and merge diagnostic knowledge bases. They include optimistic and pessimistic
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fusions, optimistic merging and pessimistic merging, sum, and direct product. For each of

them, we examine how the global properties of component systems are preserved by the
composed system. We also clarify the relationship between the diagnostic methods in the
component systems and those in the composed system. These results enable us to know to
what an extent the diagnostic strategies used in a diagnostic system can be reused when it
is embedded into a larger system.

To conclude this introduction, we would like to comment on applicability of the con-
cepts and results presented in the current paper. Although the work reported in the paper
is mainly concerned with the problem of system diagnosis, the formal methods developed
for modelling knowledge transformation and fusion may be used in some other areas of
Artificial Intelligence and related subjects. The Semantic Web is envisaged as the Web en-
riched with numerous domain ontologies, which specify formal semantics of data existing
on the Web [2]. Recent successful projects in the ontology area have resulted at creation of
thousands of ontologies [25]. However, the absence of efficient techniques of knowledge
transformation and fusion hampers further development of the Semantic Web. The formal-
ism established in this paper might provide some useful mathematical tools, supporting the
development of knowledge transformation and fusion technology in such an rapidly grow-
ing area. Another potential application area of this paper is knowledge management [15],
where various technologies that support knowledge transformation have been developed,
but solid theoretical foundations are still to be found. Knowledge fusion and merging are
key issues in the area of multi-agent systems (MAS) [23]. A very interesting problem for
further study is to model learning in MAS with the fusion operations introduced here.

2. Lucas formalism of system diagnosis

Our work will be carried out entirely within the Lucas formal framework of diagnosis.
So, for convenience of the reader, here we first recall some basic notions from [13]. For
detailed explanations and examples illustrating these notions we refer to [13].

Each diagnostic system requires a knowledge base as the basis of implementing diag-
nostic task. Such a knowledge base usually specifies certain interactions between defects
and observable findings. In the Lucas formalism it is interpreted as an evidence function
which associates a set of observable findings to a set of defects and intends to use these
findings to represent the evidence of occurrence of the defects.

The Lucas formalism is established in the set-theoretical setting. Let ∆P and ΦP be
two nonempty sets. The elements of ∆P will be used to denote positive defects, and the
elements of ΦP will be positive findings. We write

∆N = {¬d: d ∈ ∆P } and ΦN = {¬f : f ∈ ΦP }
for the sets of negative defects and findings, respectively. Furthermore, let

∆ = ∆P ∪ ∆N and Φ = ΦP ∪ ΦN,

where it is assumed that ∆P ∩ ∆N = ∅ and ΦP ∩ ΦN = ∅, and ¬¬x = x for every x ∈
∆P ∪ ΦP . A subset D of ∆ will be used to represent a set of defects. Here, we adopt an
interpretation of three-valued logic in the following sense: for each d ∈ ∆P ,
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(i) d indicates the presence of defect d ;

(ii) ¬d indicates the absence of defect d ; and

(iii) if both d and ¬d are not in D, then it is understood that defect d is unknown.

Similarly, a subset E of Φ will be seen as a set of findings, with the same three-valued
logical interpretation.

For any set X, we use ℘(X) to express the power set of X, i.e., the set of all subsets
of X. After introducing the above notations, we are able to present the first key notion in
the Lucas formalism of diagnosis.

Definition 1 (Diagnostic specification; [13, Definition 1]). A diagnostic specification is
a triple Σ = (∆,Φ, e), where ∆ and Φ are sets of defects and findings, respectively, as
explained before, and

e :℘(∆) → ℘(Φ) ∪ {⊥}
is a mapping, called evidence function, such that

(i) for any D,D′ ⊆ ∆, if d,¬d ∈ D then e(D) = ⊥; and
(ii) for any D,D′ ⊆ ∆, if e(D) 	= ⊥ and D′ ⊆ D then e(D′) 	= ⊥.

In addition, if e satisfies the following condition

(iii) for each f ∈ Φ there exists a set D ⊆ ∆ with f ∈ e(D) or ¬f ∈ e(D), then Σ is said
to be complete.

For each D ⊆ ∆, if e(D) 	= ⊥, then D is called consistent.

Intuitively, for each set D of defects, allowing both positive and negative occurrences
(i.e., presence or absence) of defects, e(D) expresses the set of findings which are observ-
able when defects in D simultaneously occur.

The above definition is a slightly modified version of Definition 1 in [13]. The difference
between them is that a weaker concept of diagnostic specification with only the conditions
(1) and (2) is introduced, and the original concept of diagnostic specification is renamed as
complete specification.

The nature of a diagnostic specification has a heavy influence on the choice of our di-
agnostic methods in the diagnostic system with this specification as its knowledge base.
Thus, it is worthwhile to carefully analyze various properties of diagnostic specifications.
The following two definitions give some common global properties of diagnostic specifi-
cations.

Definition 2 (Monotonicity; [13, Definition 7]). A diagnostic specification Σ = (∆,Φ, e)

is called increasing (respectively decreasing) if for all D,D′ ⊆ ∆,

D ⊆ D′ implies e(D) ⊆ e(D′) (respectively e(D′ ⊆ e(D))

provided D′ is consistent.
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Monotonicity is very familiar to us and does not need any further explanation. In the

above definition, monotonicity is required to hold globally, i.e., to be valid for all sets D

and D′ of defects. Some localized versions of monotonicity were also introduced in [13].

Definition 3 (Interaction freeness; [13, Definition 8]). A diagnostic specification Σ =
(∆,Φ, e) is said to be interaction free if for each consistent set of defects D ⊆ ∆, it holds
that

e(D) =
⋃
d∈D

e
({d}).

A slightly different presentation of interaction freeness is that

e

(⋃
i∈I

Di

)
=
⋃
i∈I

e(Di)

for any family {Di}i∈I of consistent subsets of ∆, where I is an arbitrary nonempty index
set. The intuitive meaning of interaction freeness is then that the evidence for the union
of a family of defect sets is simply the union of their respective evidences, and thus no
interaction among defects exist.

One of the most important relations between diagnostic specifications is the subspec-
ification relation. A diagnostic specification is a subspecification of another if the former
gives less evidences than the latter for the same defects.

Definition 4 (Subspecification). Let Σ = (∆,Φ, e) and Σ ′ = (∆,Φ, e′) be two specifica-
tions with the same sets of defects and findings. If for any D ⊆ ∆, e(D) ⊆ e′(D) whenever
e(D) 	= ⊥ and e′(D) 	= ⊥, then Σ is called a subspecification of Σ ′, and we write Σ 
 Σ ′.

It is often very difficult or even impossible to specify the whole knowledge base when
the diagnostic system is very large and too many defects have to be considered. A solution
to this problem that one may naturally conceive is that we only specify a small part of the
knowledge base and the remaining part can be generated automatically in some way from
the part specified already. This simple idea motivates the following two definitions.

Definition 5 (Partial specification). (1) A partial specification is a quadruple Σ =
(∆,Φ,V, e), where ∆ and Φ are as in Definition 2.1, V ⊆ ℘(∆), and e :V → ℘(Φ)∪{⊥}
is a mapping satisfying conditions (1) and (2) in Definition 1.

(2) A partial specification Σ = (∆,Φ,V, e) is said to be up-inductive (respectively
down-inductive) if any chain W ⊆ V (i.e., D1 ⊆ D2 or D2 ⊆ D1 for all D1,D2 ∈ W ) has
an upper (respectively a lower) bound D (i.e., D′ ⊆ D (respectively D ⊆ D′) for each
D′ ∈ W ).

It is clear that the unique difference between a diagnostic specification and a partial
specification is that the domain V of the evidence function in the latter is allowed to be a
proper subset of ℘(∆); in other words, the evidences of some defects can be unspecified
in a partial specification. If V = ℘(∆), then a partial specification Σ = (∆,Φ,V, e) is
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exactly a diagnostic specification. Note that a partial specification Σ = (∆,Φ,V, e) is

automatically up-inductive and down-inductive when ∆ is finite.

Given a partial specification, there will be many different ways to recover a whole spec-
ification. Two of the ways that we use most often are presented in the following definition.

Definition 6 (Bottom-up and top-down partial specifications; [13, Definitions 12 and 17]).
Let Σ = (∆,Φ, e) be a diagnostic specification, and let Σ ′ = (∆,Φ,V, e′) be a partial
specification with the same sets of defects and findings.

(1) If for any D ∈ ℘(∆),

e(D) =
⋃{

e′(D): D′ ∈ m(V,D)
}

(
respectively e(D) =

⋂{
e′(D): D′ ∈ m(V,D)

})
,

where m(V,D) is the set of maximal elements of {D′ ∈ V : D′ ⊆ D} with respect to set
inclusion ⊆, then Σ ′ is called an increasing (respectively a decreasing) bottom-up partial
specification of Σ.

(2) If for any D ∈ ℘(∆),

e(D) =
⋂{

e′(D): D′ ∈ M(V,D)
}

(
respectively e(D) =

⋃{
e′(D): D′ ∈ M(V,D)

})
,

where M(V,D) is the set of minimal elements of {D′ ∈ V : D ⊆ D′} with respect to set
inclusion ⊆, then Σ ′ is called an increasing (respectively a decreasing) top-down partial
specification of Σ .

The philosophy of bottom-up partial specifications is to use the specified evidences to
approximate the unspecified evidences from bottom, and top-down partial specifications
are defined in a dual fashion. Recall from [16, p. 20] that Zorn’s lemma asserts if every
chain in a partially ordered set P has an upper bound then P has a maximal element.
Thus, Zorn’s lemma guarantees the existence of maximal (respectively minimal) elements
of {D′ ∈ V : D′ ⊆ D} (respectively {D′ ∈ V : D ⊆ D′}) in the above definition when Σ ′ is
up-inductive (respectively down-inductive), and e(D) is well-defined for all D ⊆ ∆.

Some global properties of diagnostic specifications, such as monotonicity and interac-
tion freeness, can be easily generalized to partial specifications.

Definition 7 (Increasing, decreasing and interaction free partial specifications). Let Σ =
(∆,Φ,V, e) be a partial specification. Then

(1) Σ is called increasing (respectively decreasing) if for any consistent D,D′ ∈ V , D ⊆
D′ implies e(D) ⊆ e(D′) (respectively e(D) ⊇ e(D′)).

(2) Σ is called interaction free if
(i) {d} ∈ V for all d ∈ ∆; and

(ii) for all consistent D ∈ V , e(D) =⋃d∈D e({d}).
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The following proposition demonstrates how some properties of partial specifications

can be extended to the whole specifications generated by them.

Proposition 8. Let Σ = (∆,Φ, e) be a diagnostic specification, and let Σ ′ = (∆,Φ,V, e′)
be a partial specification with the same sets of defects and findings.

(1) If Σ ′ is an increasing bottom-up or top-down partial specification of Σ , and Σ ′ is
increasing, then Σ is also increasing.

(2) If Σ ′ is an decreasing bottom-up or top-down partial specification of Σ , and Σ ′ is
decreasing, then Σ is also decreasing.

(3) If Σ ′ is an increasing bottom-up partial specification of Σ , and Σ ′ is interaction free,
then Σ is also interaction free.

Proof. We only consider the case where Σ ′ is an increasing top-down partial specification
of Σ , and Σ ′ is decreasing. For any consistent D1,D2 ⊆ ∆, if D1 ⊆ D2, then for each
D′

2 ∈ M(V,D2), we have D′
2 ∈ V and D′

2 ⊇ D2 ⊇ D1. Hence, D′
2 ∈ {D ∈ V2: D ⊇ D1}.

Note that Σ ′ is down-inductive. We known from Zorn’s lemma that there exists D′
1 ∈

M(V2,D1) with D′
2 ⊇ D′

1. Since Σ is decreasing, it holds that e′(D′
2) ⊆ e′(D′

1). Therefore,
we obtain

e(D2) =
⋃{

e′(D′
2): D′

2 ∈ M(V,D2)
}

⊆
⋃{

e′(D′
1): D′

1 ∈ M(V,D1)
}= e(D1),

and Σ is decreasing. �
We now turn to present the second key component in the Lucas formalism of diagnosis.

The evidence function in a diagnostic specification gives the expected evidences for the
combined occurrences of defects. Conversely, a notion of diagnosis will seek the defects
that may cause the observed findings. In a sense, diagnostic specification and notion of
diagnosis are two concepts conjugate to each other.

Definition 9 (Notion of diagnosis, diagnostic problem and diagnostic solution; [13, Defin-
ition 20]). (1) A notion of diagnosis is a triple Π = (∆,Φ,R), where ∆ and Φ are respec-
tively sets of defects and findings, R = {RH : H ⊆ ∆}, and RH :℘(Φ) → ℘(∆) ∪ {u} is a
mapping for each hypothesis H ⊆ ∆, called diagnostic function.

(2) A diagnostic problem is a triple P = (∆,Φ,E) in which ∆ and Φ are as in (1), and
E ⊆ Φ is a set of observed findings such that if f ∈ E then ¬f /∈ E; i.e., contradictory
observed findings are not allowed.

(3) Let Π = (∆,Φ,R) be a notion of diagnosis, let P = (∆,Φ,E) be a diagnostic
problem with the same sets of defects and findings, and let H ⊆ ∆ be a hypothesis. Then
the diagnostic solution of P under Π with respect to H is defined to be RH (E).

The intuitive meaning of a notion of diagnosis is already clear from its formal definition.
The set H ⊆ ∆ in the above definition is a hypothesis. This means that we already know
all possible defects must be in H , and thus we only need to conduct the diagnostic task
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with the scope of H . For any set E ⊆ Φ , denoting the actually observed findings, RH (E)
is viewed as the diagnostic solution to E under the hypothesis H ; that is, the defects that
possibly cause E. For the case of RH (E) = u, no diagnostic solution exists. For a visual
interpretation of the relation among all components of a diagnostic system, including di-
agnostic specification, notion of diagnosis, and diagnostic problem and solution, we refer
to [13, Fig. 9].

We often need to compare strictness of different notions of diagnosis. A suitable math-
ematical tool for this purpose is given in the following definition.

Definition 10 (Sub-diagnostic relation; [13, Definition 29]). Let Π = (∆,Φ,R) and Π ′ =
(∆,Φ,R′) be two notions of diagnosis with the same sets of defects and findings. If for
any E ⊆ Φ and for any H ⊆ ∆, RH (E) ⊆ R′

H(E) provided RH (E) 	= u and R′
H (E) 	= u,

then Π is said to be sub-diagnostic to Π ′, and we write Π 
 Π ′.

It is not the case that any pair consisting of a diagnostic specification and a notion of
diagnosis forms a reasonable diagnostic system. Usually, some conditions must be im-
posed to a notion of diagnosis so that it gives a suitable diagnostic method with respect
to a given diagnostic specification. One of such conditions is presented in the following
definition.

Definition 11 (A notion Π of diagnosis respects a diagnostic specification Σ ; [13, Defi-
nition 22]). Let Σ = (∆,Φ, e) be a diagnostic specification, and let Π = (∆,Φ,R) be a
notion of diagnosis with the same sets of defects and findings. It is said that Π respects Σ

if

(i) for each set of observed findings E ⊆ Φ , there exists a hypothesis H ⊆ ∆ such that
e(RH (E)) = E; and

(ii) for each consistent D ⊆ ∆, there exists a hypothesis H ⊆ ∆ such that RH (e(D)) = D.

If condition (ii) is strengthened as follows:

(ii)′ for each consistent D ⊆ ∆, there exists a hypothesis H ⊆ ∆ such that RH(e(D)) = D

and RH ′(e(D)) = u for all H ′ 	⊇ H ,

then we say that Π strictly respects Σ .

A notion Π of diagnosis respects a diagnostic specification Σ actually means that the
diagnostic function R in Π is a pseudo-inverse of the evidence function e in Σ . In order
to explain further the main idea of the above definition, it is worth comparing it with the
notion of Galois connection. Let A and B be two partially ordered sets, and let G :A → B

and F :B → A be order-preserving functions. Recall from [14, p. 93] that (F,G) is called a
Galois connection provided the following equivalence holds: Fb � a if and only if b � Ga

for all a ∈ A and b ∈ B . Then it may be noted that the above definition is given in a style
similar to the Galois connection.
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Except the case considered in the above definition, there are many different require-

ments for a notion of diagnosis to be suitable with respect to a given diagnostic specifica-
tion. This flexibility comes from different philosophical considerations that the user takes
when choosing his diagnostic method. Thus, a spectrum of different notions of diagno-
sis could be introduced for a diagnostic system with a given diagnostic specification as
its knowledge base. Indeed, six of such notions of diagnosis, namely, most general sub-
set diagnosis, most general superset diagnosis, most general intersection diagnosis, most
specific subset diagnosis, most specific superset diagnosis and most specific intersection
diagnosis, were proposed by Lucas [13], and they give rise to a refinement hierarchy of
diagnostic methods.

Definition 12 (Most general subset diagnosis; [13, p. 333]). Let Σ = (∆,Φ, e) be a di-
agnostic specification. Then the notion of most general subset diagnosis generated by Σ

is defined to be the notion of diagnosis ΠGS(Σ) = (∆,Φ,GS), where for each hypothesis
H ⊆ ∆, and for each set E ⊆ Φ of observed findings,

GSH (E) =
{⋃{H ′ ⊆ H : e(H ′) ⊆ E}, if H is consistent, and

e(H ′) ⊆ E for some H ′ ⊆ H ,
u otherwise.

The idea behind the notion of most general subset diagnosis is that if a specific diagnosis
is not acceptable, then the ‘nearest’ acceptable sub-hypothesis should be taken instead. We
refer to [13] for more detailed explanations for the above definition as well as the other five
notions of diagnosis in the Lucas refinement (see Definitions 15, 18, 21, 24 and 27 below).

Some basic properties of most general subset diagnosis are presented in the following
proposition.

Proposition 13. Let Σ = (∆,Φ, e) be a diagnostic specification, and let ΠGS(Σ) =
(∆,Φ,GS) be the notion of most general subset diagnosis generated by Σ .

(1) If H is consistent, then GSH(e(D)) ⊇ D for any D ⊆ H .
(2) If Σ is interaction free, and H is consistent, then e(GSH (E)) ⊆ E for any E ⊆ Φ .
(3) If Σ is interaction free, then for each H ⊆ ∆, and for each E ⊆ Φ ,

GSH (E) =
{ {d ∈ H : e({d}) ⊆ E} if H is consistent,

u otherwise.

(4) If Σ is decreasing and GSH (E) 	= u, i.e., H is consistent, and e(H) ⊆ E, then
e(GSH(E)) ⊆ E.

(5) If Σ is decreasing, then

GSH (E) =
{

H if H is consistent and e(H) ⊆ E,

u otherwise.

Proof. (1), (2), (4) and (5) are straightforward.
(3) First we note that e(∅) = ∅ ⊆ E because Σ is interaction free. Thus, GSH(E) 	= u

whenever H is consistent. We now only need to consider the case that H is consistent. Let

X = {d ∈ H : e
({d})⊆ E

}
.
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From interaction freeness of Σ it follows that
e(X) =
⋃
d∈X

e
({d})⊆ X.

Then

X ∈ {H ′ ⊆ H : e(H ′) ⊆ E
}

and

X ⊆
⋃{

H ′ ⊆ H : e(H ′) ⊆ E
}
.

On the other hand, for any H ′ ⊆ H , if e(H ′) ⊆ E, then for each d ∈ H ′, e({d}) ⊆ e(H ′) ⊆
E. This is because e is increasing when Σ is interaction free. Consequently, d ∈ X, and
H ′ ⊆ X. This implies further that

X =
⋃{

H ′ ⊆ H : e(H ′) ⊆ E
}
. �

The parts (1) and (2) of the above proposition show that the evidence function e and the
most general subset diagnosis GSH form a Galois connection. The part (5) indicates that
the notion of most general subset diagnosis is trivial for decreasing diagnostic specifica-
tions.

The next proposition gives a sufficient and necessary condition under which the no-
tion of most general subset diagnosis generated by a diagnostic specification respects the
specification.

Proposition 14. Let Σ = (∆,Φ, e) be a diagnostic specification and ΠGS(Σ) = (∆,Φ,GS)

be the notion of most general subset diagnosis generated by Σ . Then ΠGS(Σ) respects Σ

if and only if e is surjective.

Proof. Suppose that e is surjective. For any consistent D ⊆ ∆, we have

GSD

(
e(D)
)=⋃{H ′ ⊂ D: e(H ′ ⊆ e(D)

}= D.

For any E ⊆ Φ , since e is surjective, there must be H0 ⊆ ∆ such that e(H0) = E. Then H0
is consistent,

GSH0(E) =
⋃{

H ′ ⊆ H0: e(H ′) ⊆ E
}= H0,

and e(GSH0(E)) = e(H0) = E. This means that ΠGS(Σ) respects Σ .
Conversely, if ΠGS(Σ) respects Σ , then for any E ⊆ Φ , there exists H ⊆ ∆ such that

e(GSH(E)) = E. Then it is clear that e is surjective. �
The second notion of diagnosis that forms the Lucas refinement diagnosis [13] is most

general superset diagnosis. It is similar to the notion of most general subset diagnosis,
and the unique difference between them is that the ‘nearest’ acceptable super-hypothesis
is used to replace an unacceptable hypothesis when necessary in the most general superset
diagnosis, as indicated by its name.
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Definition 15 (Most general superset diagnosis; [13, p. 335]). Let Σ = (∆,Φ, e) be a

diagnostic specification. Then the notion of most general superset diagnosis generated by
Σ is defined to be ΠGO(Σ) = (∆,Φ,GO), where for each E ⊆ Φ , and for each H ⊆ ∆,

GOH(E) =
{⋃{H ′ ⊆ H : e(H ′) ⊇ E} if H is consistent and

e(H ′) ⊇ E for some H ′ ⊆ H,

u otherwise.

It may be observed that most general subset diagnosis and most general superset diagno-
sis approach the observed findings from opposite directions. The following proposition is
similar to Proposition 14, presenting some fundamental properties of most general superset
diagnosis in the Galois connection style.

Proposition 16. Let Σ = (∆,Φ, e) be a diagnostic specification, and let ΠGO(Σ) =
(∆,Φ,GO) be the notion of most general superset diagnosis generated by Σ .

(1) If H is consistent, then GOH (e(D)) ⊇ D for any D ⊆ H .
(2) If Σ is increasing and GOH(E) 	= u, i.e., H is consistent, and e(H) ⊇ E, then

e(GOH (E)) ⊇ E.
(3) If Σ is increasing, then

GOH (E) =
{

H if H is consistent and e(H) ⊇ E,

u otherwise.

Proof. Straightforward. �
The part (3) of the above proposition points out that the notion of most general superset

diagnosis generated by an increasing diagnostic specification is trivial.
It is interesting to note that a necessary and sufficient condition under which the notion

of most general superset diagnosis respects the diagnostic specification generating it is the
same as that for most general subset diagnosis. This fact is exposed by the next proposition.

Proposition 17. Let Σ = (∆,Φ, e) be a diagnostic specification and ΠGO(Σ) =
(∆,Φ,GO) be the notion of most general superset diagnosis generated by Σ . Then
ΠGO(Σ) respects Σ if and only if e is surjective.

Proof. Similar to Proposition 14. �
As pointed out above, if we replace the subset relation in the defining equation of most

general subset diagnosis with the superset relation, then we obtain the notion of most gen-
eral superset diagnosis. For most general subset diagnosis, it is required that all possible
evidences must be observed; but for most general superset diagnosis, the condition is in-
stead that no observed findings are not evidences specified by the diagnostic knowledge
base. In a sense, we may think that the subset relation and the superset relation are at the
two extremes of the conditions that we can impose on a notion of diagnosis. An alternative
at the middle is then the relation of nonempty intersection. This motivates the following
definition.



M. Ying / Artificial Intelligence 163 (2005) 1–45 13

Definition 18 (Most general intersection diagnosis; [13, p. 336]). Let Σ = (∆,Φ, e) be a

diagnostic specification. Then the notion of most general intersection diagnosis generated
by Σ is defined to be ΠGI(Σ) = (∆,Φ,GI), where for any E ⊆ Φ and H ⊆ ∆,

GIH(E) =




⋃{H ′ ⊆ H : e(H ′) = ∅ or e(H ′) ∩ E 	= ∅}
if H is consistent, E 	= ∅ and e(H ′) = ∅ or e(H ′) ∩ E 	= ∅
for some H ′ ⊆ H,

H if H is consistent and E = ∅;
u otherwise.

The properties of most general intersection diagnosis are much more complicated than
those of most general subset or superset diagnosis, and some of them are presented in the
following proposition.

Proposition 19. Let Σ = (∆,Φ, e) be a diagnostic specification, let ΠGI(Σ) = (∆,Φ,GI)
be the notion of most general intersection diagnosis generated by Σ , and let H ⊆ ∆ be
consistent and ∅ 	= E ⊆ Φ .

(1) GIH(e(D)) ⊇ D for any D ⊆ H .
(2) Suppose that Σ is increasing. Then

(i) if e(∅) 	= ∅ and e(H) ⊆ Φ − E, then GIH(E) = u;
(ii) if e(H) ∩ E 	= ∅, then GIH (E) = H ; and

(iii) if e(H) ⊆ Φ − E, then GIH (E) =⋃{H ′ ⊆ H : e(H) = ∅}, and GIH (E) = {d ∈
H : e({d}) = ∅} whenever Σ is interaction free.

(3) Suppose that Σ is decreasing. Then
(i) if e(H) 	= ∅ and e(∅) ⊆ Φ − E, then GIH(E) = u;

(ii) if e(H) = ∅, then GIH(E) = H ; and
(iii) if e(∅) ∩ E 	= ∅, then GIH (E) =⋃{H ′ ⊆ H : e(H ′) ∩ H 	= ∅}.

Proof. Straightforward. �
Part (3) of the above proposition points out that the notion of most general superset

diagnosis generated by an increasing diagnostic specification is trivial.
A necessary and sufficient condition under which the notion of most general intersection

diagnosis respects the diagnostic specification that generates it is also found to be the same
as that for most general subset diagnosis, and it is given by the next proposition.

Proposition 20. Let Σ = (∆,Φ, e) be a diagnostic specification and ΠGI(Σ) = (∆,Φ,GI)
be the notion of most general superset diagnosis generated by Σ . Then ΠGI(Σ) respects
Σ if and only if e is surjective.

Proof. Similar to Proposition 14. �
We may see that in the above definitions we approximate an unacceptable hypothesis

with acceptable ones from the bottom. Of course, an alternative is to do the same from
top. This observation suggests defining the notions of most specific subset diagnosis, most
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specific superset diagnosis and most specific intersection diagnosis. What we need to do

is to simply replace the union operation by intersection in the defining equation of the
corresponding notions. This leads us to the following three definitions.

Definition 21 (Most specific subset diagnosis; [13, p. 337]). Let Σ = (∆,Φ, e) be a diag-
nostic specification. Then the notion of most general subset diagnosis generated by Σ is
defined to be ΠSS(Σ) = (∆,Φ,SS), where for all E ⊆ Φ , and H ⊆ ∆,

SSH(E) =
{⋂{H ′ ⊆ H : e(H ′) ⊆ E} if H is consistent and e(H ′) ⊆ E

for some H ′ ⊆ H ;
u otherwise.

In a sense, the notion of diagnosis given in the above definition is dual to that in Defini-
tion 12. The following proposition gives some properties of most specific subset diagnosis
in the Galois style with respect to the diagnostic specification generating it. Also, it presents
a simplified version of most specific subset diagnosis for increasing diagnostic specifica-
tions.

Proposition 22. Suppose that Σ = (∆,Φ, e) is a diagnostic specification, and ΠSS(Σ) =
(∆,Φ,SS) the notion of most specific subset diagnosis generated by Σ .

(1) If D ⊆ H is consistent, then SSH (e(D)) ⊆ D.
(2) If Σ is increasing and SSH(E) 	= u, then e(SSH (E)) ⊆ E.
(3) If Σ is increasing, then

SSH(E) =
{∅ if H is consistent and e(∅) ⊆ E,

u otherwise.

Proof. Straightforward. �
The last part of this proposition indicates that the notion of most specific subset diagno-

sis is not reasonable for increasing diagnostic specifications.
We are only able to find a sufficient condition for a diagnostic specification to be re-

spected by its most specific subset diagnosis.

Proposition 23. Let Σ = (∆,Φ, e) be a diagnostic specification. If e is surjective, and it
satisfies the condition that D ⊂ D′ implies e(D) 	⊆ e(D′) for all consistent D,D′ ⊆ ∆,
then ΠSS(Σ) respects Σ .

Proof. Similar to Proposition 14. �
The relation between the following definition and Definition 21 is similar to that be-

tween Definitions 12 and 15; that is, we can derive the defining equation of SOH(E) in the
following definition by replacing directly ⊆ in the defining equation of SSH(E) with ⊇.
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Definition 24 (Most specific superset diagnosis; [13, p. 339]). Let Σ = (∆,Φ, e) be a

diagnostic specification. Then the notion of most general superset diagnosis generated by
Σ is defined to be ΠSO(Σ) = (∆,Φ,SO), where for all E ⊆ Φ , and H ⊆ ∆,

SOH(E) =
{⋂{H ′ ⊆ H : e(H ′) ⊇ E} if H is consistent and

e(H ′) ⊇ E for some H ′ ⊆ H ;
u otherwise.

The following proposition presents some basic properties of most specific superset di-
agnosis, and it is dual to Proposition 16.

Proposition 25. Suppose that Σ = (∆,Φ, e) is a diagnostic specification, and ΠSO(Σ) =
(∆,Φ,SO).

(1) If D ⊆ H is consistent, then SOH(e(D)) ⊆ D.
(2) If Σ is decreasing and SOH (E) 	= u, then e(SOH(E)) ⊇ E.
(3) If Σ is decreasing, then

SOH(E) =
{∅ if H is consistent and e(∅) ⊇ E,

u otherwise.

Proof. Straightforward. �
From the above proposition, we see that the notion of most specific superset diagnosis

is not suited to act as a diagnostic method with respect to a decreasing diagnostic specifi-
cation.

The following proposition gives a sufficient condition under which the notion of most
specific superset diagnosis respects its diagnostic specification. It is interesting to compare
it with the condition in Proposition 23. The only difference between them is the converse
non-inclusion relations of e(D) and e(D′).

Proposition 26. Let Σ = (∆,Φ, e) be a diagnostic specification. If e is surjective and
satisfies the condition that D ⊂ D′ implies e(D) 	⊇ e(D′) for all consistent D,D′ ⊆ ∆,
then ΠSO(Σ) respects Σ .

Proof. Similar to Proposition 14. �
It is still an open problem to find a necessary and sufficient condition under which

ΠSS(Σ) or ΠSO(Σ) respects Σ .
By replacing the union operation in the defining equation of most general intersection

diagnosis, we obtain:
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Definition 27 (Most specific intersection diagnosis; [13, p. 340]). Let Σ = (∆,Φ, e) be a

diagnostic specification. Then the notion of most specific intersection diagnosis generated
by Σ is defined to be ΠSI(Σ) = (∆,Φ,SI), where for any E ⊆ Φ and for any H ⊆ ∆,

SIH(E) =




⋂{H ′ ⊆ H : e(H ′) = ∅ or
e(H ′) ∩ E 	= ∅} if H is consistent,

E 	= ∅ and e(H ′) = ∅ or
e(H ′) ∩ E 	= ∅ for some H ′ ⊆ H,

H if H is consistent and E = ∅;
u otherwise.

Some basic properties of most specific intersection diagnosis are given in the following
proposition.

Proposition 28. Let Σ = (∆,Φ, e) be a diagnostic specification, let ΠSI(Σ) = (∆,Φ,SI),
and let H ⊆ ∆ be consistent and ∅ 	= E ⊆ Φ .

(1) If D ⊆ H , then SIH(e(D)) ⊆ D.
(2) Suppose that Σ is increasing. Then

(i) if e(∅) 	= ∅ and e(H) ⊆ Φ − E, then SIH (E) = u;
(ii) if e(∅) = ∅, then SIH (E) = ∅; and

(iii) if e(∅) 	= ∅, then SIH (E) =⋂{H ′ ⊆ H : e(H ′) ∩ E 	= E}.
(3) Suppose that Σ is decreasing. Then

(i) if e(H) 	= ∅ and e(∅) ⊆ Φ − E, then SIH (E) = u;
(ii) if e(∅) ∩ E 	= ∅, then SIH(E) = ∅; and

(iii) if e(∅) ∩ E = ∅, then SIH(E) =⋂{H ′ ⊆ H : e(H ′) = ∅}.

Proof. Straightforward. �
A sufficient condition under which the notion of most specific intersection diagnosis

respects its diagnostic specification is presented in the following proposition.

Proposition 29. If Σ = (∆,Φ, e) is a diagnostic specification fulfilling the condition that
D′ ⊂ D and e(D) 	= ∅ implies e(D′) 	= ∅ and e(D′)∩ e(D) = ∅ for all consistent D,D′ ⊆
∆, then ΠSI(Σ) respects Σ .

Proof. Similar to Proposition 14. �
To conclude this section, we examine the influence of the global properties of a diagnos-

tic specification on various notions of diagnosis generated from it and how certain relations
between diagnostic specifications are preserved by the notions of diagnosis generated by
them. The next proposition shows that most general superset diagnosis and most specific
subset diagnosis preserve the sub-relation of the diagnostic specifications generating them,
but most general subset diagnosis and most specific superset diagnosis reverse this rela-
tion. Unfortunately, the sub-relation of most general or specific intersection diagnoses is
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not completely determined by the corresponding relation of diagnosis specifications that

generate them.

Proposition 30. Let Σ and Σ ′ be two diagnostic specifications with the same sets of defects
and findings. If Σ 
 Σ ′, then

(1) ΠGS(Σ
′) 
 ΠGS(Σ);

(2) ΠGO(Σ) 
 ΠGO(Σ ′);
(3) ΠSS(Σ) 
 ΠGS(Σ

′); and
(4) ΠSO(Σ ′) 
 ΠSO(Σ).

Proof. By a routine argument. �
In order to present the last proposition of this section in a more compact way, we need

to introduce a notation expressing some global properties for diagnostic specifications and
notions of diagnosis.

Definition 31. Let Σ = (∆,Φ, e) be a diagnostic specification. Then for each A,B ∈
{∪,∩} and C ∈ {⊆,⊇}, the property (ABC) is defined as follows:

(ABC) e(Ai∈IDi)CBi∈I e(Di)

for any Di ⊆ ∆ (i ∈ I) with e(Di) 	= ⊥ (i ∈ I) and e(Ai∈IDi) 	= ⊥, where I is an arbitrary
index set.

Similarly, we can define the corresponding properties for notion of diagnosis.

It is easy to see that interaction freeness is equivalent to (∪∪ ⊆) plus (∪∪ ⊇).
The properties defined above are very interesting. For example, the property (∪∩ ⊆)

may be rewritten as

RH (E) ⊆
⋂
f ∈E

RH

({f })
for each E ⊆ Φ and H ⊆ ∆. It depicts a method of diagnosis that we often adopt in our
daily life. Suppose that a set E of findings are observed, and we want to find a diagnostic
solution to E. Usually, we first find all defects RH ({f }) that may cause the single find-
ing f for each f ∈ E. Then it allows us to locate the true solution among the common
defects for all findings in E. The next proposition indicates that global properties of a di-
agnosis specification of type (ABC) are inherited by most general (or specific) subset (or
superset) diagnosis generated from it. However, both most general and specific intersection
diagnoses do not enjoy such an inheritance.

Proposition 32. Let Σ = (∆,Φ, e) be a diagnostic specification, and let A,B ∈ {∪,∩}.

(1) If Σ satisfies (AB ⊆), then ΠGS(Σ) satisfies (BA ⊇).
(2) If Σ satisfies (AB ⊇), then ΠGO(Σ) satisfies (BA ⊇).
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(3) If Σ satisfies (AB ⊆), then ΠSS(Σ) satisfies (BA ⊆).

(4) If Σ satisfies (AB ⊇), then ΠSO(Σ) satisfies (BA ⊆).

Proof. We prove (1) as an example. From the definition of most general subset diagnosis
it follows that

GSH (Bi∈IEi) =
⋃{

H ′ ⊆ H : e(H ′) ⊆ Bi∈I Ei

}
and

Ai∈I GSH(Ei) = Ai∈I ∪ {H ′
i ⊆ H : e(H ′

i ) ⊆ Ei

}
=
⋃{

Ai∈IH
′
i : H ′

i ⊆ H and e(H ′
i ) ⊆ Ei (i ∈ I)

}
.

Now we only need to show that if for each i ∈ I , H ′
i ⊆ H and e(′i) ⊆ Ei , then Ai∈IH

′
i ⊆ H

and e(Ai∈IH
′
i ) ⊆ Bi∈IEi . The first inclusion is obvious, and the second one is guaranteed

by the property (AB⊆) of Σ . �

3. Diagnostic specification morphisms

This section is devoted to establish a mathematical model of knowledge transformation
in diagnostic problem solving, namely, diagnostic specification morphism. We will care-
fully compare the diagnostic strategies in the source system of a specification morphism
and its target system. First, we introduce a formal definition of specification morphism.

Definition 33 (Specification morphism). Let Σ1 = (∆1,Φ1, e1) and Σ2 = (∆2,Φ2, e2) be
two diagnostic specifications. A specification morphism from Σ1 to Σ2 is a pair M = (g,h)

of mappings g :∆1 → ∆2 and h :Φ1 → Φ2 fulfilling the following two conditions:
(i) for all d ∈ ∆1 and f ∈ Φ1,

g(¬d) = ¬g(d) and h(¬f ) = ¬h(f ); and

(ii) for each D ⊆ ∆1, it holds that

g
(
e1(D)

)= e2
(
f (D)

);
in other words, the following diagram commutes:

℘(∆1)

e1

f
℘ (∆2)

e2

℘(Φ1) g
℘ (Φ2)

where f and g are respectively the extensions of g and h to ℘(∆1) and ℘(Φ1), i.e., for
any D ⊆ ∆1 and E ⊆ Φ1,

g(D) = {g(d): d ∈ D
}
, and

h(E) = {h(f ): f ∈ E
}
, h(⊥) = ⊥.
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Table 1

Knowledge in system A

D ∅ {d1} {d2} {d3} {d1, d2} {d1, d3} {d2, d3} {d1, d2, d3}
eA(D) ∅ {f1, f2} {f2} {f3} {f1, f2} {f1, f2, f3} {f2, f3} {f1, f2, f3}

Table 2
Knowledge in system B

D ∅ {v1} . . . {v4} . . . {v1, v4} . . .

eB (D) ∅ {w3} . . . {w1,w3} . . . {w1,w3} . . .

For simplicity, we will write g and h in place of g and h, respectively.
Obviously, (id∆, idΦ) is a morphism from diagnostic specification Σ = (∆,Φ, e) to

itself, where idX stands for the identity function on set X. In addition, it is easy to verify
that if both M1 = (g1, h1) :Σ1 → Σ2 and M2 = (g2, h2) :Σ2 → Σ3 are specification mor-
phisms, then M2 ◦ M1 = (g2 ◦ g1, h2 ◦ h1) :Σ1 → Σ3 is a morphism too. Thus, we have a
category of diagnostic specifications together with specification morphisms.

To illustrate the above definition, consider the following simple example.

Example 34. A typical application of specification morphism is analyzing the relation-
ship between different medical systems, say, traditional Chinese medicine and the western
medicine. Suppose that A and B are two different medical systems. A piece of medical
knowledge in system A is represented by the diagnostic specification ΣA = (∆A,ΦA, eA),
where ∆A = {d1, d2, d3}, ΦA = {f1, f2, f3}, d1, d2, d3 are the names of three symptoms,
f1, f2, f3 are the names of three diseases, and the evidence function eA depicting the causal
knowledge between symptoms and diseases is given by Table 1.

Furthermore, we assume that a piece of medical knowledge in system B is described
by the diagnosis specification ΣB = (∆B,ΦB, eB) in which ∆B = {v1, v2, v3, v4}, ΦB =
{w1,w2,w3}, and (a fragment of) the evidence function eB is given by Table 2.

We now compare the two medical systems. The symptom d1 in system A is renamed
as v4 in system B , both symptoms d2 and d3 are called v1 in system B , and in system A

there is no counterpart of symptoms v2 and v3 in system B . This gives a defect mapping
g :∆A → ∆B . On the other hand, a finding mapping h :ΦA → ΦB is defined by h(f1) =
w1 and h(f2) = h(f3) = w3. Then it is easy to verify that (g,h) is a specification morphism
from ΣA to ΣB , and it establishes a reasonable link between the two medical systems A

and B .

The following proposition shows that a specification morphism is able to carry some
global properties, including monotonicity and interaction freeness, of its source specifica-
tion forward to its target specification.

Proposition 35. Suppose that M = (g, f ) :Σ1 = (∆1,Φ1, e1) → Σ2 = (∆2,Φ2, e2) is a
specification morphism, and g is surjective. Then
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(1) if Σ1 is increasing (respectively decreasing), then Σ2 is also increasing (respectively

decreasing);

(2) if Σ1 is interaction free, so is Σ2.

Proof. (1) We only consider the increasing case. For any D2,D
′
2 ⊆ ∆2, we have

D2 = g
(
g−1(D2)

)
and D′

2 = g
(
g−1(D′

2)
)

because g is surjective. If D2 ⊆ D′
2 and D′

2 is consistent in Σ2, then

h
(
e1
(
g−1(D′

2)
))= e2

(
g
(
g−1(D′

2)
))= e2(D

′
2) 	= ⊥.

This implies that e1(g
−1(D′

2)) 	= ⊥; i.e., g−1(D′
2) is also consistent in Σ1. Otherwise, it

follows that e2(D
′
2) = h(⊥) = ⊥, a contradiction. Note that g−1(D2) ⊆ g−1(D′

2). Since
Σ1 is increasing, it holds that

e2(D2) = e2
(
g
(
g−1(D2)

))= h
(
e1
(
g−1(D2)

))
⊆ h
(
e1
(
g−1(D′

2)
))= e2(D

′
2).

(2) For each D ⊆ ∆2, if D is consistent in Σ2, then from (1) we know that g−1(D) is
consistent in Σ1. Since e1 is interaction free, it holds that

e2(D) = e2
(
g
(
g−1(D)

))= h
(
e1
(
g−1(D)

))= h

(
e1

(⋃
d∈D

g−1({d})))

= h

(⋃
d∈D

e1
(
g−1({d})))=

⋃
d∈D

h
(
e1
(
g−1({d})))

=
⋃
d∈D

e2
(
g
(
g−1({d})))= ⋃

d∈D

e2
({d}). �

For reason of limited space, we are not going to examine carefully how other global
properties, such as those of type (ABC) defined at the end of the previous section, of
diagnostic specification is preserved by specification morphism.

We now want to observe how a morphism between partial specifications can be extended
to a morphism between the total specifications generated from them. To this end, we first
introduce the following definition.

Definition 36 (Partial specification morphism). Let Σ1 = (∆1,Φ1,V1, e1) and Σ2 =
(∆2,Φ2,V2, e2) be two partial specifications. Then a specification morphism from Σ1 to
Σ2 is a pair M = (g,h) of mappings g :∆1 → ∆2 and h :Φ1 → Φ2 such that

(i) g(V1) = {g(D): D ∈ V1} ⊆ V2; and
(ii) h(e1(D)) = e2(g(D)) for each D ∈ V1.

The notion of specification morphism for partial specifications is obviously a gener-
alization of the one for (total) diagnostic specifications. The next proposition shows that
a partial specification morphism can also serve as a specification morphism for the case
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of increasing bottom-up construction. To save space, we omit a detailed discussion of the

corresponding problem for the other constructions given in Definition 6.

Proposition 37. Let Σ ′
i = (∆i,Φi,Vi, e

′
i ) be an increasing bottom-up partial specification

of Σi = (∆i,Φi, ei) (i = 1,2), and M = (g,h) is a specification morphism from Σ ′
1 to

Σ ′
2. If

(1) g−1(D2) ∈ V1 for any D2 ∈ V2;
(2) g−1(g(D1)) = D1 for any D1 ∈ V1; and
(3) g(g−1(D2)) = D2 for any D2 ∈ V2,

then M is also a specification morphism from Σ1 to Σ2.

Proof. For each D1 ⊆ ∆1, it follows that

h
(
e1(D1)

)= h

(⋃{
e′

1(D
′
1): D′

1 ∈ m(V1,D1)
})

=
⋃{

h
(
e′

1(D
′
1)
)
: D′

1 ∈ m(V1,D1)
}

=
⋃{

e′
2

(
g(D′

1)
)
: D′

1 ∈ m(V1,D1)
}
.

If D′
1 ∈ m(V1,D1), then D′

1 ∈ V1 and D′
1 ⊆ D1. We have g(D′

1) ⊆ g(D1). Moreover, since
M is a specification morphism from Σ ′

1 to Σ ′
2, g(D′

1) ∈ V2. Then Zorn’s lemma warrants
that g(D′

1) ⊆ D′
2 for some D′

2 ∈ m(V2, g(D1)). Consequently,

h
(
e1(D1)

)⊆⋃{e′
2(D

′
2): D′

2 ∈ m
(
V2, g(D1)

)}= e2
(
g(D1)

)
.

Conversely, for any D′
2 ∈ m(V2, g(D1)), it holds that D′

2 ∈ V2 and D′
2 ⊆ g(D). From

condition (1) we obtain g−1(D′
2) ∈ V1, and from (2) we have g−1(D′

2) ⊆ g−1(g(D1)) =
D1. Again, Zorn’s lemma tells us that g−1(D′

2) ⊆ D′
1 for some D′

1 ∈ m(V1,D1). Thus, it
follows from condition (3) that D′

2 = g(g−1(D′
2)) ⊆ g(D′

1), and

e2
(
g(D1)

)=⋃{e′
2(D

′
2): D′

2 ∈ m
(
V2, g(D1)

)}
⊆
⋃{

e′
2

(
g(D′

1)
)
: D′

1 ∈ m(V1,D1)
}= h

(
e1(D1)

)
. �

We now come to present the main results of this section. The following group of propo-
sitions will provides us with a close connection between a transformation of knowledge
bases in different diagnostic systems and a transformation of their diagnostic strategies.
The intuitive idea of transformation between diagnostic strategies is captured by the con-
cept of diagnosis morphism given in the following definition.

Definition 38 (Diagnosis morphism). Let Π1 = (∆1,Φ1,R1) and Π2 = (∆2,Φ2,R2) be
two notions of diagnosis. A diagnosis morphism from Π1 to Π2 is a pair M = (g,h)
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Table 3

Diagnosis notion in system A

E ∅ {f1} {f2} {f3} {f1, f2} {f2, f3} {f1, f3} {f1, f2, f3}
RA,∅(E) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
RA,{d1}(E) ∅ u ∅ ∅ {d1} ∅ {d1} {d1}
RA,{d2}(E) ∅ u {d2} {d2} ∅ {d2} ∅ ∅
RA,{d1,d2}(E) ∅ {d1, d2} {d1} {d1} {d1} {d1} {d1} ∅

Table 4
Diagnosis notion in system B

E ∅ {w1} {w2} {w3} {w1,w2} {w2,w3} {w1,w3} {w1,w2,w3}
RB,∅(E) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
RB,{v1}(E) ∅ u ∅ {v1} u {v1} ∅ {v2}
RB,{v2}(E) ∅ u ∅ ∅ u ∅ {v2} ∅
RB,{v1,v2}(E) ∅ {v1, v2} ∅ {v2} {v1, v2} {v2} {v2} ∅

of mappings g :∆1 → ∆2 and h :Φ1 → Φ2 satisfying condition (i) in Definition 33 and
commutativity of the following diagram:

℘(∆1)
g

℘ (∆2)

℘ (Φ1)

R1,H

h
℘ (Φ2)

R2,g(H)

in other words, for any E ⊆ Φ and H ⊆ ∆, g(R1,H (E)) = R2,g(H)(h(E)), where it is
assumed that g(u) = u.

The following simple example illustrates the notion of diagnosis morphism very well.

Example 39. Suppose A and B are two expert systems for medical diagnosis. Let ∆A =
{d1, d2}, ∆B = {v1, v2}, g(d1) = v2 and g(d2) = v1, and let ΦA, ΦB and h be the same
as in Example 34. Part of diagnosis method used in system A is represented by Table 3,
and part of the diagnosis method used in B is given in Table 4. Then it is easy to check
that (g,h) is a diagnosis morphism from RA to RB , and we may think that it provides a
mechanism for reusing diagnosis method of system A in system B .

We now investigate some fundamental properties of diagnosis morphism and its con-
nection to specification morphism. The next proposition tells us that the information that a
notion of diagnosis respects a diagnostic specification can be carried forward and backward
by specification morphisms and diagnosis morphisms under a certain condition.

Proposition 40. Let Σi = (∆i,Φi, ei) be a diagnostic specification and Πi = (∆i,Φi,Ri)

a notion of diagnosis with the same sets of defects and findings (i = 1,2). Suppose that
Π1 respects Σ1. If there is a pair M = (g,h) of mappings such that M is a specification
morphism from Σ1 to Σ2, it is also a diagnosis morphism from Π1 to Π2, and both g and



M. Ying / Artificial Intelligence 163 (2005) 1–45 23

h are surjective, then Π2 respects Σ2. Furthermore, if Π1 strictly respects Σ1, then Π2

also strictly respects Σ2.

Proof. For each E ⊆ Φ2, there exists H ⊆ ∆1 such that e1(R1,H (h−1(E))) = h−1(E)

because Π1 respects Σ1. Since h is surjective, we have h(h−1(E)) = E. This yields that

E = h
(
h−1(E)

)= h
(
e1
(
R1,H

(
h−1(E)

)))= e2
(
g
(
R1,H

(
h−1(E)

)))
= e2
(
R2,g(H)

(
h
(
h−1(E)

)))= e2
(
R2,g(H)(E)

)
.

On the other hand, for each consistent D ⊆ ∆2, we are able to find some H ⊆ ∆1 such
that R2,g(H)(e2(D)) = D. Therefore, Π2 respects Σ2.

For the case that Π1 strictly respects Σ1, we can assume that R1,H ′(e1(g
−1(D))) = u

for all H ′ 	⊇ H. Our purpose is to show that R2,H ′′(e2(D)) = u for each H ′′ 	⊇ g(H). If not
so; i.e., there is H ′′ ⊆ ∆2 with H ′′ 	⊇ g(H) and R2,H ′′(e2(D)) 	= u, then from the fact that
g is surjective we know that

R2,H ′′
(
e2(D)

)= R2,g(g−1(H ′′))
(
e2(D)

)= g
(
R1,g−1(H ′′)

(
e1
(
g−1(D)

)))
,

and R1,g−1(H ′′)(e1(g
−1(D))) 	= u. If g−1(H ′′) ⊇ H , then g(H) ⊆ g(g−1(H ′′)) = H ′′, and

it is impossible. Thus, it holds that g−1(H ′′) 	⊇ H . This contradicts to the previous assump-
tion. �

The following two propositions clarify the relationship between the six diagnostic
strategies of the Lucas refinement diagnosis [13] in the source diagnostic systems of a
specification morphism and those in the target system. Suppose we are given a diagnostic
problem in the source system. The next proposition carefully compares the following two
paths: (i) we first find a diagnostic solution by using the diagnostic method in the source
system, and then map it into the target system; and (ii) we map our diagnostic problem and
hypothesis into the target system, and then find a diagnostic solution by employing the di-
agnostic methods in the target system. For example, if we adopt the notion of most general
intersection diagnosis in both the source and target systems, then Propositions 41(5) and
(6) indicate that path (i) always gives a stricter solution than path (ii), but the two solutions
according to paths (i) and (ii) are the same when the defect mapping is bijective and the
finding mapping is injective.

Proposition 41. Let Σi = (∆i,Φi, ei) be a diagnostic specification (i = 1,2), and let
M = (g,h) be a specification morphism from Σ1 to Σ2. For any E ⊆ Φ1 and H ⊆ ∆1, we
have

(1) g(GS1,H (E)) ⊆ GS2,g(H)(h(E)) if GS1,H (E) 	= u;
(2) GS2,g(H)(h(E)) ⊆ g(GS1,H (E)) if GS2,g(H)(h(E)) 	= u, g is bijective and h is injec-

tive;
(3) g(GO1,H (E)) ⊆ GO2,g(H)(h(E)) if GO1,H (E) 	= u;
(4) GO2,g(H)(h(E)) ⊆ g(GO1,H (E)) if GO2,g(H)(h(E)) 	= u, g is bijective and h is in-

jective;
(5) g(GI1,H (E)) ⊆ GI2,g(H)(h(E)) if GI1,H (E) 	= u;
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(6) GI2,g(H)(h(E)) ⊆ g(GI1,H (E)) if GI2,g(H)(h(E)) 	= u, g is bijective and h is injec-

tive;

(7) g(SS1,H (E)) ⊆ SS2,g(H)(h(E)) if SS2,g(H)(h(E)) 	= u, g is bijective and h is injec-
tive;

(8) SS2,g(H)(h(E)) ⊆ g(SS1,H (E)) if SS1,H (E) 	= u and g is injective;
(9) g(SO1,H (E)) ⊆ SO2,g(H)(h(E)) if SO2,g(H)(h(E)) 	= u, g is bijective and h is injec-

tive;
(10) SO2,g(H)(h(E)) ⊆ g(SO1,H (E)) if SO1,H (E) 	= u and g is injective;
(11) g(SI1,H (E)) ⊆ SI2,g(H)(h(E)) if SI2,g(H)(h(E)) 	= u, g is bijective and h is injective;

and
(12) SI2,g(H)(h(E)) ⊆ g(SI1,H (E)) if SI1,H (E) 	= u and g is injective.

Proof. We only demonstrate (7) as an instance. We note that injectivity of g implies

g
(
SS1,H (E)

)= g

(⋂{
H ′ ⊆ H : e1(H

′) ⊆ E
})

=
⋂{

g(H ′): H ′ ⊆ H and e1(H
′) ⊆ E

}
,

and

SS2,g(H)

(
h(E)
)=⋂{K ′ ⊆ g(H): e2(K

′) ⊆ h(E)
}

whenever SS1,H (E) 	= u and SS2,g(H)(h(E)) 	= u. Thus, it suffices to prove the following
two items:

(i) H is consistent if and only if g(H) is consistent. Indeed, if e1(H) 	= ⊥, then
e2(g(H)) = h(e1(H)) 	= ⊥, and g(H) is consistent. Conversely, if e2(g(H)) 	= ⊥, we must
have e1(H) 	= ⊥.

(ii) {g(H ′): H ′ ⊆ H and e1(H
′) ⊆ E} = {K ′ ⊆ g(H): e2(K

′) ⊆ h(E)}. In fact, if H ′ ⊆
H and e1(H

′) ⊆ E, then g(H ′) ⊆ g(H), and e2(g(H ′)) = h(e1(H
′)) ⊆ h(E). Conversely,

if K ′ ⊆ g(H) and e2(K
′) ⊆ h(E), then we set H ′ = g−1(K ′), and it holds that K ′ = g(H ′)

and H ′ ⊆ g−1(g(H)) = H because g is an bijection. Furthermore,

e1(H
′) ⊆ h−1(h(e1(H

′)
))= h−1(e2

(
g(H ′)

))= h−1(e2(K)
)⊆ h−1(h(E)

)= E.

The last equality comes from the fact that h is injective. �
The following simple corollary shows that sometimes a specification morphism can act

as a diagnosis morphism too.

Corollary 42. Let Σi = (∆i,Φi, ei) be a diagnostic specification and ΠGS(Σi) =
(∆i,Φi,GSi ) be the notion of most general subset diagnosis generated by Σi (i = 1,2),
and let M = (g,h) be a specification morphism from Σ1 to Σ2. If g is a bijection and h is
an injection, then M is also a diagnosis morphism from ΠGS(Σ1) to ΠGS(Σ2). The same
conclusion also holds for ΠGO, ΠGI, ΠSS, ΠSO and ΠSI .

Proof. Immediate from Proposition 41. �
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What was considered in Proposition 41 is a forward transformation of various diagnostic

notions. The next proposition considers a backward transformation of diagnostic methods.
Now the diagnostic problem is given in the target system, and the two paths under com-
parison are: (i) we find a diagnostic solution in the target system, and then map it into the
source system via the inverse of defect mapping; and (ii) we map the observed findings
and hypothesis into the source system through the inverses of finding mapping and defect
mapping respectively, and then find a solution using the diagnostic notion in the source
system. The following proposition examines the relation between the diagnostic solutions
obtained through these two paths.

Proposition 43. Let Σi = (∆i,Φi, ei) be a diagnostic specification (i = 1,2), and let
M = (g,h) be a specification morphism from Σ1 to Σ2. For any E ⊆ Φ2 and H ⊆ ∆2, we
have

(1) g−1(GS2,H (E)) ⊆ GS1,g−1(H)(h
−1(E)) if GS2,H (E) 	= u;

(2) GS1,g−1(H)(h
−1(E)) ⊆ g−1(GS2,H (E)) if GS1,g−1(H)(h

−1(E)) 	= u and H is consis-

tent, and in particular GS1,g−1(H)(h
−1(E)) = g−1(GS2,H (E)) if GS2,H (E) 	= u and

GS1,g−1(H)(h
−1(E)) 	= u;

(3) g−1(GO2,H (E)) ⊆ GO1,g−1(H)(h
−1(E)) if GO2,H (E) 	= u, g is surjective and h is

injective;
(4) GO1,g−1(H)(h

−1(E)) ⊆ g−1(GO2,H (E)) if GO1,g−1(H)(h
−1(E)) 	= u, H is consis-

tent and h is surjective;
(5) g−1(GI2,H (E)) ⊆ GI1,g−1(H)(h

−1(E)) if GO2,H (E) 	= u, g is surjective and h is
bijective;

(6) GI1,g−1(H)(h
−1(E)) ⊆ g−1(GI2,H (E)) if GI1,g−1(H)(h

−1(E)) 	= u, h−1(E) 	= ∅ and
H is consistent;

(7) SS1,g−1(H)(h
−1(E)) ⊆ g−1(SS2,H (E)) if SS2,H (E) 	= u;

(8) g−1(SS2,H (E)) ⊆ SS1,g−1(H)(h
−1(E)) if SS1,g−1(H)(h

−1(E)) 	= u, H is consistent
and g is injective;

(9) SO1,g−1(H)(h
−1(E)) ⊆ g−1(SO2,H (E)) if SO2,H (E) 	= u, g is surjective and h is

injective;
(10) g−1(SO2,H (E)) ⊆ SO1,g−1(H)(h

−1(E)) if SO1,g−1(H)(h
−1(E)) 	= u, H is consistent,

g is injective and h is surjective;
(11) SI1,g−1(H)(h

−1(E)) ⊆ g−1(SI2,H (E)) if SI2,H (E) 	= u, g is surjective and h is bijec-
tive;

(12) g−1(SI2,H (E)) ⊆ SI1,g−1(H)(h
−1(E)) if SI1,g−1(H)(h

−1(E)) 	= u, H is consistent
and g is injective.

Proof. As examples, we demonstrate (1), (2) and (6).
(1) If GS2,H (E) 	= u, then H is consistent in Σ2, i.e., e2(H) 	= ⊥, and there is H ′ ⊆ H

such that e2(H
′) ⊆ E. First, we show that g−1(H) is consistent in Σ1. If not so, then

e1(g
−1(H)) = ⊥, and

e2
(
g
(
g−1(H)

))= h
(
e1
(
g−1(H)

))= ⊥.
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Note that g(g−1(H)) ⊆ H . From condition (ii) in Definition 2.1 it follows that e2(H) = ⊥,

a contradiction.

Second, it holds that

g−1(GS2,H (E)
)= g−1

(⋃{
H ′ ⊆ H : e2(H

′) ⊆ E
})

=
⋃{

g−1(H ′): H ′ ⊆ H and e2(H
′) ⊆ E

}
,

and

GS1,g−1(H)

(
h−1(E)

)=⋃{K ′ ⊆ g−1(H): e1(K
′ ⊆ h−1(E)

}
.

For any H ′ ⊆ H with e2(H
′) ⊆ E, we have g−1(H ′) ⊆ g′(H), and

h
(
e1
(
g−1(H ′)

))= e2
(
g
(
g−1(H ′)

))⊆ e2(H) ⊆ E.

Then

e1
(
g−1(H ′)

)⊆ h−1(h(e1
(
g−1(H ′)

)))
h−1(E).

This shows that{
g−1(H ′): H ′ ⊆ H and e2(H

′ ⊆ E
}⊆ {K ′ ⊆ g−1(H): e1(K

′ ⊆ h−1(E)
}
,

and g−1(GS2,H (E)) ⊆ GS1,g−1(H)(h
−1(E)) follows.

(2) For any K ′ ⊆ g−1(H) with e1(K
′) ⊆ h−1(E), we need to find a set H ′ ⊆ H such

that e2(H
′) ⊆ E and K ′ ⊆ g−1(H ′). It is easy to see that we can take H ′ = g(K ′).

(6) If GI1,g−1(H)(h
−1(E)) 	= u, h−1(E) 	= ∅ and H is consistent, then E 	= ∅, and we

obtain

GI1,g−1(H)

(
h−1(E)

)=⋃{K ′ ⊆ g−1(H): e1(K
′) = ∅ or e1(K

′) ∩ h−1(E) 	= ∅},
and

g−1(GI2,H (E)
)=⋃{g−1(H ′): H ′ ⊆ H, and e2(H

′) = ∅ or e2(H
′) ∩ E 	= ∅}.

Now it suffices to show that for any K ′ ⊆ g−1(H) with e1(K
′) = ∅ or e1(K

′) ∩ h−1(E) 	=
∅, there exists H ′ ⊆ H with e2(H

′) = ∅ or e2(H
′) ∩ E 	= ∅, and K ′ ⊆ g−1(H ′). Indeed,

we take H ′ = g(K ′). Then

K ′ ⊆ g−1(g(K)
)= g−1(H ′),

and

H ′ = g(K ′) ⊆ g
(
g−1(H)

)⊆ H.

If e1(K
′) = ∅, then

e2(H
′) = e2

(
g(K ′)

)= h
(
e1(K

′)
)= h(∅) = ∅.

If e1(K
′) ∩ h−1(E) 	= ∅, then

e2(H
′) ∩ E = e2

(
g(K ′)

)∩ E = h
(
e1(K

′)
)∩ E

⊇ h
(
e1(K

′)
)∩ h
(
h−1(E)

)
⊇ h
(
e1(K

′) ∩ h−1(E)
) 	= ∅. �
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4. Operations of diagnostic specifications
The aim of this section is to introduce several operations of diagnostic specifications
which can model knowledge gathering, fusion, merging and combination in the processes
of diagnostic problem solving. These operations include optimistic and pessimistic fusions,
sum, direct product as well as optimistic and pessimistic mergings. The diagnostic strate-
gies in a composite system modelled by a certain operation of diagnostic specifications will
be analyzed in terms of the corresponding diagnostic strategies in its component systems.

Definition 44 (Optimistic and pessimistic fusions of specifications). Let Σi = (∆,Φ, ei )

(i ∈ I) be a family of diagnostic specifications with the same sets of defects and findings.
Then their optimistic and pessimistic fusions are defined to be

⋃
i∈I Σi = (∆,Φ,

⋃
i∈I ei)

and
⋂

i∈I Σi = (∆,Φ,
⋂

i∈I ei ), respectively, where for each D ⊆ ∆,(⋃
i∈I

ei

)
(D) =

{⋃
i∈I ei(D) if ei(D) 	= ⊥ for all i ∈ I,

⊥ otherwise,(⋂
i∈I

ei

)
(D) =

{⋂
i∈I ei(D) if ei(D) 	= ⊥ for all i ∈ I,

⊥ otherwise.

It is easy to see that the notions of optimistic and pessimistic fusions are well-defined.
Moreover, if all Σi (i ∈ I) are complete, then

⋃
i∈I Σi is also complete, but

⋂
i∈I Σi is

not necessary to be complete.
Some other interesting fusion operators for diagnostic specifications may be introduced.

A typical example is contradiction-finding operator. Remember that an evidence function
allows contradictory values f and ¬f . So, a fusion operator can be defined by modifying
slightly the above definition to indicate conflicting opinions about a topic and to resolve
this conflict. We are not going to examine these extra fusion operators in detail.

Example 45. We imagine a medical expert system which aggregates medical knowledge
from different doctors. Certainly, there will be many different ways for such an aggregation.
It is reasonable to say that optimistic and pessimistic fusions are at the two extremes of
the whole spectrum formed by these aggregation ways. Let ∆ = {d1, d2, d3} and Φ =
{f1, f2, f3}, where d1, d2 and d3 stand for three symptoms and f1, f2 and f3 three diseases.
Suppose that a piece of medical knowledge of doctor A and a piece of medical knowledge
of doctor B (both concerning the causal relation between symptoms d1, d2, d3 and f1,
f2, f3) are represented by evidence eA and eB respectively (see Table 5). Then a simple
calculation gives their optimistic fusion eA ∪ eB and pessimistic fusion eA ∩ eB as shown
in Table 6.

Table 5
Knowledge of doctors A and B

D ∅ {d1} {d2} {d3} {d1, d2} {d1, d3} {d2, d3} {d1, d2, d3}
eA ∅ {f1} ∅ {f2} {f1, f3} {f1, f2} {f2} {f1, f2, f3}
eB ∅ ∅ {f3} {f2} {f3} {f1, f2} {f2, f3} {f1, f2, f3}
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Table 6

Optimistic and pessimistic fusions

D ∅ {d1} {d2} {d3} {d1, d2} {d1, d3} {d2, d3} {d1, d2, d3}
eA ∪ eB ∅ {f1} {f3} {f2} {f1, f3} {f1, f2} {f2, f3} {f1, f2, f3}
eA ∩ eB ∅ ∅ ∅ {f2} {f3} {f1, f2} {f2} {f1, f2, f3}

The next proposition indicates that some global properties of diagnostic specifications,
such as monotonicity and interaction freeness, are preserved by the fusion operations. The
optimistic fusion of a family of increasing (respectively decreasing, interaction free) diag-
nostic specifications is also increasing (respectively decreasing, interaction free), and the
pessimistic fusion of a family of decreasing diagnostic specifications is decreasing.

Proposition 46. Let Σi = (∆,Φ, ei) (i ∈ I) be a family of diagnostic specifications with
the same sets of defects and findings.

(1) If all Σi (i ∈ I) are increasing, then both
⋃

i∈I Σi and
⋂

i∈I Σi are increasing.
(2) If all Σi (i ∈ I) are decreasing, so is

⋃
i∈I Σi .

(3) If all Σi (i ∈ I) are interaction free, so is
⋃

i∈I Σi .

Proof. (1) We only consider pessimistic fusion. Suppose that D ⊆ D′ ⊆ ∆ and D′ is con-
sistent in

⋂
i∈I Σi . From the condition (2) in Definition 1 we know that for each i ∈ I , if

ei(D
′) 	= ⊥ then ei(D) 	= ⊥. This implies that(⋂

i∈I

ei

)
(D) =

⋂{
ei(D): i ∈ I and ei(D) 	= ⊥}

⊆
⋂{

ei(D): i ∈ I and ei(D
′) 	= ⊥}

⊆
⋂{

ei(D
′): i ∈ I and ei(D

′) 	= ⊥}
=
(⋂

i∈I

ei

)
(D′)

because ei(D) ⊆ ei(D
′) for all i ∈ I .

(2) Similar to (1).
(3) If (

⋃
i∈I ei)(D) 	= ⊥, then ei(D) 	= ⊥ for each i ∈ I , and interaction freeness of Σi

(i ∈ I) leads to(⋃
i∈I

ei

)
(D) =

⋃
i∈I

ei (D) =
⋃
i∈I

(⋃
d∈D

ei

({d}))

=
⋃
d∈D

(⋃
i∈I

ei

({d}))=
⋃
d∈D

((⋃
i∈I

ei

)({d})). �

The relationship between the diagnostic methods used in a fused diagnostic system
and the diagnostic methods in its component systems are established by the following
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two propositions. For example, if we adopt the notion of most general subset diagnosis,

then Proposition 47(1) shows that the diagnostic solution in an optimistic fusion is always
included in the intersection of the solutions in its component systems, and they are the same
when these component diagnostic specifications are all increasing. On the other hand, if
we adopt the notion of most specific subset diagnosis, then Proposition 47(3) indicates that
the diagnostic solution in an optimistic fusion includes the union of the solutions in its
component systems, and they are equal provided all component diagnostic specifications
are decreasing.

Proposition 47. Let Σi = (∆,Φ, ei) (i ∈ I) be a family of diagnostic specifications with
the same sets of defects and findings, and let

⋃
i∈I Σi = (∆,Φ,

⋃
i∈I ei) be their optimistic

fusion.

(1) If ΠGS(Σi) = (∆,Φ,Ri) is the notion of most general subset diagnosis generated by
Σi (i ∈ I) and ΠGS(

⋃
i∈I Σi) = (∆,Φ,R) the notion of most general subset diagnosis

generated by
⋃

i∈I Σi , then for any E ⊆ Φ and H ⊆ ∆,
(1.1) RH (E) ⊆⋂i∈I Ri,H (E) when RH (E) 	= u; and
(1.2) RH (E) =⋂i∈I Ri,H (E) if all Σi (i ∈ I) are increasing.

(2) If ΠGO(Σi) = (∆,Φ,Ri) is the notion of most general superset diagnosis generated
by Σi (i ∈ I) and ΠGO(

⋃
i∈I Σi) = (∆,Φ,R) the notion of most general superset

diagnosis generated by
⋃

i∈I Σi , then for all E ⊆ Φ and H ⊆ ∆,
(2.1)

⋃
i∈I Ri,H (E) ⊆ RH (E) whenever H is consistent in each Σi (i ∈ I), and

Ri0,H (E) 	= u for some i0 ∈ I ; and
(2.2) RH (E) =⋃i∈I Ri,H (E) if E is finite, and {Σi}i∈I is directed with respect to the

sub-specification relation 
, i.e., for any i1, i2 ∈ I , there is an i0 ∈ I such that
Σi1 
 Σi0 and Σi2 
 Σi0 .

(3) If ΠSS(Σi) = (∆,Φ,Ri) is the notion of most specific subset diagnosis generated by
Σi (i ∈ I) and ΠSS(

⋃
i∈I Σi) = (∆,Φ,R) the notion of most specific subset diagnosis

generated by
⋃

i∈I Σi , then for any E ⊆ Φ and for any H ⊆ ∆,
(3.1)

⋃
i∈I Ri,H (E) ⊆ RH (E) provided RH (E) 	= u; and

(3.2) RH (E) =⋃i∈I Ri,H (E) if all Σi (i ∈ I) are decreasing.
(4) If ΠSO(Σi) = (∆,Φ,Ri) is the notion of most specific superset diagnosis generated

by Σi (i ∈ I) and ΠSO(
⋃

i∈I Σi) = (∆,Φ,R) the notion of most specific superset
diagnosis generated by

⋃
i∈I Σi , then for all E ⊆ Φ and H ⊆ ∆,

(4.1) RH (E) ⊆⋂i∈I Ri,H (E) provided Ri,H (E) 	= u for each i ∈ I ; and
(4.2) RH (E) =⋂i∈I Ri,H (E) when E is finite, and {Σi}i∈I is directed with respect

to the sub-specification relation 
.

Proof. We only prove (1.1), (1.2) and (4.2); the others are similar and so omitted.
(1.1) First, we note that H is consistent in

⋃
i∈I Σi if and only if it is consistent in each

Σi (i ∈ I). Second, we have

RH (E) =
⋃{

H ′ ⊆ H :
⋃
i∈I

ei(H
′) ⊆ E

}
=

⋃
H ′∈⋂i∈I {H ′⊆H : ei(H

′)⊆E}
H ′
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⊆
⋂(⋃{

H ′ ⊆ H : ei(H
′) ⊆ E

})=
⋂

Ri,H (E).
i∈I i∈I

(1.2) If d ∈⋂i∈I Ri,H (E), then for any i ∈ I , d ∈ Ri,H (E) and there exists H ′
i ⊆ H

such that ei(H
′
i ) ⊆ E and d ∈ H ′

i . Let H ′ =⋂i∈I H ′
i . Then H ′ ⊆ H , and for any i ∈ I ,

ei(H
′) ⊆ ei(H

′
i ) ⊆ E because ei is increasing. This means that

H ′ ∈
⋂
i∈I

{
H ′ ⊆ H : ei(H

′
i ) ⊆ E

}
.

Consequently, we have d ∈ H ′ ⊆ RH (E), and⋂
i∈I

Ri,H (E) ⊆ RH (E).

(4.2) If d /∈ RH(E), then there exists H ′ ⊆ H such that
⋃

i∈I ei(H
′) ⊇ E and d /∈

H ′. Assume that E = {f1, f2, . . . , fm}. Then for any k � m, we have some ik ∈ I with
fk ∈ eik (H

′). Since {Σi}i∈I is directed with respect to 
, there must be i0 ∈ I such that
eik (H

′) ⊆ ei0(H
′) for all k � m. Now, it follows that E ⊆ ei0(H

′), d /∈ Ri0,H (E), and
d /∈⋂i∈I Ri,H (E). Therefore, it follows that⋂

i∈I

Ri,H (E) ⊆ RH (E). �

The next proposition deals with the case of pessimistic fusion. It is shown that the
diagnostic solution in a pessimistic fusion is always looser than the union of the solutions
in its component systems if we apply the notion of most general subset diagnosis or most
specific superset diagnosis; whereas the diagnosis in a pessimistic fusion is stricter than the
intersection of the solutions in its component systems if the notion of most general superset
diagnosis or most specific subset diagnosis is employed.

Proposition 48. Let Σi = (∆,Φ, ei) (i ∈ I) be a family of diagnostic specifications with
the same sets of defects and findings, and let

⋂
i∈I Σi = (∆,Φ,

⋂
i∈I ei) be their pes-

simistic fusion.

(1) If ΠGS(Σi) = (∆,Φ,Ri) (i ∈ I) and ΠGS(
⋂

i∈I Σi)) = (∆,Φ,R), then for any E ⊆
Φ and H ⊆ ∆, it holds that⋃

i∈I

Ri,H (E) ⊆ RH (E).

(2) If ΠGO(Σi) = (∆,Φ,Ri) (i ∈ I) and ΠGO(
⋂

i∈I Σi)) = (∆,Φ,R), then for any E ⊆
Φ and H ⊆ ∆, we have

RH (E) ⊆
⋂
i∈I

Ri,H (E),

and the equality holds whenever all Σi (i ∈ I) are decreasing.
(3) If ΠSS(Σi) = (∆,Φ,Ri) (i ∈ I) and ΠSS(

⋂
i∈I Σi)) = (∆,Φ,R), then for any E ⊆ Φ

and H ⊆ ∆, it holds that

RH (E) ⊆
⋂
i∈I

Ri,H (E).
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(4) If ΠSO(Σi) = (∆,Φ,Ri) (i ∈ I) and ΠSO(
⋂

i∈I (Σi)) = (∆,Φ,R), then for any E ⊆

Φ and H ⊆ ∆, it holds that⋃

i∈I

Ri,H (E) ⊆ RH (E)

with the equality when all Σi (i ∈ I) are increasing.

Proof. Similar to Proposition 47. �
Definition 49 (Sum of specifications). Let Σi = (∆i,Φi, ei) (i ∈ I) be a family of
diagnostic specifications. Then the sum of Σi (i ∈ I) is defined to be

⊕
i∈I Σi =

(
⋃

i∈I ∆i,
⋃

i∈I Φi, e), where for each D ⊆⋃i∈I ∆i ,

e(D) =
{⋃

i∈I ei(D ∩ ∆i) if ei(D ∩ ∆i) 	= ⊥ for all i ∈ I ;
⊥ otherwise.

It is easy to see that the notion of sum is well-defined; that is, e satisfies the conditions
(1) and (2) in Definition 1. Furthermore,

⊕
i∈I Σi is complete whenever all Σi (i ∈ I) are

complete.
A simple idea behind sum of diagnostic specifications is that we can divide a big sys-

tem into some independent smaller systems and then examine these subsystems one by
one. Thus, the notion of specification sum provides us with a mathematical model of mod-
ularization technique in diagnostic problem solving.

Example 50. Suppose we have an industrial system consisting of two subsystems A and
B . These two systems are assumed to be independent in the sense that the function of
one subsystem cannot be affected by the defects in the other subsystem, for instance, the
water and gas systems in a plant. Let ΣA = (∆A,ΦA, eA) and ΣB = (∆A,ΦB, eB) specify
respectively the causal interactions among the components of the two subsystems, where
∆A = {d1, d2, d3}, ΦA = {f1, f2}, ∆B = {d4, d5}, ΦB = {f3, f4}, and eA and eB are given
by Tables 7 and 8. Then

ΣA ⊕ ΣB = ({d1, d2, d3, d4, d5}, {f1, f2, f3, f4}, e
)
,

and it may be seen as a diagnostic knowledge base of the whole system. For example,

e
({d3, d4, d5}

)= eA

({d3}
)∪ eB

({d4, d5}
)= {f1, f3, f4};

Table 7
Subsystem A

D ∅ {d1} {d2} {d3} {d1, d2} {d1, d3} {d2, d3} {d1, d2, d3}
eA ∅ ∅ ∅ {f1} ∅ {f1} {f1} {f1, f2, f3}

Table 8
Subsystem B

D ∅ {d4} {d5} {d4, d5}
eB ∅ {f4} {f3} {f3, f4}
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that is, the observable findings for the simultaneous occurrences of defects d3, d4 and d5

are f1, f3 and f4.

Both monotonicity and interaction freeness are preserved by the operation of diagnostic
specification sum.

Proposition 51. Let Σi = (∆i,Φi, ei) (i ∈ I) be a family of diagnostic specifications. If
all Σi (i ∈ I) are increasing (respectively decreasing, interaction free), so is

⊕
i∈I Σi .

Proof. We consider the interaction-free case as an example. For any consistent D ⊆⋃
i∈I ∆i , it holds that

e(D) =
⋃
i∈I

ei(D ∩ ∆i) =
⋃
i∈I

⋃
d∈D∩∆i

ei

({d})=⋃
i∈I

⋃
d∈D∩∆i

e
({d})

=
⋃

d∈⋃i∈I (D∩∆i)

e
({d})= ⋃

d∈D

e
({d}). �

One may naturally expects that all component diagnostic systems can be embedded
into the sum of them via the inclusion morphisms, and specification morphisms of the
component systems can be glued to a morphism of their sum. This is indeed guaranteed by
the following proposition.

Proposition 52. (1) Let Σi = (∆i,Φi, ei) (i ∈ I) be a family of diagnostic specifications,
and for each k ∈ I , let

in∆k :∆k ↪→
⋃
i∈I

∆i and inΦk :Φ ↪→
⋃
i∈I

Φi

be the inclusion mappings from ∆k into
⋃

i∈I ∆i and from Φk into
⋃

i∈I Φi , respectively,
i.e., for any d ∈ ∆k and f ∈ Φk ,

in∆k(d) = d and inΦk (f ) = f.

If ∆i ∩ ∆j = ∅ for all i, j ∈ I with i 	= j , and ei(∅) = ∅ for each i ∈ I , then ink =
(in∆k , inΦk ) is a specification morphism from Σk to

⊕
i∈I Σi .

(2) Suppose that Mi = (gi, hi): Σi = (∆i,Φi, ei) → Σ ′
i = (∆′

i ,Φ
′
i , e

′
i ) (i ∈ I) be a

family of specification morphisms, and ∆i ∩ ∆j = ∅ and Φi ∩ Φj = ∅ provided i, j ∈ I

and i 	= j . Let
⊕

i∈I Mi = (
⊕

i∈I gi,
⊕

i∈I hi), where⊕
i∈I

gi :
⋃
i∈I

∆i →
⋃
i∈I

∆′
i ,

⊕
i∈I

hi :
⋃
i∈I

Φi →
⋃
i∈I

Φ ′
i

and for all d ∈⋃i∈I ∆i and f ∈⋃i∈I Φi ,(⊕
i∈I

gi

)
(d) = gj (d) when d ∈ ∆j and

(⊕
i∈I

hi

)
(f ) = hj (f ) when f ∈ Φj .

If gi(∆i) ∩ gj (∆j ) = ∅ for all i, j ∈ I with i 	= j , then
⊕

i∈I Mi is a specification mor-
phism from

⊕
i∈I Σi to

⊕
i∈I Σ ′

i .
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Proof. (1) is easy. We only prove (2). The condition that {∆i} and {Φi} (i ∈ I) are pairwise

disjoint warrants that both

⊕
i∈I gi and

⊕
i∈I hi are well-defined. For each D ⊆⋃i∈I ∆i ,

we have(⊕
i∈I

hi

)(
e(D)
)= (⊕

i∈I

hi

)(⋃
i∈I

ei (D ∩ ∆i)

)
=
⋃
i∈I

(⊕
i∈I

hi

)(
ei(D ∩ ∆i)

)

=
⋃
i∈I

hi

(
ei(D ∩ ∆i)

)=⋃
i∈I

e′
i

(
gi(D ∩ ∆i)

)
.

Since gi(∆i) ∩ gj (∆j ) = ∅ for all i, j ∈ I with i 	= j , it holds that(⋃
i∈I

gi(D ∩ ∆i)

)
∩ ∆′

j = gj (D ∩ ∆j).

Consequently, it follows that(⊕
i∈I

hi

)(
e(D)
)=⋃

i∈I

e′
i

((⋃
i∈I

gi(D ∩ ∆i)

)
∩ ∆′

j

)

= e′
(⋃

i∈I

gi(D ∩ ∆i)

)
= e′
((⊕

i∈I

gi

)
(D)

)
. �

We now are going to observe the relationship between the notions of diagnosis in a sum
system and those in its component systems. To this end, we need to introduce the concept
of sum of diagnostic notions.

Definition 53 (Sum of diagnostic notions). Let Πi = (∆i,Φi,Ri) (i ∈ I) be a fam-
ily of notions of diagnosis. Then the sum of Πi (i ∈ I) is defined to be

⊕
i∈I Πi =

(
⋃

i∈I ∆i,
⋃

i∈I Φi,R), where for any E ⊆⋃i∈I Φi and H ⊆⋃i∈I ∆i ,

RH (E) =
{⋃

i∈I Ri,H∩∆i (E ∩ Φi) if Ri,H∩∆i (E ∩ Φi) 	= u for all i ∈ I,

u otherwise.

If we have a large diagnostic system consisting of some subsystems, and each subsys-
tem has a notion of diagnosis respected by its diagnostic specification, then the following
proposition guarantees that in the whole large system the diagnostic specification respects
the sum of the notions of diagnosis in all subsystems.

Example 54. We consider the two notions of diagnosis in Example 39, ΠA = (∆A,ΦA,RA)

and ΠB = (∆B,ΦB,RB). They were originally linked via a diagnosis morphism in
Example 39, but here they are treated as two independent subsystems of a larger di-
agnosis system Π . Thus, Π can be thought of as the sum of ΠA and ΠB ; that is,
Π = ({d1, d2, v1, v2}, {f1, f2, f3,w1,w2,w3},R) and R = {RH : H ⊆ {d1, d2, v1, v2}}.
Let H = {d1, v1, v2} be a hypothesis and E = {f2, f3,w1,w2} a diagnostic problem in Π .
Then the solution to E under hypothesis H is
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RH (E) = RA,H∩∆A(E ∩ ΦA) ∪ RB,H∩∆B (E ∩ ΦB)
= RA,{d1}
({f2, f3}

)∪ RB,{v1,v2}
({w1,w2}

)
= ∅ ∪ {v1, v2} = {v1, v2}.

Proposition 55. Let Σi = (∆i,Φi, ei) (i ∈ I) be a family of diagnostic specifications and
Πi = (∆i,Φi,Ri) (i ∈ I) a family of notions of diagnosis such that Σi and Πi have the
same sets of defects and findings for each i ∈ I . If for all i ∈ I , Πi (strictly) respects Σi ,
then
⊕

i∈I Πi (strictly) respects
⊕

i∈I Σi too.

Proof. For each consistent D ⊆⋃i∈I ∆i , and for any i ∈ I , since Πi strictly respects Σi ,
there is Hi ⊆ ∆i such that Ri,Hi (ei(D ∩∆i)) = D ∩∆i , and Ri,H ′

i
(ei (D ∩∆i)) = u for all

H ′
i ⊆ ∆i with H ′

i 	⊇ Hi . Let H =⋃i∈I Hi . Then

RH

(
e(D)
)=⋃

i∈I

Ri,H∩∆i

(
ei(D ∩ ∆i)

)
=
⋃
i∈I

Ri,Hi

(
ei(D ∩ ∆i)

)=⋃
i∈I

(D ∩ ∆i) = D.

Furthermore, if H ′ 	⊇ H , then there must be i0 ∈ I such that H ′ ∩∆i0 	⊇ Hi0 . Now, we have
RH ′∩∆i0

(ei0(D ∩ ∆i0)) = u and RH ′ (e(D)) = u.
Likewise, we can prove that for any E ⊆ ⋃i∈I Φi , there exists H ⊆ ⋃i∈i ∆i with

e(RH (E)) = E. This implies that
⊕

i∈I Πi strictly respects
⊕

i∈I Σi . �
The following proposition relates the diagnostic method in a sum system to the diagnos-

tic strategies in its component systems. Consider a diagnostic problem with the observed
findings E and hypothesis H in a large system consisting of some subsystems. Of course,
the best way to solve this problem is to deal with it directly in the whole system. Of-
ten, however, this is very difficult. An alternative way is to find a diagnostic solution in
each subsystem with the piece of information in this subsystem provided by E and H . We
then combine these solutions in all subsystems to form a diagnostic solution for the whole
system. Now a natural question is: how far is this alternative solution from our expected
solution? The following proposition answers this question: if we employ the notion of most
general subset diagnosis or most specific superset diagnosis, then the alternative solution
is stricter than the expected one, but for the notion of most general superset diagnosis or
most specific subset diagnosis, the alternative solution is looser than the expected one; and
a similar result conditionally holds for the notion of most general or specific intersection
diagnosis.

Proposition 56. Let Σi = (∆i,Φi, ei) (i ∈ I) be a family of diagnostic specifications.

(1) If ΠGS(Σi) = (∆i,Φi,Ri) (i ∈ I) and ΠGS(
⊕

i∈I Σi) = (
⋃

i∈I ∆i,
⋃

i∈I Φi,R), then
for any E ⊆⋃i∈I Φi , and for any H ⊆⋃i∈I ∆i ,
(1.1) RH (E) ⊆⋃i∈I Ri,H∩∆i (E ∩ Φi); and
(1.2) RH (E) =⋃i∈I Ri,H∩∆i (E ∩ Φi) if for any i, j ∈ I , ∆i ∩ ∆j = ∅ whenever

i 	= j .
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(2) If ΠGO(Σi) = (∆i,Φi,Ri) (i ∈ I) and ΠGO(
⊕

i∈I Σi) = (
⋃

i∈I ∆i,
⋃

i∈I Φi,R),

then for all E ⊆⋃i∈I Φi and H ⊆⋃i∈I ∆i ,
(2.1)

⋃
i∈I Ri,H∩∆i (E ∩ Φi) ⊆ RH (E); and

(2.2) RH (E) =⋃i∈I Ri,H∩∆i (E ∩ Φi) if for any i, j ∈ I , Φi ∩ Φj = ∅ whenever
i 	= j .

(3) If ΠGI(Σi) = (∆i,Φi,Ri) (i ∈ I) and ΠGI(
⊕

i∈I Σi) = (
⋃

i∈I ∆i,
⋃

i∈I Φi,R), then
for all E ⊆⋃i∈I Φi and H ⊆⋃i∈I ∆i ,⋃

i∈I

Ri,H∩∆i (E ∩ Φi) ⊆ RH (E)

provided ∆i ∩ ∆j = ∅ for all i, j ∈ I with i 	= j .
(4) If ΠSS(Σi) = (∆i,Φi,Ri) (i ∈ I) and ΠSS(

⊕
i∈I Σi) = (

⋃
i∈I ∆i,

⋃
i∈I Φi,R), then

for all E ⊆⋃i∈I Φi and H ⊆⋃i∈I ∆i ,
(4.1)

⋃
i∈I Ri,H∩∆i (E ∩ Φi) ⊆ RH (E); and

(4.2) RH (E) =⋃i∈I Ri,H∩∆i (E ∩ Φi) if ∆i ∩ ∆j = ∅ for all i, j ∈ I with i 	= j .
(5) If ΠSO(Σi) = (∆i,Φi,Ri) (i ∈ I) and ΠSO(

⊕
i∈I Σi) = (

⋃
i∈I ∆i,

⋃
i∈I Φi,R), then

for all E ⊆⋃i∈I Φi , and for all H ⊆⋃i∈I ∆i ,
(5.1) RH (E) ⊆⋃i∈I Ri,H∩∆i (E ∩ Φi); and
(5.2) RH (E) =⋃i∈I Ri,H∩∆i (E ∩ Φi) if Φi ∩ Φj = ∅ for all i, j ∈ I with i 	= j .

(6) If ΠSI(Σi) = (∆i,Φi,Ri) (i ∈ I) and ΠSI(
⊕

i∈I Σi) = (
⋃

i∈I ∆i,
⋃

i∈I Φi,R), then
for all E ⊆⋃i∈I Φi and H ⊆⋃i∈I ∆i ,

RH (E) ⊆
⋃
i∈I

Ri,H∩∆i (E ∩ Φi)

whenever ∆i ∩ ∆j = ∅ for all i, j ∈ I with i 	= j .

Proof. We only prove (4). From Definition 21 it follows that

RH (E) =
⋂{

H ′ ⊆ H : e(H ′) =
⋃
i∈I

ei (H
′ ∩ ∆i) ⊆ E

}
,

and ⋃
i∈I

Ri,H∩∆i (E ∩ Φi) =
⋃
i∈I

∩{H ′
i ⊆ H ∩ ∆i : ei(H

′
i ) ⊆ E ∩ Φi

}

=
⋂{⋃

i∈I

H ′
i : H ′

i ⊆ H ∩ ∆i and ei(H
′
i ) ⊆ E ∩ Φi for all i ∈ I

}
.

Note that complete distributivity of set union over intersection is applied in the last equality.
Now the conclusion comes immediately from the following two items:
(a) If H ′ ⊆ H and e(H ′) ⊆ E, then we set H ′

i = H ∩ ∆i for each i ∈ I . It holds that
H ′ =⋃i∈I H ′

i , H ′
i ⊆ H ∩ ∆i , and

ei(H
′
i ) = ei(H

′
i ) ∩ Φi ⊆

⋃
j∈I

[
ej (H

′
j ) ∩ Φi

]= [⋃
j∈I

ej (H
′
j )

]
∩ Φi ⊆ E ∩ Φi.
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(b) Conversely, if for each i ∈ I , H ′ ⊆ H ∩ ∆i and ei(H
′) ⊆ E ∩ Φi , then we set
i i

H ′ =⋃i∈I H ′
i . It is clear that H ′ ⊆ H . Since ∆i ∩ ∆j = ∅ whenever i 	= j , we have

H ′ ∩ ∆i = H ′
i and

e(H ′) =
⋃
i∈I

ei(H
′ ∩ ∆i) ⊆

⋃
i∈I

(Ei ∩ Φi) = E. �

As we saw before, the concept of diagnostic specification sum models the modular-
ization technique of dividing a large system into a number of subsystems. Here, we are
going to introduce the concept of direct product of diagnostic specifications. It can be used
to describe the way that we observe various profiles of a system. The two operations of
specification sum and product are orthogonal in a sense, and they complement each other.

Definition 57 (Direct product of specifications). Let Σi = (∆i,Φi, ei) (i ∈ I) be a fam-
ily of diagnostic specifications. Then their direct product is defined to be

∏
i∈I Σi =

(
∏

i∈I ∆i,
∏

i∈I Φi, e), where for each D ⊆∏i∈I ∆i ,

e(D) =
{∏

i∈I ei(proji (D)) if ei(proji (D)) 	= ⊥ for all i ∈ I,

⊥ otherwise,

and proji :
∏

j∈I ∆j → :∆i is the projection on ∆i ; i.e., for any d = (dj )j∈I ∈∏j∈I ∆j ,
proji (d) = di . Moreover, we define ¬x = (¬xi)i∈I for all x = (xi)i∈I ∈ ∏i∈I ∆i ∪∏

i∈I Πi .

The notion of direct product is well-defined; i.e.,
∏

i∈I Σi is indeed a diagnostic specifi-
cation. However,

∏
i∈I Σi is not necessary to be complete when all Σi (i ∈ I) are complete.

Example 58. The direct product of diagnostic specifications models the process that one
extracts his knowledge bases from different profiles of an object and then aggregate them
together into a single knowledge base. Suppose we have a system whose function is deter-
mined by two factors A and B . The causal interactions between defects and findings related
to factors A and B are described by the diagnostic specifications ΣA = (∆A,ΦA, eA) and
ΣB = (∆B,ΦB, eB), respectively, where ∆A = {d1, d2, d3}, ΦA = {f1, f2}, ∆B = {c1, c2},
ΦB = {g1, g2, g3}, and eA and eB are given by Tables 9 and 10. If the two factors A and B

are assumed to be interaction free, then the direct product

ΣA × ΣB = ({(d1, c1), (d1, c2), (d2, c1), (d2, c2), (d3, c1), (d3, c2)
}
,{

(f1, g1), (f1, g2), (f1, g3), (f2, g1), (f2, g2), (f2, g3)
}
, e
)

provides a diagnostic knowledge base for the whole system. For example,

e
({

(d1, c2), (d2, c1), (d2, c2)
})= eA

({d1, d2}
)× eB

({c1, c2}
)

= {(f1, g1), (f1, g2), (f1, g3)
}
,

and the possible findings are (f1, g1), (f1, g2), (f1, g3) when (d1, c2), (d2, c1) and (d2, c2)

occur simultaneously. The following proposition shows that the operation of direct product
of diagnostic specifications preserves monotonicity.
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Table 9

Factor system A

D ∅ {d1} {d2} {d3} {d1, d2} {d1, d3} {d2, d3} {d1, d2, d3}
eA ∅ ∅ {f1} ∅ {f1} ∅ {f1} {f1, f2}

Table 10
Factor system B

D ∅ {c1} {c2} {c1, c2}
eB ∅ {g3} ∅ {g1, g2, g3}

Proposition 59. Let Σi = (∆i,Φi, ei) (i ∈ I) be a family of diagnostic specifications. If
Σi (I ∈ i) are all increasing (respectively decreasing), then

∏
i∈I Σi is also increasing

(respectively decreasing).

Proof. Immediate. �
The next proposition demonstrates that the direct product of a family of specification

morphisms is a specification morphism from the direct product of their domains to the
direct product of their co-domains.

Proposition 60. Let Mi = (gi, hi) :Σi = (∆i,Φi, ei) → Σ ′
i = (∆′

i ,Φ
′
i , e

′
i ) (i ∈ I)

be a family of specification morphisms, and let
∏

i∈I gi :
∏

i∈I ∆i → ∏
i∈I ∆′

i and∏
i∈I hi :

∏
i∈I Φi →∏i∈I Φ ′

i be defined as follows:(∏
i∈I

gi

)
(d) = (gi(di))i∈I for any d = (di)i∈I ∈

∏
i∈I

∆i, and

(∏
i∈I

hi

)
(f ) = (hi(fi))i∈I for any f = (fi)i∈I ∈

∏
i∈I

Φi .

Then
∏

i∈I Mi = (
∏

i∈I gi ,
∏

i∈I hi) is a specification morphism from
∏

i∈I Σi to
∏

i∈I Σ ′
i .

Proof. For any D ⊆∏i∈I ∆i ,(∏
i∈I

hi

)(
e(D)
)= (∏

i∈I

hi

)(∏
i∈I

ei

(
proji (D)

))=
∏
i∈I

hi

(
ei

(
proji (D)

))

=
∏
i∈I

e′
i

(
gi

(
proji (D)

))=∏
i∈I

e′
i

(
proji

((∏
i∈I

gi

)
(D)

))

= e′
((∏

i∈I

gi

)
(D)

)
. �

We now turn to examine diagnostic problem solving in a direct product system. Given
a diagnostic problem with the observed findings E and hypothesis H . We may observe
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them from different profiles i ∈ I . The pieces of information that E and H shine on the

profile i are then represented by the projections proji (E) and proji (H ), respectively. Now
in the factor system Σi , we employ a notion Ri of diagnosis and find a diagnostic solution
Ri,proji (H)(proji (E)) with information proji (E) and proji (H ). Thus, we are able to present
a diagnostic solution to the original problem by taking the direct product of these factor
solutions. The following proposition clarify the relation between such a solution and the
solution obtained directly by using a corresponding notion of diagnosis in the whole system
(when possible). For example, Proposition 61(1) indicates that if we adopt the notion of
most general subset diagnosis then the former is stricter than the latter, and they are the
same whenever all factor systems are interaction free and E and H appear as cubes. Note
that some conditions introduced in Definition 31 are needed here. We use condition (∩ ⊆
∪) in the case of most specific subset diagnosis and (∩ ⊇ ∩) in the case of most specific
superset diagnosis.

Proposition 61. Let Σi = (∆i,Φi, ei) (i ∈ I) be a family of diagnostic specifications.

(1) If ΠGS(Σi) = (∆i,Φi,Ri) for all i ∈ I , and ΠGS(
∏

i∈I Σi) = (
∏

i∈I ∆i,
∏

i∈I Φi,R),
then for any E ⊆∏i∈I Φi and for any H ⊆∏i∈I ∆i ,
(1.1) RH (E) ⊆∏i∈I Ri,proji (H)(proji (E)) if for each i ∈ I , ei(D) 	= ∅ whenever D 	=

∅;
(1.2) RH (E) =∏i∈I Ri,proji (H)(proji (E)) if all Σi (i ∈ I) are interaction free, and

H = ∏i∈I Hi and E = ∏i∈I Ei are cubes (Ei ⊆ Φi and Hi ⊆ ∆i for each
i ∈ I).

(2) If ΠGO(Σi) = (∆i,Φi,Ri) for all i ∈ I and ΠGO(
∏

i∈I Σi) = (
∏

i∈I ∆i,
∏

i∈I Φi,R),
then for any E ⊆∏i∈I Φi , and for any H ⊆∏i∈I ∆i ,
(2.1) RH (E) ⊆∏i∈I Ri,proji (H)(proji (E)); and
(2.2) RH (E) =∏i∈I Ri,proji (H)(proji (E)) if all Σi (i ∈ I) are interaction free, and

H =∏i∈I Hi is a cube (Hi ⊆ ∆i for each i ∈ I).
(3) If ΠGI(Σi) = (∆i,Φi,Ri) for all i ∈ I , and ΠGI(

∏
i∈I Σi) = (

∏
i∈I ∆i,

∏
i∈I Φi,R),

then for any cube E =∏i∈I Ei ⊆∏i∈I Φi and for any cube H =∏i∈I Hi ⊆∏i∈I ∆i ,∏
i∈I

Ri,Hi (Ei) ⊆ RH (E)

provided all Σi (i ∈ I) are interaction free.
(4) Suppose that ΠSS(Σi) = (∆i,Φi,Ri) (i ∈ I), and ΠSS(

∏
i∈I Σi) = (

∏
i∈I ∆i,∏

i∈I Φi,R). If each Σi (i ∈ I) satisfies the following condition:

ei

(⋂
t∈T

Dt

)
⊆
⋃
t∈T

ei(Dt ),

where all Dt ⊆ ∆i (t ∈ T ) are consistent, then for all cubes E =∏i∈I Ei ⊆∏i∈I Φi

and H =∏i∈I Hi ⊆∏∆i , we have

RH (E) ⊆
∏
i∈I

Ri,Hi (Ei).
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(5) Suppose that ΠSO(Σi) = (∆i,Φi,Ri) (i ∈ I) and ΠSO(
∏

i∈I Σi) = (
∏

i∈I ∆i,
∏
i∈I Φi,R). If each Σi (i ∈ I) satisfies the following condition:⋂

t∈T

ei(Dt ) ⊆ ei

(⋂
t∈T

Dt

)

where all Dt ⊆ ∆i (t ∈ T ) are consistent, then for any E ⊆∏i∈I Φi and for any cube
H =∏i∈I Hi ⊆∏∆i , it holds that

RH (E) ⊆
∏
i∈I

Ri,Hi (projiE).

(6) If ΠSI(Σi) = (∆i,Φi,Ri) (i ∈ I), and ΠSI(
∏

i∈I Σi) = (
∏

i∈I ∆i,
∏

i∈I Φi,R), then
for any cube E =∏i∈I Ei ⊆∏i∈I Φi and for any cube H =∏i∈I Hi ⊆∏i∈I ∆i ,

RH (E) ⊆
∏
i∈I

Ri,Hi (Ei)

provided all Σi (i ∈ I) are interaction free.

Proof. We only prove (1); others are similar.
(1.1) We write

M =
{
H ′ ⊆ H : e(H ′) =

∏
i∈I

ei

(
proji (H

′)
)⊆ E

}

and

N =
{∏

i∈I

H ′
i : H ′

i ⊆ proji (H ) and ei(H
′
i ) ⊆ proji (E) for all i ∈ I

}
.

Then it is clear that RH(E) =⋃M , and∏
i∈I

Ri,proji (H)

(
proji (E)

)=∏
i∈I

∪{H ′
i ⊆ proji (H ): ei(H

′
i ) ⊆ proji (E)

}⊇⋃N.

Now it suffices to show that for any H ′ ∈ M , there exists K ′ ∈ N with H ′ ⊆ K ′. If H ′ = ∅,
it is obvious. We now assume that H ′ 	= ∅. It holds that proji (H

′) ⊆ proji (H ). In ad-
dition, ei(proji (H

′)) ⊆ proji (E) follows from that e(H ′) =∏i∈I ei(proji (H
′)) ⊆ E and

ej (projj (H
′)) 	= ∅ for each j ∈ I − {i}. Then H ′ ⊆∏i∈I proji (H

′) ∈ N .
(1.2) Let E =∏i∈I Ei and H =∏i∈I Hi be cubes. Then proji (E) = Ei and proji (H ) =

Hi . We put

Ni = {H ′ ⊆ Hi : ei(H
′
i ) ⊆ Ei

}
.

Then ei(
⋃

Ni) ⊆ ⋃H ′
i ∈Ni

ei(H
′
i ) ⊆ Ei , and

⋃
Ni ∈ Ni . This yields

∏
i∈I RiHi (Ei) =⋃

N . Furthermore, it is easy to see that N ⊆ M for cubes E and H . This completes the
proof. �

Note that in a direct product diagnostic system both the defects and findings are exam-
ined from different profiles. However, sometimes we only need to analyze the defects from
different angles, leaving the findings unchanged. This motivates the following definition.
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Definition 62 (Optimistic and pessimistic merging of specifications). Let Σi = (∆i,Φ, ei)
(i ∈ I) be a family of diagnostic specifications with the same set of findings. Then their
optimistic and pessimistic merging are defined to be

⊗
i∈I Σi = (

∏
i∈I ∆i,Φ, e+) and⊙

i∈I Σi = (
∏

i∈I ∆i,Φ, e−), respectively, where for each D ⊆∏i∈I ∆i ,

e+(D) =
{⋃

i∈I ei (proji (D)) if ei(proji (D)) 	= ⊥ for all i ∈ I,

⊥ otherwise,

e−(D) =
{⋂

i∈I ei (proji (D)) if ei(proji (D)) 	= ⊥ for all i ∈ I,

⊥ otherwise.

Comparing the above definition with Definitions 44 and 57, we will find that (optimistic
and pessimistic) mergings are mixtures of direct product and (optimistic and pessimistic)
fusions. In the operation of merging, the defects take a structure of direct product. This
reflects the fact that we will examine defects from different profiles. For each profile, the
causal relation between defects and findings is specified separately. Now we have many
different way to aggregate these specifications coming from various profiles. The ways
used in optimistic and pessimistic mergings are respectively union and intersection which
are just at the two extremes of all the possible ways. Obviously, this idea follows directly
Definition 44.

Example 63. The two operations of merging express two extreme ways of aggregating
knowledge about causal interactions between findings and different profiles of defects.
Suppose that ΣA = (∆A,Φ, eA) and ΣB = (∆B,Φ, eB), where ∆A = {d1, d2, d3}, ∆B =
{c1, c2}, Φ = {f1, f2, f3} and eA and eB are given as shown in Tables 11 and 12. And, we
assume that ΣA and ΣB depict respectively the causal relation between findings and the
profile A of defects and the profile B of defects. Then ΣA ⊗ΣB = (∆A × ∆B,Φ, e+) and
ΣA � ΣB = (∆A × ∆B,Φ, e−) represent two different aggregation of ΣA and ΣB , and
they are able to serve as a diagnostic knowledge base of the whole system, where

∆A × ∆B = {(d1, c1), (d1, c2), (d2, c1), (d2, c2), (d3, c1), (d3, c2)
}
.

For example, we have

e+({(d1, c1), (d1, c2), (d3, c2)
})= eA

({d1, d3}
)∪ eB

({c1, c2}
)= {f1, f2},

Table 11
Profile A

D ∅ {d1} {d2} {d3} {d1, d2} {d1, d3} {d2, d3} {d1, d2, d3}
eA ∅ {f1} {f1} ∅ {f1} {f1, f2} {f1} {f1, f2, f3}

Table 12
Profile B

D ∅ {c1} {c2} {c1, c2}
eB ∅ {f2} {f1} ∅
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and
e−({(d1, c1), (d1, c2), (d3, c2)
})= eA

({d1, d3}
)∩ eB

({c1, c2}
)= ∅.

Monotonicity of diagnostic specifications is preserved by both optimistic or pessimistic
mergings, but only optimistic merging carries interaction freeness.

Proposition 64. Let Σi = (∆i,Φ, ei) (i ∈ I) be a family of diagnostic specifications with
the same set of findings.

(1) If all Σi (i ∈ I) are increasing (respectively decreasing), then
⊗

i∈I Σi and
⊙

i∈I Σi

are also increasing (respectively decreasing).
(2) If all Σi (i ∈ I) are all interaction free, so is

⊗
i∈I Σi .

Proof. Immediate. �
We consider the problem of constructing a specification morphism between two opti-

mistic (pessimistic) mergings from the morphisms between their component systems. Note
that the operands in an optimistic merging are a family of diagnostic specifications with
the same set of findings. Thus, the finding mappings between the mergings and between
the corresponding components should be same. The following proposition shows that the
direct product of defect mapping between the components together with the fixed finding
mapping forms a specification morphism between the two optimistic mergings under con-
sideration, and it is a morphism between the two pessimistic mergings whenever the fixed
finding mapping is injective.

Proposition 65. Let Mi = (gi, h) :Σi = (∆i,Φ, ei) → Σ ′
i = (∆′

i ,Φ
′, e′

i ) (i ∈ I) be a fam-
ily of specification morphisms. Then

(1)
∏

i∈I Mi = (
∏

i∈I gi , h) is a specification morphism from
⊗

i∈I Σi to
⊗

i∈I Σ ′
i ; and

(2)
∏

i∈I Mi = (
∏

i∈I gi , h) is a specification morphism from
⊙

i∈I Σi to
⊙

i∈I Σ ′
i pro-

vided h is injective.

Proof. Straightforward. �
We conclude this section with two propositions concerning the notions of diagnosis that

form the Lucas refinement diagnosis in an optimistic or pessimistic merging system. Given
a diagnostic problem in an optimistic merging with observed findings E and hypothesis H ,
since the finding set is fixed, and the defect set possesses a structure of direct product, we
can analyze the hypothesis H from its different profiles. These profiles of H are then repre-
sented by proji (H ), where i is the index in the merging construction. For each component
system i , a diagnostic problem with the original observed findings E is still present, but
the new hypothesis proji (H ) is given, and we are able to find a solution to it by employing
a notion of diagnosis in this subsystem. Now what interests us is the relation between the
diagnostic solution that we hope to find directly in the whole system and the family of di-
agnostic solutions in these subsystems. For most general subset diagnosis, it is shown that
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the former is included in the direct product of the latter. The same result holds for most

specific subset diagnosis, most specific superset diagnosis and most specific intersection
diagnosis if certain global properties of specifications are imposed. On the other hand, the
direct product of solutions to the subproblems is included in the solution of the original
problem for most general superset diagnosis and most general intersection diagnosis with
some global properties of specifications.

Proposition 66. Let Σi = (∆i,Φ, ei) (i ∈ I) be a family of diagnostic specifications with
the same set of findings.

(1) If ΠGS(Σi) = (∆i,Φ,Ri) (i ∈ I), and ΠGS(
⊗

i∈I Σi) = (
∏

i∈I ∆i,Φ,R), then for
any E ⊆ Φ and for any H ⊆∏i∈I ∆i ,
(1.1) RH (E) ⊆∏i∈I Ri,proji (H)(E); and
(1.2) RH (E) =∏i∈I Ri,proji (H)(E) if H is a cube and all Σi (i ∈ I) are interaction

free.
(2) If ΠGO(Σi) = (∆i,Φ,Ri) (i ∈ I), ΠGO(

⊗
i∈I Σi) = (

∏
i∈I ∆i,Φ,R), and all Σi (i ∈

I) fulfil the following condition:

ei

(⋃
t∈T

Dt

)
⊇
⋂
t∈T

ei(Dt )

for all Dt ⊆ ∆t (t ∈ T ), then for each E ⊆ Φ and for each cube H ⊆∏i∈I ∆i ,∏
i∈I

Ri,proji (H)(E) ⊆ RH(E).

(3) If ΠGI(Σi) = (∆i,Φ,Ri) (i ∈ I), ΠGI(
⊗

i∈I Σi) = (
∏

i∈I ∆i,Φ,R), and all Σi (i ∈
I) are interaction free, then for any E ⊆ Φ and for any cube H ⊆∏i∈I ∆i ,∏

i∈I

Ri,proji (H)(E) ⊆ RH(E).

(4) If ΠSS(Σi) = (∆i,Φ,Ri) (i ∈ I), ΠSS(
⊗

i∈I Σi) = (
∏

i∈I ∆i,Φ,R), and all Σi

(i ∈ I) satisfy the condition in Proposition 61(4), then for all E ⊆ Φ and cubes
H ⊆∏i∈I ∆i ,

RH (E) ⊆
∏
i∈I

Ri,proji (H)(E).

(5) If ΠSO(Σi) = (∆i,Φ,Ri) (i ∈ I), ΠSO(
⊗

i∈I Σi) = (
∏

i∈I ∆i,Φ,R), and all Σi

(i ∈ I) fulfil the condition in Proposition 61(5), then for any E ⊆ Φ and cube
H ⊆∏i∈I ∆i ,

RH (E) ⊆
∏
i∈I

Ri,proji (H)(E).

(6) If ΠSI(Σi) = (∆i,Φ,Ri) (i ∈ I), ΠSI(
⊗

i∈I Σi) = (
∏

i∈I ∆i,Φ,R), and all Σi (i ∈
I) are interaction free, then for any E ⊆ Φ and cube H ⊆∏i∈I ∆i ,

RH (E) ⊆
∏
i∈I

Ri,proji (H)(E).



M. Ying / Artificial Intelligence 163 (2005) 1–45 43

Proof. Similar to Proposition 61. �

For diagnosis in a pessimistic merging system, we have:

Proposition 67. Let Σi = (∆i,Φ, ei) (i ∈ I) be a family of diagnostic specifications with
the same set of findings.

(1) If ΠGS(Σi) = (∆i,Φ,Ri) (i ∈ I), and ΠGS(
⊙

i∈I Σi) = (
∏

i∈I ∆i,Φ,R), then for
any E ⊆ Φ and for any H ⊆∏i∈I ∆i ,∏

i∈I

Ri,proji (H)(E) ⊆ RH(E).

(2) If ΠGO(Σi) = (∆i,Φ,Ri) (i ∈ I), and ΠGO(
⊙

i∈I Σi) = (
∏

i∈I ∆i,Φ,R), then for
any E ⊆ Φ and H ⊆∏i∈I ∆i ,

RH (E) ⊆
∏
i∈I

Ri,proji (H)(E),

with the equality when H is a cube.
(3) If ΠSS(Σi) = (∆i,Φ,Ri) (i ∈ I), and ΠSS(

⊙
i∈I Σi) = (

∏
i∈I ∆i,Φ,R), then for any

E ⊆ Φ and for any cube H ⊆∏i∈I ∆i ,

RH (E) ⊆
∏
i∈I

Ri,proji (H)(E).

The same conclusion holds for most specific superset diagnosis.

Proof. Similar to Proposition 61. �

5. Conclusion

Lucas [13] proposed a set-theoretic framework for diagnostic problem solving in which
the knowledge base in a diagnostic system is represented by a diagnostic specification.
A diagnostic specification is defined to be a mapping from defects to observable findings,
and it establishes a causal relation between defects and findings. The solution to a diag-
nostic problem is then given by a notion of diagnosis which maps observed findings to
defects. A refinement diagnosis consisting of six notions of diagnosis were introduced and
carefully analyzed by Lucas in [13].

This paper is a continuation of Lucas [13], and its main aim is to examine the influence
of diagnostic specification transformation on diagnostic strategies and to provide some
useful mathematical tools supporting knowledge reuse in diagnostic systems. The concept
of diagnostic specification morphism is introduced in order to describe diagnostic specifi-
cation transformation. The diagnostic strategies, including the six in the Lucas refinement
diagnosis, in the source and target systems of a specification morphism are compared. At
the same time, we propose several operations of diagnostic specifications that can serve
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as mathematical models of knowledge base fusion and merging in diagnostic systems.

Some representations of diagnostic methods in composite diagnostic systems constructed
by using our proposed operations are presented in terms of the corresponding diagnostic
methods in their subsystems.

It is obvious that the diagnostic systems dealt with here and in [13] are not time-varying,
and the dimension of time is ignored. In many application domains, however, the systems
to be diagnosed are dynamic, and the assumption that the relation between defects and ob-
servations does not depend on time factor is not realistic. In fact, much effort has been made
to accommodate the dimension of time into diagnostic systems have been made in the pre-
vious researches. Brusoni et al. [2] defined a spectrum of notions of temporal model-based
diagnosis. As a problem for further studies, we hope to generalize the Lucas framework
of diagnosis so that certain temporal phenomena can be taken into account. Furthermore,
we need to explore the possibility of adding the time factor into the results obtained in this
paper in order to support knowledge reuse in time-varying diagnostic systems.

Uncertainty management is another important problem in diagnostic systems. This is
especially clear in the field of medical diagnosis due to inherent vagueness of human doc-
tor thinking. Indeed, uncertainty has been considered in many early medical diagnostic
expert systems such as MYCIN [21]. An important and much more recent work incor-
porating uncertainty into diagnosis systems was done by Poole [17] using probabilistic
Horn clauses to represent diagnosis knowledge with uncertainty; notions of diagnosis in
his setting were defined by assuming different probabilistic constraints. The Lucas theory
of diagnosis allows modelling particular qualitative approaches to diagnosis, such as those
expressed by strong causality or weak causality, but it does not provide us with an explicit
mechanism for expressing uncertainty. Nowadays, a dominant method of representing un-
certainty in Artificial Intelligence is given by Bayesian networks, or, more generally, by
probability theory. Thus, an interesting problem for further studies is how to introduce a
suitable mechanism for coping with uncertainty and vagueness into the Lucas framework
of diagnosis and how to model knowledge transformation and reuse in diagnostic prob-
lem solving when uncertainty involved. In particular, what highly concerns us is how to
accommodate probabilistic information in the formal development presented in this paper.
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