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Abstract

Diagnostic systems depend on knowledge bases specifying the causal, structural or functional
interactions among components of the diagnosed objects. A diagnostic specification in a diagnos-
tic system is a semantic interpretation of a knowledge base. We introduce the notion of diagnostic
specification morphism and some operations of diagnostic specifications that can be used to model
knowledge transformation and fusion, respectively. The relation between diagnostic methods in the
source system and the target system of a specification morphism is examined. Also, representations
of diagnostic methods in a composed system modelled by operations of specifications are given in
terms of the corresponding diagnostic methods in its component systems.
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1. Introduction

To diagnose is to determine the nature of a trouble (for example, a disease) from ob-
servations of signs and symptoms, and it is an important human ability, with important
applicationsin medicine, industrial processes and computer software, among others. Due
to its importance, diagnostic reasoning has long been an active research area of Artificial
Intelligence. Throughout the 1970's, several expert systemsaimed in wholeor in part at di-
agnosiswere developed (e.g., MY CIN [21]), exploring different knowledge representation
and reasoning techniques, but the field lacked unified underlying principles.

One of the first formal theories of diagnosis is Reggia, Nau and Wang's set-covering
model for diagnostic expert systems [18], where causal knowledge of abnormality is
represented by binary relations. Diagnosis then reduces to determining whether actually
observed findings can be inferred from observed defects and the causal relations.

In 1987, a logica theory of diagnosis was proposed by Reiter [19], and it is usually
called the theory of consistency-based diagnosis. This theory was largely extended by de
Kleer et a. [10] in 1992. Their main ideais to establish a model of the normal structure
and behavior of the diagnosed objects. Diagnosisis then modelled asfinding a discrepancy
between the normal behavior predicted from the model and the actually observed abnormal
behavior. The discrepancy in this approach is formalized as logical inconsistency.

Another logical theory of diagnosis, called abductive diagnosis, was devel oped by Cox
and Pietrzykowski [9], Console et al. [3,7,8] and others around 1990. They used logi-
cal implications from causes to effects to represent causal knowledge, and a diagnosisis
then formalized as reasoning from effects (observed findings) to causes (abnormalities or
faults).

Lucas [13] recently introduced a framework alowing these and other formal theories
(for example, heuristic classification [6], goal-directed diagnosis [20] and explicit means-
end model [12]), to be compared in a unified way. It consists mainly of two parts: (1)
diagnostic specification, a mapping from defects to observable findings, specifying the
causal relation from defects to findings; and (2) notion of diagnosis, a mapping from ob-
served findings to defects, modelling how to get a diagnostic solution from the observed
findings. Thisis a high-level formalism of diagnosis, and various formal theories of diag-
nosis can be expressed in it, including consistency-based diagnosis, abductive diagnosis
and heuristic classification. In this framework a diagnostic specification need not corre-
spond to a unique notion of diagnosis. Different strategies of diagnosis can be introduced
according to varied philosophical considerations or practical purposes. In [13], given adi-
agnostic specification, Lucas proposed a hierarchy consisting of six notions of diagnosis
induced by it, namely, most general subset diagnosis, most general superset diagnosis,
most general intersection diagnosis, most specific subset diagnosis, most specific superset
diagnosisaswell as most specific intersection diagnosis. The six notions of diagnosisform
a flexible spectrum in which one notion may refine another. Thus, they provide the user
with an opportunity to choose a diagnosis method suited to his own criterion.

A diagnostic specification in Lucas's formalism is intended to serve as a semantic in-
terpretation of the knowledge base in a diagnostic system. But the cost of gathering and
processing knowledgeis often very high. Such a situation makes effective reuse of knowl-
edge essential. One of the mechanisms that support reuse of knowledge is knowledge
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transformation which maps various different knowledge bases to each other, enabling a
common interfaces between different domains and application systems. Many different
formal representations of knowledge transformation have already been proposed; for ex-
ample, conditional rules[4], function [5], logical relations[11], and tables and procedures
[22]. Another important mechanism for effective use and reuse of knowledgeis the fusion
and merging of different knowledge resources, often represented in terms of operations
on knowledge bases. Examplesinclude Stanford’s ontology algebra[24] and Barwise and
Seligman’stheory of information flow [1].

This leads us to explore the possibility of reusing knowledge in diagnostic systems.
In this paper, we consider the following two problems concerning change, evolution of
knowledge for diagnosis as well as gathering and combining diagnostic knowledge from
multiple sources: (1) if the knowledge base in one diagnostic system is transformed into
the knowledge base in another, then to what extent can the diagnostic method adopted
in the first system be reused in the second? and (2) if the knowledge bases in a set of
diagnostic systems are fused or merged to construct a larger one, how we can produce
a suitable diagnostic method for the composed system from the diagnostic methods of
its components? In order to solve the first problem, the notion of diagnostic specification
morphismisintroduced. As a solution to the second problem, some algebraic operations of
diagnostic specifications are proposed to model the construction of a complex diagnostic
system composed from simpler ones.

Thispaper isorganized asfollows: in Section 2, we recall some basic notionsfrom [13].
We al so present some new resultsin this section. Firgt, it is shown that some global proper-
ties such as monotonicity and interaction freeness of partial diagnostic specifications, can
be extended to the whole specifications generated by them. Second, for the six diagnostic
notions in the Lucas refinement diagnosis spectrum, some properties of the Galois con-
nection style are observed. Third, some necessary and sufficient conditions under which
the six diagnostic notions respects the given diagnostic specification are found. Fourth, we
show that certain relations between diagnosti c specificationsare preserved and some global
properties of diagnostic specifications are inherited by the six diagnostic notions induced
from them. These results are useful in the analysis and comparison of various notions of
diagnosis. In Section 3, the notion of diagnostic specification morphism is introduced for
modelling transformations of knowledge bases in different diagnostic systems. It is shown
that the relation that a notion of diagnosis respects a diagnostic specification can be pre-
served by some morphisms. Also, it is demonstrated that certain global properties of the
source diagnostic specification may be transferred by a specification morphism to the tar-
get specification. Thus, some diagnosis methods depending heavily on these propertiescan
be safely reused after knowledge transformation. We prove that some partial specification
morphism can be smoothly extended to a specification morphism. This gives a conve-
nient technique for constructing specification morphisms because in many applications
diagnostic knowledge bases are often specified only partially. The relationship between
the diagnostic strategies in the source diagnostic system and the target system of a mor-
phism is thoroughly analyzed. The obtained results provide us with a logical support for
knowledgereusein diagnostic systems. Section 4 is devoted to examining carefully various
operations of diagnostic specifications. These operations aim at describing different ways
to fuse and merge diagnostic knowledge bases. They include optimistic and pessimistic
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fusions, optimistic merging and pessimistic merging, sum, and direct product. For each of
them, we examine how the global properties of component systems are preserved by the
composed system. We also clarify the relationship between the diagnostic methods in the
component systems and those in the composed system. These results enable us to know to
what an extent the diagnostic strategies used in a diagnostic system can be reused when it
is embedded into alarger system.

To conclude this introduction, we would like to comment on applicability of the con-
cepts and results presented in the current paper. Although the work reported in the paper
is mainly concerned with the problem of system diagnosis, the formal methods devel oped
for modelling knowledge transformation and fusion may be used in some other areas of
Artificial Intelligence and related subjects. The Semantic Web is envisaged as the Web en-
riched with numerous domain ontol ogies, which specify formal semantics of data existing
on the Web [2]. Recent successful projectsin the ontology area have resulted at creation of
thousands of ontologies [25]. However, the absence of efficient techniques of knowledge
transformation and fusion hampers further devel opment of the Semantic Web. The formal-
ism established in this paper might provide some useful mathematical tools, supporting the
development of knowledge transformation and fusion technology in such an rapidly grow-
ing area. Another potential application area of this paper is knowledge management [15],
where various technologies that support knowledge transformation have been developed,
but solid theoretical foundations are till to be found. Knowledge fusion and merging are
key issues in the area of multi-agent systems (MAS) [23]. A very interesting problem for
further study isto model learning in MAS with the fusion operationsintroduced here.

2. Lucasformalism of system diagnosis

Our work will be carried out entirely within the Lucas formal framework of diagnosis.
So, for convenience of the reader, here we first recall some basic notions from [13]. For
detailed explanations and examplesillustrating these notions we refer to [13].

Each diagnostic system requires a knowledge base as the basis of implementing diag-
nostic task. Such a knowledge base usually specifies certain interactions between defects
and observable findings. In the Lucas formalism it is interpreted as an evidence function
which associates a set of observable findings to a set of defects and intends to use these
findingsto represent the evidence of occurrence of the defects.

The Lucas formalism is established in the set-theoretical setting. Let Ap and ®@p be
two nonempty sets. The elements of Ap will be used to denote positive defects, and the
elements of @ p will be positive findings. We write

Ay ={—d. de Ap} and Oy ={—f: fedp}
for the sets of negative defects and findings, respectively. Furthermore, let
A=ApUAy and ®=®pU Dy,

whereitisassumedthat Ap N Ay =0 and @p NPy =, and ——x = x for every x €
ApU®p. A subset D of A will be used to represent a set of defects. Here, we adopt an
interpretation of three-valued logic in the following sense: for eachd € Ap,
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(i) d indicatesthe presence of defect d;
(ii) —d indicatesthe absence of defect d; and
(iii) if both d and —d arenot in D, then it is understood that defect d is unknown.

Similarly, asubset E of @ will be seen as a set of findings, with the same three-valued
logical interpretation.

For any set X, we use p (X) to express the power set of X, i.e, the set of al subsets
of X. After introducing the above notations, we are able to present the first key notion in
the Lucas formalism of diagnosis.

Definition 1 (Diagnostic specification; [13, Definition 1]). A diagnostic specification is
atriple ¥ = (A, @, ¢e), where A and @ are sets of defects and findings, respectively, as
explained before, and

e:p(A)— p(P)U{L}

isamapping, called evidence function, such that

(i) forany D, D’ C A,if d,—~d € D thene(D) = L; and
(ii) forany D, D’ C A,if e(D)# Land D' C D thene(D') # L.

In addition, if e satisfies the following condition

(iif) foreach f € @ thereexistsaset D C A with f € e(D) or = f € e(D), then X issaid
to be complete.

Foreach D C A, if e(D) # L, then D is called consistent.

Intuitively, for each set D of defects, alowing both positive and negative occurrences
(i.e., presence or absence) of defects, e(D) expresses the set of findings which are observ-
able when defectsin D simultaneously occur.

The abovedefinitionisasdlightly modified version of Definition 1in[13]. Thedifference
between them is that a weaker concept of diagnostic specification with only the conditions
(1) and (2) isintroduced, and the original concept of diagnostic specification is renamed as
compl ete specification.

The nature of a diagnostic specification has a heavy influence on the choice of our di-
agnostic methods in the diagnostic system with this specification as its knowledge base.
Thus, it is worthwhile to carefully analyze various properties of diagnostic specifications.
The following two definitions give some common global properties of diagnostic specifi-
cations.

Definition 2 (Monotonicity; [13, Definition 7]). A diagnostic specification X' = (A, @, e)
is called increasing (respectively decreasing) if for all D, D' C A,
D C D' impliese(D) Ce(D’) (respectively e(D' C e(D))

provided D’ is consistent.
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Monotonicity is very familiar to us and does not need any further explanation. In the
above definition, monotonicity is required to hold globally, i.e., to be valid for al sets D
and D’ of defects. Some localized versions of monotonicity were also introduced in [13].

Definition 3 (Interaction freeness; [13, Definition 8]). A diagnostic specification X' =
(A, @, e) issaid to beinteraction free if for each consistent set of defects D C A, it holds
that

e(D) =] e(ld}).

deD

A dlightly different presentation of interaction freenessis that

e(U D,») =|JeD)
iel iel

for any family {D;};<; of consistent subsets of A, where I is an arbitrary nonempty index
set. The intuitive meaning of interaction freeness is then that the evidence for the union
of afamily of defect sets is simply the union of their respective evidences, and thus no
interaction among defects exist.

One of the most important relations between diagnostic specifications is the subspec-
ification relation. A diagnostic specification is a subspecification of another if the former
gives less evidences than the latter for the same defects.

Definition 4 (Subspecification). Let ¥ = (A, @,¢) and X’ = (A, @, ¢') be two specifica
tions with the same sets of defectsand findings. If for any D C A, e(D) C /(D) whenever
e(D)# L ande’ (D) # L, then X iscalled asubspecificationof X/, andwewrite ¥ < X",

It is often very difficult or even impossible to specify the whole knowledge base when
the diagnostic system is very large and too many defects have to be considered. A solution
to this problem that one may naturally conceiveis that we only specify asmall part of the
knowledge base and the remaining part can be generated automatically in some way from
the part specified aready. This simple idea motivates the following two definitions.

Definition 5 (Partial specification). (1) A partial specification is a quadruple ¥ =
(A, ®,V,e),where A and @ areasin Definition2.1, V C p(A),ande:V — p (@) U{L}
isamapping satisfying conditions (1) and (2) in Definition 1.

(2) A partia specification ¥ = (A, @, V,e) is said to be up-inductive (respectively
down-inductive) if any chain W C V (i.e., D1 € D, or D, C D; for dl D1, Do € W) has
an upper (respectively a lower) bound D (i.e., D' € D (respectively D € D’) for each
D' e Ww).

It is clear that the unique difference between a diagnostic specification and a partial
specification is that the domain V of the evidence function in the latter is allowed to be a
proper subset of g (A); in other words, the evidences of some defects can be unspecified
in a partial specification. If V = g (A), then a partial specification ¥ = (A, @, V, e) is
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exactly a diagnostic specification. Note that a partial specification ¥ = (A, @, V,e) is
automatically up-inductive and down-inductive when A isfinite.

Given apartial specification, there will be many different waysto recover awhole spec-
ification. Two of the ways that we use most often are presented in the following definition.

Definition 6 (Bottom-up and top-down partial specifications; [13, Definitions 12 and 17]).
Let ¥ = (A, @, e) be adiagnostic specification, and let ¥/ = (A, @, V, ¢’) be a partid
specification with the same sets of defects and findings.

(D) If forany D € p(A),

e(D) =|_J{¢'(D): D' em(V, D)}

<respective|y e(D)=(\{¢'(D): D' em(V, D)}),

where m(V, D) isthe set of maximal elements of {D’ € V: D’ C D} with respect to set
inclusion C, then X’ is called an increasing (respectively a decreasing) bottom-up partial
specification of X.

(2) If forany D € p (A),

e(D)=(\{¢(D): D' e M(V. D)}

(respectively e(D) = U{e’(D): D' e M(V, D)}),

where M (V, D) is the set of minimal elementsof {D’ € V: D C D’} with respect to set
inclusion C, then X’ is called an increasing (respectively a decreasing) top-down partial
specification of X.

The philosophy of bottom-up partial specifications is to use the specified evidences to
approximate the unspecified evidences from bottom, and top-down partial specifications
are defined in a dual fashion. Recall from [16, p. 20] that Zorn's lemma asserts if every
chain in a partially ordered set P has an upper bound then P has a maximal element.
Thus, Zorn's lemma guarantees the existence of maximal (respectively minimal) elements
of {D' € V: D' C D} (respectively {D’ € V: D C D'}) in the above definition when X’ is
up-inductive (respectively down-inductive), and e(D) iswell-defined for al D C A.

Some global properties of diagnostic specifications, such as monotonicity and interac-
tion freeness, can be easily generalized to partial specifications.

Definition 7 (Increasing, decreasing and interaction free partial specifications). Let X =
(A, @, V,e) beapartia specification. Then

(1) ¥ iscaledincreasing (respectively decreasing) if for any consistent D, D’ € V, D C
D' impliese(D) C e(D’) (respectively e(D) D e(D')).

(2) X iscalled interaction freeif
(i) {dyeVfordlde A;and
(i) forall consistent D € V, e(D) =J, . p e({d}).
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The following proposition demonstrates how some properties of partial specifications
can be extended to the whol e specifications generated by them.

Proposition 8. Let X' = (A, @, ¢) be a diagnostic specification, andlet X/ = (A, @, V, ¢')
be a partial specification with the same sets of defects and findings.

(1) If X’ is an increasing bottom-up or top-down partial specification of X', and X’ is
increasing, then X isalso increasing.

(2) If X’ is an decreasing bottom-up or top-down partial specification of X, and X’ is
decreasing, then X' is also decreasing.

(3) If X’ isanincreasing bottom-up partial specification of X, and X’ isinteraction free,
then X isalso interaction free.

Proof. We only consider the case where X’ is an increasing top-down partial specification
of X, and X’ is decreasing. For any consistent D1, D, C A, if D1 € Do, then for each
D, e M(V, D2), we have D), € V and D, 2 D2 2 D1. Hence, D, € {D € V2. D 2 Dy}.
Note that X’ is down-inductive. We known from Zorn’s lemma that there exists D]
M(V2, D1) with D, 2 D} . Since X' isdecreasing, it holdsthat ¢’ (D5) € e'(D}). Therefore,
we obtain

e(D2) =|_J{e'(Dy): Dye M(V, D)}
c | J{¢'(Dy): Dy e M(V. Dy} =e(Dy).

and X isdecreasing. O

We now turn to present the second key component in the Lucas formalism of diagnosis.
The evidence function in a diagnostic specification gives the expected evidences for the
combined occurrences of defects. Conversely, a notion of diagnosis will seek the defects
that may cause the observed findings. In a sense, diagnostic specification and notion of
diagnosis are two concepts conjugate to each other.

Definition 9 (Notion of diagnosis, diagnostic problem and diagnostic solution; [13, Defin-
ition 20]). (1) A notion of diagnosisisatriple IT = (A, @, R), where A and @ are respec-
tively sets of defectsand findings, R = {Ry: H C A},and Ry :p (D) — o (A) U {u} isa
mapping for each hypothesis H C A, called diagnostic function.

(2) A diagnostic problemisatriple P = (A, @, E) inwhich A and @ areasin (1), and
E C @ isaset of observed findings such that if f € E then —f ¢ E; i.e., contradictory
observed findings are not allowed.

(3) Let IT = (A, &, R) be anotion of diagnosis, let P = (A, @, E) be a diagnostic
problem with the same sets of defects and findings, and let H C A be a hypothesis. Then
the diagnostic solution of P under IT with respect to H isdefinedto be Ry (E).

Theintuitive meaning of anotion of diagnosisisalready clear fromitsformal definition.
Theset H C A in the above definition is a hypothesis. This means that we already know
all possible defects must be in H, and thus we only need to conduct the diagnostic task
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with the scope of H. For any set E C @, denoting the actually observed findings, Ry (E)
is viewed as the diagnostic solution to E under the hypothesis H; that is, the defects that
possibly cause E. For the case of Ry (E) = u, no diagnostic solution exists. For a visual
interpretation of the relation among all components of a diagnostic system, including di-
agnostic specification, notion of diagnosis, and diagnostic problem and solution, we refer
to[13, Fig. 9].

We often need to compare strictness of different notions of diagnosis. A suitable math-
ematical tool for this purposeis given in the following definition.

Definition 10 (Sub-diagnostic relation; [13, Definition 29]). Let IT = (A, @, R) and [T’ =
(A, @, R") be two notions of diagnosis with the same sets of defects and findings. If for
any EC @ andforany H C A, Ry (E) € R, (E) provided Ry (E) # u and R}, (E) # u,
then IT is said to be sub-diagnostic to 17, and we write IT < IT’.

It is not the case that any pair consisting of a diagnostic specification and a notion of
diagnosis forms a reasonable diagnostic system. Usually, some conditions must be im-
posed to a notion of diagnosis so that it gives a suitable diagnostic method with respect
to a given diagnostic specification. One of such conditions is presented in the following
definition.

Definition 11 (A notion I7 of diagnosis respects a diagnostic specification X'; [13, Defi-
nition 22]). Let X = (A, &, ¢) be a diagnostic specification, and let IT = (A, @, R) bea
notion of diagnosiswith the same sets of defects and findings. It is said that I7T respects X
if

(i) for each set of observed findings E C @, there exists a hypothesis H € A such that
e(Ru(E)) =E; and
(ii) foreachconsistent D C A, thereexistsahypothesis H C A suchthat Ry (e(D)) = D.

If condition (ii) is strengthened as follows:

(ii) for each consistent D C A, there existsahypothesis H € A suchthat Ry (e(D)) = D
and Ry/(e(D))=ufordl H' 2 H,

then we say that IT strictly respects X.

A notion IT of diagnosis respects a diagnostic specification X' actually means that the
diagnostic function R in IT is a pseudo-inverse of the evidence function e in X'. In order
to explain further the main idea of the above definition, it is worth comparing it with the
notion of Galois connection. Let A and B be two partially ordered sets, andlet G: A — B
and F : B — A beorder-preservingfunctions. Recall from[14, p. 93] that (F, G) iscalled a
Galois connection provided thefollowing equivalenceholds: Fb < a if andonly if b < Ga
foral a € A and b € B. Then it may be noted that the above definition is given in a style
similar to the Galois connection.
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Except the case considered in the above definition, there are many different require-
ments for a notion of diagnosis to be suitable with respect to a given diagnostic specifica-
tion. This flexibility comes from different philosophical considerations that the user takes
when choosing his diagnostic method. Thus, a spectrum of different notions of diagno-
sis could be introduced for a diagnostic system with a given diagnostic specification as
its knowledge base. Indeed, six of such notions of diagnosis, namely, most general sub-
set diagnosis, most general superset diagnosis, most general intersection diagnosis, most
specific subset diagnosis, most specific superset diagnosis and most specific intersection
diagnosis, were proposed by Lucas [13], and they give rise to a refinement hierarchy of
diagnostic methods.

Definition 12 (Most general subset diagnosis; [13, p. 333]). Let X = (A, @, ¢) be a di-
agnostic specification. Then the notion of most general subset diagnosis generated by X
is defined to be the notion of diagnosis ITgs(X) = (A, @, GS), where for each hypothesis
H C A, andfor each set E C @ of observed findings,

\U{H'C H: e(H')CE}, if Hisconsistent, and
GSy(E) = e(H') C E forsome H' C H,
u otherwise.

Theideabehind the notion of most general subset diagnosisisthat if aspecific diagnosis
is not acceptable, then the ‘ nearest’ acceptable sub-hypothesis should be taken instead. We
refer to [13] for more detail ed explanationsfor the above definition as well asthe other five
notions of diagnosisin the L ucas refinement (see Definitions 15, 18, 21, 24 and 27 below).

Some basic properties of most general subset diagnosis are presented in the following
proposition.

Proposition 13. Let X = (A, &,¢) be a diagnostic specification, and let ITgs(X) =
(A, @, GS) bethe notion of most general subset diagnosis generated by X.

(1) If H isconsistent, then GSy (e(D)) 2 D forany D C H.

(2) If X isinteraction free, and H is consistent, then e(GSy (E)) C E forany E C &.

(3) If X isinteraction free, then for each H C A, and for each E C @,

{de H: e({d}) CE} if Hisconsistent,

u otherwise.

(4) If X is decreasing and GSy (E) # u, i.e, H is consistent, and ¢(H) C E, then
e(GSy(E)) CE.

(5) If X isdecreasing, then

GSu (E) = |

if Hisconsistentande(H) C E,

_|H
GSH(E)_{M otherwise.

Proof. (1), (2), (4) and (5) are straightforward.
(3) First we note that e(9) = ¥ C E because X isinteraction free. Thus, GSy (E) # u
whenever H is consistent. We now only need to consider the casethat H is consistent. Let

X ={deH: e({d}) C E}.



M. Ying / Artificial Intelligence 163 (2005) 145 11

From interaction freeness of X it follows that

e(X)=|Je({d)) = x.

deX
Then

Xe{H CH:eH)CE}
and
xc| J{H cH: e(H" CE}.

On the other hand, forany H' C H,if e(H') C E, thenforeachd € H', e({d}) Ce(H') C
E. Thisis because e is increasing when X' is interaction free. Consequently, d € X, and
H' C X. Thisimplies further that

x=|J{H' cH:e<E}. O

The parts (1) and (2) of the above proposition show that the evidence function e and the
most general subset diagnosis GSy form a Galois connection. The part (5) indicates that
the notion of most general subset diagnosis is trivial for decreasing diagnostic specifica-
tions.

The next proposition gives a sufficient and necessary condition under which the no-
tion of most general subset diagnosis generated by a diagnostic specification respects the
specification.

Proposition 14. Let X = (A, @, ) bea diagnostic specificationand ITgs(X) = (A, @, GS)
be the notion of most general subset diagnosis generated by X'. Then ITgs(X) respects X
if and only if e is surjective.

Proof. Supposethat ¢ is surjective. For any consistent D C A, we have
GSp(e(D)) =| J{H' c D: e(H' Se(D)}=D.

Forany E C @, since e issurjective, there must be Hyp C A such that e(Hp) = E. Then Hp
is consistent,

GSwo(E) =|_J{H' € Ho: e(H') € E} = Ho,

and e(GSy, (E)) = e(Hp) = E. Thismeans that [Tgs(X') respects X.
Conversely, if ITgs(X) respects X, then for any E C @, there exists H C A such that
e(GSy(E)) = E. Thenitisclear that e issurjective. O

The second notion of diagnosis that forms the L ucas refinement diagnosis [13] is most
general superset diagnosis. It is similar to the notion of most general subset diagnosis,
and the unique difference between them is that the ‘nearest’ acceptable super-hypothesis
is used to replace an unacceptabl e hypothesis when necessary in the most general superset
diagnosis, asindicated by its name.
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Definition 15 (Most general superset diagnosis; [13, p. 335]). Let ¥ = (A, @, ¢) bea
diagnostic specification. Then the notion of most general superset diagnosis generated by
X isdefined to be I[Tgo(X) = (A, @, GO), wherefor each E € @, and foreach H C A,

\U{H'C H: e(H') 2 E} if Hisconsistentand
GO (E) = e(H) D E forsomeH' C H,
u otherwise.

It may be observed that most general subset diagnosisand most general superset diagno-
sis approach the observed findings from opposite directions. The following proposition is
similar to Proposition 14, presenting some fundamental propertiesof most general superset
diagnosisin the Galois connection style.

Proposition 16. Let ¥ = (A, @, ¢) be a diagnostic specification, and let ITgo(X) =
(A, @, GO) bethe notion of most general superset diagnosis generated by X

(1) If H isconsistent, then GOy (e(D)) 2 D forany D C H.

(2) If X isincreasing and GOy (E) # u, i.e, H is consistent, and ¢(H) 2 E, then
e(GOg (E)) 2 E.

(3) If X isincreasing, then

if Hisconsistentande(H) 2 E,

_|H
GOH(E)_{M otherwise.

Proof. Straightforward. O

The part (3) of the above proposition points out that the notion of most general superset
diagnosis generated by an increasing diagnostic specification istrivial.

It isinteresting to note that a necessary and sufficient condition under which the notion
of most general superset diagnosis respects the diagnostic specification generating it is the
same asthat for most general subset diagnosis. Thisfact isexposed by the next proposition.

Proposition 17. Let X = (A, ®,e) be a diagnostic specification and IMgo(X) =
(A, @,GO) be the notion of most general superset diagnosis generated by X. Then
Mco(X) respects X if and only if e is surjective.

Proof. Similar to Proposition14. 0O

As pointed out above, if we replace the subset relation in the defining equation of most
general subset diagnosis with the superset relation, then we obtain the notion of most gen-
eral superset diagnosis. For most general subset diagnosis, it is required that all possible
evidences must be observed; but for most general superset diagnosis, the condition is in-
stead that no observed findings are not evidences specified by the diagnostic knowledge
base. In a sense, we may think that the subset relation and the superset relation are at the
two extremes of the conditionsthat we can impose on anotion of diagnosis. An alternative
at the middle is then the relation of nonempty intersection. This motivates the following
definition.



M. Ying / Artificial Intelligence 163 (2005) 145 13

Definition 18 (Most general intersection diagnosis; [13, p. 336]). Let X = (A, @, ¢) bea
diagnostic specification. Then the notion of most general intersection diagnosis generated
by ¥ isdefined to be g (X)) = (A, @, Gl), whereforany EC @ and H C A,

\{H'CH:e(H)=0o0re(H)NE # )
if Hisconsstent, E# @ ande(H')=0ore(H)YNE #
Gly(E) = for some H' C H,
H if Hisconsistent and E = (7;
u otherwise.

The properties of most general intersection diagnosis are much more complicated than
those of most general subset or superset diagnosis, and some of them are presented in the
following proposition.

Proposition 19. Let ¥ = (A, @, ¢) beadiagnostic specification, let I1g (X) = (A, @, Gl)
be the notion of most general intersection diagnosis generated by X', and let H C A be
consistentand £ E C @.

(1) Gly(e(D))>Dforany D C H.
(2) Supposethat X isincreasing. Then
(i) ife@ #£Pande(H) C ® — E, then Gl g (E) = u;
(ii) ife(H)NE # ¢, thenGlz(E) = H; and
(iii) ife(H) C @ — E, then Gl y(E) = | J{H' C H: e(H)=#},and Gl y(E) ={d €
H: e({d}) = @} whenever X isinteraction free.
(3) Supposethat X isdecreasing. Then
(i) ife(H)# @ ande() C @ — E, then Gl g (E) = u;
(i) ife(H)=0,thenGly(E)=H; and
(iii) ife@NE#@,thenGly(E)=J{H € H: e(H') N H # (}.

Proof. Straightforward. O

Part (3) of the above proposition points out that the notion of most general superset
diagnosis generated by an increasing diagnostic specification istrivial.

A necessary and sufficient condition under which the notion of most general intersection
diagnosi srespects the diagnostic specification that generatesit is also found to be the same
asthat for most general subset diagnosis, and it is given by the next proposition.

Proposition 20. Let X = (A, @, e¢) beadiagnostic specificationand g (X) = (A, &, GI)
be the notion of most general superset diagnosis generated by X'. Then [T (X') respects
XY ifand only if e is surjective.

Proof. Similar to Proposition14. 0O
We may see that in the above definitions we approximate an unacceptable hypothesis

with acceptable ones from the bottom. Of course, an aternative is to do the same from
top. This observation suggests defining the notions of most specific subset diagnosis, most
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specific superset diagnosis and most specific intersection diagnosis. What we need to do
is to simply replace the union operation by intersection in the defining eguation of the
corresponding notions. Thisleads us to the following three definitions.

Definition 21 (Most specific subset diagnosis; [13, p. 337]). Let X = (A, @, ¢) beadiag-
nostic specification. Then the notion of most general subset diagnosis generated by X is
definedto be ITsg(X) = (A, @, SS), whereforadl EC @,and H C A,

(MH'C H: e(H')CE} if Hisconsstentande(H') C E
SSy(E) = forsome H' C H;
u otherwise.

In asense, the notion of diagnosis given in the above definition is dual to that in Defini-
tion 12. The following proposition gives some properties of most specific subset diagnosis
inthe Galois style with respect to the diagnosti ¢ specification generating it. Also, it presents
a simplified version of most specific subset diagnosis for increasing diagnostic specifica-
tions.

Proposition 22. Supposethat X = (A, @, ¢) is a diagnostic specification, and ITss(X) =
(A, @, SS) the notion of most specific subset diagnosis generated by X

(1) If D C H isconsistent, then SSy (e(D)) C D.
(2) If X isincreasing and SSy (E) # u, then e(SSy (E)) C E.
(3) If X isincreasing, then

SSy(E) = {@ if H isconsistent and e(%) C E,
" otherwise.

Proof. Straightforward. O

Thelast part of this proposition indicates that the notion of most specific subset diagno-
sisis not reasonable for increasing diagnostic specifications.

We are only able to find a sufficient condition for a diagnostic specification to be re-
spected by its most specific subset diagnosis.

Proposition 23. Let X = (A, @, ¢) be a diagnostic specification. If e is surjective, and it
satisfies the condition that D c D’ implies e(D) € e(D’) for all consistent D, D’ C A,
then ITss(X) respects X.

Proof. Similar to Proposition14. O

The relation between the following definition and Definition 21 is similar to that be-
tween Definitions 12 and 15; that is, we can derive the defining equation of SOy (E) in the
following definition by replacing directly < in the defining equation of SSy (E) with 2.



M. Ying / Artificial Intelligence 163 (2005) 145 15

Definition 24 (Most specific superset diagnosis; [13, p. 339]). Let X' = (A, ®,¢) be a
diagnostic specification. Then the notion of most general superset diagnosis generated by
X isdefined to be ITsp(X) = (A, @, 0), whereforall EC ®,and H C A,

(MH' C H: e(H') 2 E} if Hisconsistent and
O (E) = e(H) D E forsome H' C H;
u otherwise.

The following proposition presents some basic properties of most specific superset di-
agnosis, and it is dual to Proposition 16.

Proposition 25. Supposethat X = (A, @, e) isa diagnostic specification, and ITso(X) =
(A, @, 0).

(1) If D C H isconsistent, then SOy (e(D)) C D.
(2) If X isdecreasingand Og (E) # u, then e(Og (E)) D E.
(3) If X isdecreasing, then

¢ if Hisconsistent and e(¥) 2 E,

E) =
Ln () [u otherwise.

Proof. Straightforward. O

From the above proposition, we see that the notion of most specific superset diagnosis
is not suited to act as a diagnostic method with respect to a decreasing diagnostic specifi-
cation.

The following proposition gives a sufficient condition under which the notion of most
specific superset diagnosisrespectsits diagnostic specification. It isinteresting to compare
it with the condition in Proposition 23. The only difference between them is the converse
non-inclusion relations of e(D) and e(D’).

Proposition 26. Let > = (A, @, ¢) be a diagnostic specification. If e is surjective and
satisfies the condition that D c D’ implies e(D) 2 e(D’) for all consistent D, D’ C A,
then ITsp(X) respects X.

Proof. Similar to Proposition14. 0O

It is still an open problem to find a necessary and sufficient condition under which
Iss(X) or Ixp(X') respects X

By replacing the union operation in the defining equation of most general intersection
diagnosis, we obtain:
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Definition 27 (Most specific intersection diagnosis; [13, p. 340]). Let X = (A, @, ¢) bea
diagnostic specification. Then the notion of most specific intersection diagnosis generated
by X isdefinedtobe I1g (X) = (A, @, 9), whereforany E C @ andforany H C A,

(MH' CH:e(H)=0o0r
e(H)NE #@} if Hisconsistent,

S (E) = E#@ande(H')=@or
e(HYNE #@forsome H C H,
H if H isconsistent and E = ;
u otherwise.

Some basic properties of most specific intersection diagnosis are given in the following
proposition.

Proposition 28. Let ¥ = (A, @, ¢) bea diagnostic specification, let ITg (X) = (A, @, 9),
andlet H C A beconsistentand f # E C &.

(1) If DC H,then S y(e(D)) C D.
(2) Supposethat X isincreasing. Then

(i) ife@#0Bande(H)C P — E,thenS y(E) =u;

(ii) ife(@) =0,then Sy (E) =0; and

(iii) ife(®) # 0, then S y(E)=({H' C H: e(H)NE # E}.
() Supposethat X isdecreasing. Then

(i) ife(H)#£ @ ande(@) C ® — E, then Sy (E) = u;

(i) ife@NE#0,thenS gy (E) =0; and

(iii) ife@NE=0,thenS yg(E)=({H C H: e(H) = @}.

Proof. Straightforward. O

A sufficient condition under which the notion of most specific intersection diagnosis
respectsits diagnostic specification is presented in the following proposition.

Proposition 29. If X = (A, @, ¢) is a diagnostic specification fulfilling the condition that
D' c Dande(D) # @ impliese(D’) # ¢ and e(D") Ne(D) = @ for all consistent D, D’ C
A, then ITg (X)) respects X.

Proof. Similar to Proposition14. 0O

To concludethis section, we examine the influence of the global propertiesof adiagnos-
tic specification on various notions of diagnosisgenerated from it and how certain relations
between diagnostic specifications are preserved by the notions of diagnosis generated by
them. The next proposition shows that most general superset diagnosis and most specific
subset diagnosi s preserve the sub-relation of the diagnostic specifications generating them,
but most general subset diagnosis and most specific superset diagnosis reverse this rela-
tion. Unfortunately, the sub-relation of most general or specific intersection diagnoses is
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not completely determined by the corresponding relation of diagnosis specifications that
generate them.

Proposition 30. Let X and X’ betwo diagnostic specificationswith the same sets of defects
and findings. If X < X, then

(1) Hes(X') < Hes(X);
(2) Mo(¥) < Heo(X');
(3) Mss(X) < Mgs(X'); and
(4) Mso(X) < Oxp(X).

Proof. By aroutineargument. 0O

In order to present the last proposition of this section in a more compact way, we need
to introduce a notation expressing some global propertiesfor diagnostic specifications and
notions of diagnosis.

Definition 31. Let X = (A, @, e) be a diagnostic specification. Then for each A, B €
{U,N} and C € {<, D}, the property (ABC) is defined as follows:

(ABC) e(Aje;D;)CBicie(D;)

forany D; C A (i e I)withe(D;)# L (i e I) ande(A;crD;) # L, where I isan arbitrary
index set.
Similarly, we can define the corresponding properties for notion of diagnosis.

It is easy to seethat interaction freenessis equivalent to (UU C) plus (UU D).
The properties defined above are very interesting. For example, the property (UN C)
may be rewritten as

Ru(E)< () Ru((f})

feE

foreach E C @ and H C A. It depicts a method of diagnosis that we often adopt in our
daily life. Suppose that aset E of findings are observed, and we want to find a diagnostic
solution to E. Usualy, we first find all defects Ry ({f}) that may cause the single find-
ing f for each f € E. Then it allows us to locate the true solution among the common
defectsfor al findingsin E. The next proposition indicates that global properties of a di-
agnosis specification of type (ABC) are inherited by most general (or specific) subset (or
superset) diagnosis generated from it. However, both most general and specific intersection
diagnoses do not enjoy such an inheritance.

Proposition 32. Let X = (A, @, e) be a diagnostic specification, andlet A, B € {U, N}.

(1) If X satisfies (AB ©), then ITgs(X) satisfies (BA D).
(2) If X satisfies (AB D), then ITgo(X) satisfies (BA D).
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(3) If X satisfies (AB C), then ITss(X) satisfies (BA C).
(4) If X satisfies (AB D), then ITgp (X)) satisfies (BA C).

Proof. We prove (1) as an example. From the definition of most general subset diagnosis
it follows that
GSy(BicEi)=|_J{H' S H: e(H') S Bic/ E;}
and
Aie1GSy(E;) = Aje; U{H] C H: e(H)) C E;}
=\ J{AicrH]: H/ € H and e(H)) € E; (i € 1)}.
Now we only need to show that if foreachi e I, H/ € H ande(}) C E;, then Ajc;H/ € H

and e(A;e1 H]) C Bie E;. Thefirst inclusion is obvious, and the second one is guaranteed
by the property (ABC) of X. O

3. Diagnostic specification mor phisms

This section is devoted to establish a mathematical model of knowledge transformation
in diagnostic problem solving, namely, diagnostic specification morphism. We will care-
fully compare the diagnostic strategies in the source system of a specification morphism
and its target system. First, we introduce aformal definition of specification morphism.

Definition 33 (Specification morphism). Let X1 = (A1, @1, e1) and X2 = (Az, &2, e2) be
two diagnostic specifications. A specification morphismfrom X' to X> isapair M = (g, h)
of mappingsg: A1 — Az and h: @1 — &5 fulfilling the following two conditions:

() foralde Ay and f € &4,

g(—=d)=-g(d) and h(—f)=—h(f); and
(ii) for each D € Ay, it holdsthat
g(er(D)) = e2(F(D));
in other words, the following diagram commutes:

9 (A1) L= p(A2)

© (P1) —Z 8 (P2)

where f and g are respectively the extensions of g and 4 to p (A1) and p (P1), i.e., for
any DC Ajand E C &g,
g(D)={g(d): de D}, and

h(E)={h(f): f€E}, h(l)=L.
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Tablel
Knowledge in system A
D 9 {d1} {d2} {d3} {d1. do} {d. d3} {d2, d3} {d1. dp. d3}

ea(D) @ {f1, f2} {f2} {f3} {f1. f2} {f1, f2. f3} {f2. f3} {f1, f2. f3}

Table 2

Knowledge in system B

D 0 {v1} {va} {v1, va}
eg(D) 0 {w3} {w1, w3} {w1, w3}

For simplicity, we will write g and % in place of g and &, respectively.

Obvioudly, (ida, idg) is a morphism from diagnostic specification X = (A, @, ¢) to
itself, where idy stands for the identity function on set X. In addition, it is easy to verify
that if both M1 = (g1, h1) : X1 — X2 and M2 = (g2, ho) : X2 — X3 are specification mor-
phisms, then M2 o M1 = (g2 0 g1, hp o h1) : X1 — X3 isamorphism too. Thus, we have a
category of diagnostic specifications together with specification morphisms.

To illustrate the above definition, consider the following simple example.

Example 34. A typica application of specification morphism is analyzing the relation-
ship between different medical systems, say, traditional Chinese medicine and the western
medicine. Suppose that A and B are two different medical systems. A piece of medical
knowledgein system A isrepresented by the diagnostic specification X4 = (A4, @4, eq),
where Ay = {d1,d2, d3}, P4 = {f1, f2, f3}, d1, d2, d3 are the names of three symptoms,
f1, f2, f3 arethe names of three diseases, and the evidencefunction e 4 depicting the causal
knowledge between symptoms and diseases is given by Table 1.

Furthermore, we assume that a piece of medical knowledge in system B is described
by the diagnosis specification X'z = (Ag, @, ep) inwhich Ap = {v1, v2, v3, v4}, Pp =
{w1, w2, wz}, and (afragment of) the evidence function ep is given by Table 2.

We now compare the two medical systems. The symptom d1 in system A is renamed
as vg in system B, both symptoms d2 and d3 are called v1 in system B, and in system A
there is no counterpart of symptoms v, and vz in system B. This gives a defect mapping
g:Ax — Ap. On the other hand, afinding mapping /: @4 — @ isdefined by i(f1) =
w1 and h(f2) = h(f3) = ws. Thenitiseasy to verify that (g, /) isaspecification morphism
from X4 to X, and it establishes a reasonable link between the two medical systems A
and B.

The following proposition shows that a specification morphism is able to carry some
global properties, including monotonicity and interaction freeness, of its source specifica-
tion forward to its target specification.

Proposition 35. Supposethat M = (g, f): X1 = (A1, P1,e1) — X2 = (A2, P2, e2) iSa
specification morphism, and g is surjective. Then
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(1) if X1 isincreasing (respectively decreasing), then X is also increasing (respectively
decreasing);
(2) if X1 isinteraction free, sois X>.
Proof. (1) We only consider theincreasing case. For any D>, D), € A, we have
Dy=g(s7 (D) and Dy=g(g (DY)
because g is surjective. If D> € D5 and Dy, is consistent in X, then
h(ea(s7H(DY)) = ea(g(s7H(DY)) = ea(Dy) # L.

This implies that el(g_l(D ) #L;ie, g_l(DZ) is also consistent in X1. Otherwise, it
follows that ex(D5) = h(L) = L, a contradiction. Note that g~1(D2) < g~1(D}). Since
X’y isincreasing, it holds that

e2(D2) = e2(g(g71(D2))) = h(er(g71(D2)))
C h(e1(g7H(DY))) = ea(DY).

(2) For each D C Ay, if D isconsistent in X, then from (1) we know that g~1(D) is
consistent in X';. Since eq isinteraction free, it holds that

e2(D) = e2(g(g~ (D)) = h(er(g~H(D))) <31<dUg () ))
WU e1<g-l<{d}>>) = U hleals™ (1))

deD deD
= Jeag(e7* (@) = (J e2(td}). o
deD deD

For reason of limited space, we are not going to examine carefully how other global
properties, such as those of type (ABC) defined at the end of the previous section, of
diagnostic specification is preserved by specification morphism.

We now want to observe how amorphism between partial specifications can be extended
to a morphism between the total specifications generated from them. To this end, we first
introduce the following definition.

Definition 36 (Partial specification morphism). Let X1 = (A1, @1, V1,e1) and X» =
(A2, @2, Vo, €2) be two partial specifications. Then a specification morphism from X3 to
Yo isapar M = (g, h) of mappingsg: A1 — Az and h: @1 — P2 such that

(i) g(V1)={g(D): D e V1} C Vo; and
(i) h(e1w(D)) =e2(g(D)) foreach D € V1.

The notion of specification morphism for partial specifications is obviously a gener-
aization of the one for (total) diagnostic specifications. The next proposition shows that
a partial specification morphism can also serve as a specification morphism for the case
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of increasing bottom-up construction. To save space, we omit a detailed discussion of the
corresponding problem for the other constructions given in Definition 6.

Proposition 37. Let X/ = (4;, &;, V;, e}) bean increasing bottom-up partial specification
of X = (4;,®i,e¢) (i =1,2),and M = (g, h) is a specification morphism from X; to
X0 f

2

(1) g~ X(Dy) € vy for any Do € Vo;
(2) ¢ (g(D1)) = Dy for any D1 € V1; and
(3) g(g~(D2)) = D for any D, € V5,

then M is also a specification morphism from X1 to X».

Proof. For each D1 C A4, it followsthat

h(e1(D1)) = h(U{e’l(D/l): D} e m(Vq, Dl)}>
= J{h(ex(DD): Dy € m(V1, D1)}
= {es(e(D): Dy em(V1, D1)}.

If D] e m(V1, D), then D; € Vi and D] € D1. Wehave g(D7) € g(D1). Moreover, since
M is a specification morphism from X} to X7, ¢(D7) € V». Then Zorn's lemma warrants
that g(D) € D for some D;, € m(Vz, g(Dl)) Consequently,

h(e1(D1)) €| J{ea(Dy): Dy € m(Va, g(D1))} = e2(g(D1)).

Conversely, for any D), € m(V2, g(D1)), it holds that D, € V2 and D), C g(D). From
condition (1) we obtain g~1(D%) e V1, and from (2) we have g~1(D5) € g~ 1(g(D1)) =
D;. Again, Zorn'slemmatells us that g_l(D ) € D] for some D € m(V1, Dy). Thus, it
follows from condition (3) that D), = g(g_l(D )) C g(Dl) and

e2(g(Dv) = {ex(D): Dy e m(V2, g(D)))

< (J{eb(g(DD): Dy em(Ve, D)} =h(er(Dy)). O

We now come to present the main results of this section. The following group of propo-
sitions will provides us with a close connection between a transformation of knowledge
bases in different diagnostic systems and a transformation of their diagnostic strategies.
The intuitive idea of transformation between diagnostic strategies is captured by the con-
cept of diagnosis morphism given in the following definition.

Definition 38 (Diagnosis morphism). Let 1T = (A1, @1, R1) and T, = (Ag, @2, R2) be
two notions of diagnosis. A diagnosis morphism from 71 to I, is a pair M = (g, h)
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Table 3

Diagnosis notion in system A

E h {f1} {f2} {3} {f1. 2} {f2, 13} {f1. f3} {f1. f2, f3}
R ¢(E) ] (4] (4] ] ] ] (4] (4]

RA dy)(E) 0 u ) @ {d1} @ {d1} {d1}

RA 1dy)(E) @ u {d2} {d2} @ {d2} 9 @

RA {dy,dp} (E) h {d1, do} {d1} {d1} {d1} {d1} {d1} @

Table4

Diagnosis notion in system B

E g A{wa} {wa}  {w3} {wy, wp}  {wz, w3z}  {wy, w3} {wy, wa, wa}
Rp ¢(E) ] (4] ] (4] ] (7] ] ]

Rp (v} (E) g u @ {v1} u {v1} @ {v2}

Rp (v} (E) ] u ] (4] u (4] {vo} ]

RB {vy,vy)(E) 9 A{vg,v2} 0 {v2} {v1, v2} {v2} {v2} 0

of mappings g: A1 — Az and h: @1 — &, satisfying condition (i) in Definition 33 and
commutativity of the following diagram:

P (A1) —2=p (A7)

Rl,HT TRZ»g(H)

9 (P1) — > (P2)

in other words, for any E € @ and H € A, g(R1,5(E)) = R g(m)(h(E)), where it is
assumed that g(u) = u.

The following simple exampleillustrates the notion of diagnosis morphism very well.

Example 39. Suppose A and B are two expert systems for medical diagnosis. Let A4 =
{d1, d2}, Ap = {v1, v2}, g(d1) = v2 and g(d2) = v1, and let @4, @ and h be the same
asin Example 34. Part of diagnosis method used in system A is represented by Table 3,
and part of the diagnosis method used in B is given in Table 4. Then it is easy to check
that (g, k) is adiagnosis morphism from R4 to Rp, and we may think that it provides a
mechanism for reusing diagnosis method of system A in system B.

We now investigate some fundamental properties of diagnosis morphism and its con-
nection to specification morphism. The next proposition tells us that the information that a
notion of diagnosisrespects adiagnostic specification can be carried forward and backward
by specification morphisms and diagnosis morphisms under a certain condition.

Proposition 40. Let X; = (A;, @;, ¢;) be a diagnostic specification and IT; = (A;, ®@;, R;)
a notion of diagnosis with the same sets of defects and findings (i = 1, 2). Suppose that
IT, respects X;. If thereisa pair M = (g, h) of mappings such that M is a specification
morphismfrom X' to X, it is also a diagnosis morphism from I1; to IT2, and both g and
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h are surjective, then IT, respects X». Furthermore, if Iy strictly respects X1, then I
also strictly respects X».

Proof. For each E C @, there exists H C Ay such that e1(Ry.z(h™1(E))) = h~1(E)
because 11 respects X1. Since /i is surjective, we have h(h~1(E)) = E. Thisyields that

E=h(h""(E)) = h(er(Ruu (h~H(E)))) = ea(8(Ra.n (AH(E))))
= e2(Ra,g(n) (h(hH(E)))) = e2(Ra,g11) (E)).

On the other hand, for each consistent D C A», we are able to find some H C A1 such
that Ry ¢ (r1)(e2(D)) = D. Therefore, IT, respects X».

For the case that I7; strictly respects X', we can assume that Ry g (er(g (D)) =u
foral H' 2 H. Our purposeisto show that Ry, g~ (e2(D)) = u foreach H” 2 g(H). If not
s0; i.e., thereis H” € Ap with H” 2 g(H) and Ry, g (e2(D)) # u, then from the fact that
g issurjective we know that

Rz, 17 (e2(D)) = Ry g (1011, (€2(D)) = g(Ry g1 (e1(g (D)),

and Rl,g—l(H”)(el(g_l(D))) #u.|f g7Y(H”") D> H,then g(H) C g(g"*(H")) = H”, and
itisimpossible. Thus, it holdsthat g ~1(H") 2 H. Thiscontradictsto the previousassump-
tion. O

The following two propositions clarify the relationship between the six diagnostic
strategies of the Lucas refinement diagnosis [13] in the source diagnostic systems of a
specification morphism and those in the target system. Suppose we are given a diagnostic
problem in the source system. The next proposition carefully compares the following two
paths:. (i) we first find a diagnostic solution by using the diagnostic method in the source
system, and then map it into the target system; and (ii) we map our diagnostic problem and
hypothesisinto the target system, and then find a diagnostic solution by employing the di-
agnostic methodsin the target system. For example, if we adopt the notion of most general
intersection diagnosis in both the source and target systems, then Propositions 41(5) and
(6) indicate that path (i) always givesa stricter solution than path (ii), but the two solutions
according to paths (i) and (ii) are the same when the defect mapping is bijective and the
finding mapping isinjective.

Proposition 41. Let X; = (A;, ®;, ¢;) be a diagnostic specification (i = 1, 2), and let
M = (g, h) bea specification morphismfrom X'y to X>. For any E C @ and H C A1, we
have

(1) g(GS,H(E)) CCS oy (h(E)) if GS p(E) # u;

(2) G, (1) (M(E)) € g(GS,H(E)) if GS gy (h(E)) # u, g isbijectiveand 4 isinjec-
tive;

(3) g(GO1,H(E)) € GOz ¢(n)(h(E)) if GOy (E) # u;

(4) GOy ¢(1)(h(E)) C (GO, i (E)) if GOp (1) (h(E)) # u, g is bijectiveand 4 isin-
jective;

(5) g(Glyu(E)) S Gl g (h(E)) ifGlyp(E) #u;
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(6) Glo oy (h(E)) € g(Gly g (E)) if Gla oy (h(E)) #u, g ishijectiveand h isinjec-
tive;
(7) g(SSL,H(E)) €SS, 41 (h(E)) if S g1y (h(E)) # u, g isbijective and 4 is injec-
tive;
(8) S o(m)(h(E)) S g(SS1 1 (E)) if Sy, 4 (E) #u and g isinjective;
(9) g(O1,H(E)) € SOo gty (h(E)) if SOp gy (h(E)) # u, g isbijectiveand i isinjec-
tive;
(10) SO2,¢(#)(h(E)) C g(SO1,u(E)) if SOy, 5 (E) # u and g isinjective;
(11) g(S1,u(E)) €2 o) (h(E)) if So gy (h(E)) # u, g isbijectiveand i isinjective;
and
(12) Qo gmy(h(E)) € g(S1,u(E)) if 1 y(E) #u and g isinjective.

Proof. We only demonstrate (7) as an instance. We note that injectivity of g implies

g(SSLu(E)) = g(ﬂ{H’ CH: er(H)C E})
=({eH": H' < H andex(H") < E},
and
2.5t (h(E)) = {K' € g(H): e2(K') S h(E)}

whenever SS; i (E) # u and S o) (h(E)) # u. Thus, it suffices to prove the following
two items:

(i) H is consistent if and only if g(H) is consistent. Indeed, if e1(H) # L, then
e2(g(H)) =h(e1(H)) # 1,and g(H) isconsistent. Conversely, if e2(g(H)) # L, wemust
havee1(H) # L.

(i) {g(H): H C Handey(H') CE} ={K' C g(H): ea(K') C h(E)}. Infact,if H' C
Handey(H') C E, then g(H") € g(H), and e2(g(H')) = h(ea(H")) C h(E). Conversely,
if K’ C g(H)andea(K') C h(E), thenweset H = ¢g~1(K’), andit holdsthat K’ = g(H’)
and H' € g~ 1(g(H)) = H because g is an bijection. Furthermore,

e1(H") S h™(h(ea(H")) =h™Y(e2(g(H"))) = h ™ (e2(K)) € h™H(h(E)) = E.
Thelast equality comesfrom the fact that 4 isinjective. O

The following simple corollary shows that sometimes a specification morphism can act
as a diagnosis morphism too.

Corollary 42. Let X; = (A;, d;,e;) be a diagnostic specification and ITgs(X;) =
(4;, @i, GS) be the notion of most general subset diagnosis generated by X; (i =1, 2),
andlet M = (g, h) be a specification morphismfrom X1 to X». If g isabijectionand & is
an injection, then M is also a diagnosis morphism from ITgs(X'1) to Ilgs(X2). The same
conclusion also holdsfor ITco, I1g, I1ss, ITso and I1g .

Proof. Immediate from Proposition41. O
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What was considered in Proposition 41 isaforward transformation of variousdiagnostic
notions. The next proposition considers a backward transformation of diagnostic methods.
Now the diagnostic problem is given in the target system, and the two paths under com-
parison are: (i) we find a diagnostic solution in the target system, and then map it into the
source system via the inverse of defect mapping; and (ii) we map the observed findings
and hypothesisinto the source system through the inverses of finding mapping and defect
mapping respectively, and then find a solution using the diagnostic notion in the source
system. The following proposition examines the relation between the diagnostic solutions
obtained through these two paths.

Proposition 43. Let X; = (4;, ®;, ¢;) be a diagnostic specification (i = 1, 2), and let
M = (g, h) bea specification morphismfrom X'y to X». For any E C @ and H C A, we
have

(1) e MG u(E)) S GSy g1y (hH(E)) if G 1 (E) # u;
(2) GSy g1 (hH(E)) € g7HGCS, u(E)) if GSy g1, (h~(E)) # u and H isconsis-
tent, and in particular GS; -1y (h"*(E)) = g 1 (G, u (E)) if G, 1 (E) # u and
GSy o-1(p) (hHE)) #u;
(3) ¢ (G021 (E)) € GOy g1y (h™H(E)) if GOz 1 (E) # u, g is surjective and h is
injective;
(4) GOy p-1(1)(h"H(E)) S g7H(GO2 1 (E)) if GOy g-1(41)(h"X(E)) # u, H is consis-
tent and & is surjective;
(5) g X(Gloy(E)) C Gl Lgfl(H)(h_l(E)) if GO2 y(E) # u, g is surjective and % is
bijective;
(6) Gly g1z (h"H(E)) € g7 (Gl2,u(E)) if Gly g1y (R H(E)) #u, h"}(E) #  and
H isconsistent;
(7) SSy -1y (h"H(E)) € g NS u(E)) if S u(E) #u;
(8) ¢ (S H(E)) €SSy g1y (h"H(E)) if SSy 411y (h"(E)) # u, H is consistent
and g isinjective;
(9) SOy -1 (hH(E)) € g7 H(SO2,u(E)) if SOz u(E) # u, g is surjective and h is
injective;
(10) g~ 1(S02,u(E)) € SOy 4141y (h(E)) if SOy g1y, (h"1(E)) #u, H is consistent,
g isinjectiveand h is surjective;
(11) Sy 14y (h"HE)) € g7 (S2.n(E)) if S2,u(E) #u, g issurjectiveand h is bijec-
tive;
(12) g X Q2u(E) € Sy g1y (W HE)) if Sy -1y (h"H(E)) # u, H is consistent
and g isinjective.

Proof. Asexamples, we demonstrate (1), (2) and (6).

(D) f G, 5 (E) # u, then H isconsistentin Xy, i.e., ea2(H) # L, and thereis H' C H
such that ex(H') C E. First, we show that ¢g~1(H) is consistent in 1. If not so, then
e1(g”H(H)) =1, and

ea(g(g " (H))) =h(ex(g 7 (H))) = L.
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Notethat g(g~1(H)) € H. From condition (ii) in Definition 2.1 it followsthat ex(H) = L,
acontradiction.
Second, it holds that

g (G u(E)) = g—l(U{H’ CH:exH')C E})

=Ufe "#): H' < H and ez(H') C E}),

and

GSy o1 (hHE)) = | J{K' S g7 (H): ex(K' Sh™H(E)}.
Forany H' C H with eo(H') € E, wehave g~ 1(H') C g/(H), and

h(ei(g™*(H")) =e2(g(e " (H")) S ea(H) C E.
Then

e1(g M (H") S h ™ (h(er(g7 (H")))hH(E).
This shows that

{¢71(H): H CHandex(H' CE) C|K' C g7 (H): er(K' Sh™HE)},
and g1 (GSp 1 (E)) € GSy ;147 (h~L(E)) follows,

(2) For any K’ € g~Y(H) with e1(K’) € h~1(E), we need to find aset H' C H such

that eo(H') C E and K’ C g~ 1(H'). Itis easy to see that we can take H' = g(K').

(6) If Gly g-1(41)(h"2(E)) #u, h"2(E) # ¥ and H is consistent, then E +# ¢, and we
obtain

Gly 10y (hHE)) = | J{K' S g7 (H): ex(K') =@ or ex(K') Nh™ (E) # 0},
and

g (Glou(E)) = U{g_l(H/): H' CH, andex(H') =@ or eo(H') N E # (}.
Now it suffices to show that for any K’ € g~ 1(H) with ea(K’) =@ or e1(K') Nh~Y(E) #

@, there exists H' € H with ex(H') = or ea(H') N E # ¢, and K’ € g~1(H’). Indeed,
wetake H = g(K’). Then

K' g (g(K)) =g 1 (H,
and
H'=g(K') Cg(g ' (H)) S H.
If e1(K’) = @, then
e2(H') = e2(g(K") = h(er(K")) = h(#) =0.
If ex(K")Nh~Y(E) # ¢, then
e2(H)NE =e2(g(K))NE =h(er(K"))NE
D h(ea(K)) Nh(hY(E))
DhesK)YNh HE)#0. O
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4. Operations of diagnostic specifications

The aim of this section is to introduce severa operations of diagnostic specifications
which can model knowledge gathering, fusion, merging and combination in the processes
of diagnostic problem solving. These operationsinclude optimistic and pessimistic fusions,
sum, direct product as well as optimistic and pessimistic mergings. The diagnostic strate-
giesin acomposite system modelled by acertain operation of diagnostic specificationswill
be analyzed in terms of the corresponding diagnostic strategies in its component systems.

Definition 44 (Optimistic and pessimistic fusions of specifications). Let X; = (A, &, ¢;)
(i € I) be afamily of diagnostic specifications with the same sets of defects and findings.
Then their optimistic and pessimistic fusions are defined to be | J;.; 2i = (A, @, ;¢ €)

and miel Xi=(4,9, ﬂie, e:), respectively, wherefor each D C A,
e )y = | Yierai@) it ei(D) # Lforaliel,
icl l B J— 0therW|$'

<ﬂe->(D) _ [ Mics (D) if (D) # Lforaliel,
' 1 otherwise.

iel

It is easy to see that the notions of optimistic and pessimistic fusions are well-defined.
Moreover, if al X; (i € I) are complete, then | J;.; 2; is also complete, but (,.; X is
not necessary to be complete.

Some other interesting fusion operatorsfor diagnostic specifications may be introduced.
A typical example is contradiction-finding operator. Remember that an evidence function
alows contradictory values f and — f. So, afusion operator can be defined by modifying
dightly the above definition to indicate conflicting opinions about a topic and to resolve
this conflict. We are not going to examine these extra fusion operatorsin detail.

iel

Example 45. We imagine a medical expert system which aggregates medical knowledge
from different doctors. Certainly, therewill be many different waysfor such an aggregation.
It is reasonable to say that optimistic and pessimistic fusions are at the two extremes of
the whole spectrum formed by these aggregation ways. Let A = {d1, d>,d3} and & =
{ f1, f2, f3}, whereds1, do and d3 stand for three symptomsand f1, f> and f3 three diseases.
Suppose that a piece of medical knowledge of doctor A and a piece of medical knowledge
of doctor B (both concerning the causal relation between symptoms d1, dz, d3 and f1,
f2, f3) are represented by evidence e4 and ep respectively (see Table 5). Then asimple
calculation givestheir optimistic fusion e4 U eg and pessimistic fusion e4 N ep as shown
in Table 6.

Table 5

Knowledge of doctors A and B

D 0 {d1} {d2} {d3} {d1, d2} {d1, d3} {d2, d3} {d1,d3, d3}
€A 9 {f1} 9 {f2} {f1, f3} {f1. f2} {/f2} {f1. f2, f3}

ep @ @ {f3} {f2} {f3} {f1. f2} {f2. f3} {f1, f2. f3}
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Table 6

Optimistic and pessimistic fusions

D {Z {d1} {do} {d3} {d1,do} {d1,d3} {d2,d3} {d1,d>, d3}
eaUep (7 {f1} {/f3} {f2} {f1. f3} {f1. f2} {f2. f3} {f1. f2, f3}
esNep { ] a {f2} {f3} {f1, f2} {f2} {f1, f2, f3}

The next proposition indicates that some global properties of diagnostic specifications,
such as monotonicity and interaction freeness, are preserved by the fusion operations. The
optimistic fusion of afamily of increasing (respectively decreasing, interaction free) diag-
nostic specifications is also increasing (respectively decreasing, interaction free), and the
pessimistic fusion of afamily of decreasing diagnostic specificationsis decreasing.

Proposition 46. Let X; = (A, @, ¢;) (i € I) be a family of diagnostic specifications with
the same sets of defects and findings.

(1) Ifall X; (i € I) areincreasing, then both | J;.; >; and (1
(2) Ifall X; (i e I) aredecreasing, s0is | J;c; %i-
(3) Ifall X; (i e I) areinteraction free, sois|J;; Zi.

ic; Xi areincreasing.

Proof. (1) We only consider pessimistic fusion. Supposethat D € D’ € A and D’ is con-
sistent in ();; 2. From the condition (2) in Definition 1 we know that for each i € I, if
ei(D") # L thene; (D) # L. Thisimpliesthat

(ﬂa)(D) =(\{ei(D): i e I ande;(D) # L}
iel
c(fei(D): i el andei(D) # L}
c(fei(@): ielande; (D) # 1}
= (ﬂel-)(D/)
iel
because e; (D) C ¢;(D') forali e 1.
(2) Similar to (1).

(A If (U e (D) # L, thene; (D) # L foreachi e I, and interaction freeness of X;
(i €el) leadsto

(U@)(D) =Je(D) = U(U ez-({d})>

) :Q(Qei({l;oidEJL)((ge,»)({d})). O

The relationship between the diagnostic methods used in a fused diagnostic system
and the diagnostic methods in its component systems are established by the following
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two propositions. For example, if we adopt the notion of most general subset diagnosis,
then Proposition 47(1) shows that the diagnostic solution in an optimistic fusion is always
included in the intersection of the solutionsin its component systems, and they arethe same
when these component diagnostic specifications are al increasing. On the other hand, if
we adopt the notion of most specific subset diagnosis, then Proposition 47(3) indi cates that
the diagnostic solution in an optimistic fusion includes the union of the solutions in its
component systems, and they are equal provided all component diagnostic specifications
are decreasing.

Proposition 47. Let X; = (A, @, ¢;) (i € I) be afamily of diagnostic specifications with
the same sets of defectsand findings, andlet | J,.; i = (A, @, |, ., e;) betheir optimistic
fusion.

iel iel

(D) If Mes(X;) = (A, @, R;) isthe notion of most general subset diagnosis generated by
X (e andes(;c; Xi) = (A, @, R) thenotion of most general subset diagnosis
generated by | J;.; X, thenforany EC @ and H C A,

(1.1) Ry(E)C miel R; g (E) when Ry (E) # u; and
(1.2) Ru(E)=(;e; Ri,u(E)ifall ; (i € I) areincreasing.

(2) If Igo(X;) = (A, @, R;) isthe notion of most general superset diagnosis generated
by X (i € I) and ITeo(lUJ;c; Xi) = (A, @, R) the notion of most general superset
diagnosis generated by | J;.; Xi, thenforall EC @ and H C A,

(2.1) U;c; Ri,u(E) € Ry (E) whenever H is consistent in each X; (i € 1), and
Rio,H(E) # u for someig e I; and

(2.2) Ry (E)=;¢; Ri,u(E)if E isfinite, and { X}, isdirected with respect to the
sub-specification relation <, i.e, for any i1, i> € I, thereis an ig € I such that
Zil < Zio and Ziz < Zio-

(3) If IIss(X;) = (A, @, R;) isthe notion of most specific subset diagnosis generated by
X (i e ) and Mss(l;c; Xi) = (A, @, R) thenotion of most specific subset diagnosis
generated by | J;.; 2, thenfor any E C @ andfor any H C A,

(31) U;c; Ri.u(E) C Ry (E) provided Ry (E) # u; and
(3.2) Ru(E)=;c; Ri,u(E)ifall X; (i € I) aredecreasing.

(4) If ITsp(X;) = (A, @, R;) isthe notion of most specific superset diagnosis generated
by ¥; (i € I) and IIso(lJ;; i) = (A, @, R) the notion of most specific superset
diagnosisgenerated by ( J;.; %, thenfor all EC @ and H C A,

(4.1) Ru(E) S (;e; Ri,u(E) provided R; g (E) # u for eachi € I; and
(42) Ry (E) = ﬂiel Ri’H(E) when E isfinite, and {Xitier is directed with respect
to the sub-specification relation <.

Proof. We only prove (1.1), (1.2) and (4.2); the others are similar and so omitted.
(1.1) First, wenotethat H isconsistentin ., X; if and only if it is consistent in each
X (i e I. Second, we have

RH(E)=U{H’§H: Uei(H’)gE}z U H’

iel H'e(N;;{H'CH: ¢;(H')TE)

iel
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cN(UtH' < H: eiti) < EY) =\ R ().
iel iel
(12)If d € (je; Riu(E), thenforany i € I, d € R; y(E) and there exists H/ € H
such that ¢;(H)) CE andd € H/. Let H' =();.; H/. Then H' C H, and for any i € I,
ei(H') C e;(H]) C E because e; isincreasing. This means that

H'e({H' S H: ei(H)) S E}.
iel

Consequently, we haved € H' C Ry (E), and
() Ri.u(E) S R (E).

iel
(4.2) If d ¢ Ry (E), then there exists H' € H such that | J;_; e;(H') 2 E and d ¢
H'. Assume that E = {f1, f2,..., fm}. Then for any k < m, we have some iy € I with
fr € ei,(H'). Since { X;};es is directed with respect to <, there must be ig € I such that
e, (H') C ejy(H’) for al k < m. Now, it follows that E C ¢;,(H'), d ¢ Riy, u(E), and
d ¢ (;e; Ri,u(E). Therefore, it follows that

(\Riu(E) S Ruy(E). O

iel

The next proposition deals with the case of pessimistic fusion. It is shown that the
diagnostic solution in a pessimistic fusion is always looser than the union of the solutions
in its component systems if we apply the notion of most general subset diagnosis or most
specific superset diagnosis, whereasthe diagnosisin apessimistic fusion is stricter than the
intersection of the solutionsin its component systemsif the notion of most general superset
diagnosis or most specific subset diagnosisis employed.

Proposition 48. Let X; = (A, @, ¢;) (i € I) be a family of diagnostic specifications with
the same sets of defects and findings, and let (., i = (A, @,( )., ei) be their pes-
simistic fusion.

iel iel

(1) If Mes(X;) = (A, @, R;) (i ) and Ias()
@ and H C A, it holdsthat
U Riu(E) S Ru(E).
iel
(2) If [Mgo(X) = (A, @, R;) (i € 1) and Ieo()
@ and H C A, we have

Ru(E) S\ Rin(E),

iel

X)) = (A, D, R), thenfor any E C

iel

X)) =(A,®, R), thenforany E C

iel

and the equality holds whenever all X; (i € I') are decreasing.
(3) fIss(Xy) = (A, @, R;) (i € I and [Tss((;; i) = (A, @, R), thenforany E C @
and H C A, it holds that
Ry(E) S \Rin(E).

iel

iel
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(4) If Mso(Z) = (A, @, R;) (i € I) and Mso();;(Zi)) = (A, @, R), then for any E C
@ and H C A, it holdsthat

U Rin(E) S Ru(E)
iel

with the equality when all X; (i € I) areincreasing.
Proof. Similar to Proposition47. 0O

Definition 49 (Sum of specifications). Let X; = (4;, @;,¢;) (i € I) be a family of
diagnostic specifications. Then the sum of X; (i € I) is defined to be P, ., Xi =
(Uies 4isUies @i, e), whereforeach D C |, Ai,
e(D) = { Uierei(DN Ay ifei(DNA)# Lforadliel
L otherwise.

iel

It is easy to see that the notion of sum is well-defined; that is, e satisfies the conditions
(1) and (2) in Definition 1. Furthermore, €, _; X; is completewhenever al X; (i € I) are
complete.

A simple idea behind sum of diagnostic specifications is that we can divide abig sys-
tem into some independent smaller systems and then examine these subsystems one by
one. Thus, the notion of specification sum provides us with a mathematical model of mod-
ularization technique in diagnostic problem solving.

iel

Example 50. Suppose we have an industrial system consisting of two subsystems A and
B. These two systems are assumed to be independent in the sense that the function of
one subsystem cannot be affected by the defects in the other subsystem, for instance, the
water and gassystemsinaplant. Let X4 = (A4, @4,e4) and Xp = (Ay4, Pp, ep) Specify
respectively the causal interactions among the components of the two subsystems, where
Ap={d1,d2,d3}, Pa ={f1, f2}, Ap ={da, ds}, Pp ={f3, fa}, and e, and ep are given
by Tables7 and 8. Then

Za ® Xp = ({d1. d2. d3, da. ds}, { f1, f2. f3, fa}. €),
and it may be seen as a diagnostic knowledge base of the whole system. For example,

¢({d3. da. ds}) = ea({d3}) U ep ({da. ds}) = { f1. f3. fa};

Table 7
Subsystem A
D a {d1} {d2} {d3} {d1, d2} {d1, d3} {d2, d3} {d1, d2, d3}
N 0 9 9 {f1} 0 {/1} {f1} {f1. f2, f3}
Table 8
Subsystem B
D ) {da} {ds} {d4, ds}

e 4 {fa} {f3} {f3, fa}
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that is, the observable findings for the simultaneous occurrences of defects d3, dq and ds
are f1, fzand fa.

Both monotonicity and interaction freeness are preserved by the operation of diagnostic
specification sum.

Proposition 51. Let X; = (A;, @i, ¢;) (i € I) be a family of diagnostic specifications. If
all Z; (i € I) areincreasing (respectively decreasing, interaction free), sois @;; Xi.

Proof. We consider the interaction-free case as an example. For any consistent D C
Uie; 4i, it holdsthat

ey ={Janan=J U eala@)=J U ela)

iel iel deDNA; iel deDNA;
= U eld)=Jelta)). o
del ;e (DNA;) deD

One may naturally expects that all component diagnostic systems can be embedded
into the sum of them via the inclusion morphisms, and specification morphisms of the
component systems can be glued to amorphism of their sum. Thisisindeed guaranteed by
the following proposition.

Proposition 52. (1) Let X; = (A;, ®;,¢;) (i € I) be afamily of diagnostic specifications,
andfor eachk € I, let
ing, : Ap — UAi and ing, :® < Uqbi
iel iel
be the inclusion mappings from Ay into | J..; 4; and from &; into |
i.e,foranyd e Ay and f € &y,

ina, (d)=d and ing,(f)=f.
If A;nA; =@ forall i,jel withi# j, and ¢;(¥) = ¢ for eachi € I, then in; =
(ina,. ing, ) isa specification morphismfrom X to @, ., X:.

(2) Sjppose that M; = (gi,hi): X = (A, Di,e) —> El/ = (A;, @;,el’.) (el be a
family of specification morphisms, and A; N A; =@ and @; N @; = provided i, j € I
andi # j. Let @;c; Mi = (Djc; 8i» Dic hi), Where

@gi:UAi—)UA;, @hlU@l—)U(pll
iel iel iel iel iel iel

andfor all d € | J;; Ai and f € ;c; i

icl i Di, respectively,

(@gi>(d):gj(d) whend e A; and (@hi>(f)=hj(f) when f € @;.
iel iel
If gi(A)Ngj(A)) =0 foralli,jelwithi# j,then @
phismfrom, ., X; to P,.; X/

.7 Mi 1s a specification mor-
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Proof. (1) iseasy. Weonly prove(2). Theconditionthat {A;} and {®;} (i € ) arepairwise
disoint warrants that both §, ., g and @, ; h; arewell-defined. For each D C | J;; Ai,
we have

(@hi)(e(l))) = (EE m) (iLejlei(D n A,»)) = Ej{(@ h,)(e,-(D na))
=|Jhi(es(DN A)) = Je](gi (DN 2A)).

iel iel

Sincegi(Ai))Ngj(A;) =0 forali, jel withi# j,itholdsthat

(Ug,(DﬂA,)) NA=g;j(DNA)).

iel

Consequently, it follows that

<@hi>(€(D)) = Ue,’((U gi(DN Al-)> n A;)

iel iel iel

= e’(U g (DN A») = e’((EB gi><D>>. O

iel iel

We now are going to observe the relationship between the notions of diagnosisin asum
system and those in its component systems. To this end, we need to introduce the concept
of sum of diagnostic notions.

Definition 53 (Sum of diagnostic notions). Let I1; = (A;, ®;, R;) (i € I) be a fam-
ily of notions of diagnosis. Then the sum of IT; (i € I) is defined to be ,.; IT; =
(Uies 4i-U;e; @i, R), whereforany E C | J;; @ and H C ¢, Ais

Ry (E) = { Uie[ Ri,HﬁA,-(E NnNo;) if RisHoAi(E N®;)F#u fordliel,
u otherwise.

If we have alarge diagnostic system consisting of some subsystems, and each subsys-
tem has a notion of diagnosis respected by its diagnostic specification, then the following
proposition guarantees that in the whole large system the diagnostic specification respects
the sum of the notions of diagnosisin al subsystems.

Example54. We consider the two notionsof diagnosisin Example 39, IT4 = (A4, @4, Ra)
and I1p = (A, ®p, Rp). They were originally linked via a diagnosis morphism in
Example 39, but here they are treated as two independent subsystems of a larger di-
agnosis system I71. Thus, [T can be thought of as the sum of I7T4 and ITp; that is,
IT = ({d1, d2, v1, v2}, { f1, f2, f3, w1, w2, w3}, R) and R = {Ry: H C {d1, d2, v1, v2}}.
Let H = {d1, v1, v2} beahypothesisand E = { f>, f3, w1, w2} adiagnostic problemin I7.
Then the solution to E under hypothesis H is
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Ru(E)=RaA una,(EN®PA)URp gnag (EN Pp)

= Ra ) ({f2. 3}) U Rp fv1, 01 ({w1, w2})
=P U {v1, v2} = {v1, v2}.

Proposition 55. Let X; = (A;, @i, ¢;) (i € I) be afamily of diagnostic specifications and
IT; = (A;, &4, R;) (i € I) afamily of notions of diagnosis such that X; and I1; have the
same sets of defects and findingsfor each i € 1. If for all i € I, IT; (strictly) respects X,
then @, ., I1; (strictly) respects €, ; %; too.

Proof. For each consistent D C | J,; A;, andfor any i € I, since I1; strictly respects X,
thereis H; € A; suchthat R; g, (e; (DN A;)) = DN A;, and R; gr(ei(DNA;)) =u for al
Hz’/ C A; with Hz’/ 2H.LetH= Uie] H;. Then

Ru(e(D)) = U Ri.na; (ei(D N A))

iel
- U Rip (ei(DNAY) = U(D NA;) =D.
iel iel

Furthermore, if H' 2 H, thentheremust beig € I suchthat H' N A;, 2 H;,. Now, we have
Runa, (eig(D N Ajg)) =u and Ry (e(D)) = u.

Likewise, we can prove that for any E C | J;.; @i, there exists H <
e(Ry(E)) = E. Thisimpliesthat €, IT; strictly respects @, .; ¥i. O

A; with

i€i

Thefollowing proposition rel ates the diagnostic method in a sum system to the diagnos-
tic strategies in its component systems. Consider a diagnostic problem with the observed
findings E and hypothesis H in alarge system consisting of some subsystems. Of course,
the best way to solve this problem is to deal with it directly in the whole system. Of-
ten, however, this is very difficult. An aternative way is to find a diagnostic solution in
each subsystem with the piece of information in this subsystem provided by E and H. We
then combine these solutionsin all subsystemsto form a diagnostic solution for the whole
system. Now a natural question is: how far is this aternative solution from our expected
solution? The following proposition answersthis question: if we employ the notion of most
general subset diagnosis or most specific superset diagnosis, then the alternative solution
is stricter than the expected one, but for the notion of most general superset diagnosis or
most specific subset diagnosis, the alternative solution islooser than the expected one; and
a similar result conditionally holds for the notion of most general or specific intersection
diagnosis.

Proposition 56. Let X; = (A;, @;, ¢;) (i € I) beafamily of diagnostic specifications.

(1) I Mes(X) = (A, @, R) (i e I) and [Ts(P;c; 2i) = (Uic; Ai, Uje; @i, R), then
forany E C | J,;.; @i, andfor any H C | J;¢; 4,
(1.1) Ru(E) CU,c; Rina, (EN®;); and
(1.2) Ry(E) = Uie[ Rinna,(EN@y) ifforanyi,jel, A; N Aj=10 whenever
i
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(2 If Neo(X;) = (Ai, @i, R) (i € 1) and IMeo(P;c; Zi) = (Uies A Uies @iz R),
thenforall E C (J;c; @ and H C | J;¢; Ais
(2.1) U;es RiHna, (EN®;) € Ry (E); and
(22) Ry(E) = Uie[ Rimna,(EN@;) ifforanyi,jel, &; N ;=0 whenever
i
(3) If ITg | (X)) = (Ai, @i, R;) (i € 1) and [g (@ie[ )= (Uie[ A, Uie[ @i, R), then
forall EC |, @ and H C |, 4Ai,

iel iel

U Ritina, (EN®:) € Ry (E)
iel
provided A; N A; =@ for all i, j € I withi # j.
(4) If Mss(X) = (Ai, @i, Ry) (i € 1) and IMTss(D; ¢ Zi) = (Ujes Ais Uies @is R), then
forall EC ;@i and H CJ,; Ai,
(4.1) U;c; RiHna, (EN®;) € Ry (E); and
(4.2) Ry(E) ZUiEI Ri HnaA (EN D) if A; NA; =@ foralli, jelwithi##j.
(5) fp(X) =(A;, @, R) (i e ) and Tso(P;c; 2i) = (Uic; Ai Uje; @i R), then
forall ECJ,c; @i, andfor all H € J;; Ai,
(5.1) Ru(E) € U;¢s Ri,HNA (EN®;); and
(5.2) Ry(E) :Uiel Ri HAA (EN D) if &; N®; =@foralli,jelwithi#j.
(6) If Mg (X)) =(A;, P, R;) (i €1) and I1g (®iel X)) = (Uiel Aj, Uie] @;, R), then
forall EC|J;.; @i and H C | ;. 4i,

iel iel

Ry(E) S| JRinna; (EN @)
iel

whenever A; NA; =@ foralli, j el withi#j.

Proof. We only prove (4). From Definition 21 it follows that

RH(E>=ﬂ{H’g H:e(H) = Jei(H' N AN S E}

iel

and

JRitna (End) = n{H S HN AL ei(H)) S EN®;)
iel iel
:ﬂ{UHg: H/ CHNA; ande;(H) CEN®; foral i el}.
iel
Notethat completedistributivity of set union over intersectionisapplied in thelast equality.
Now the conclusion comes immediately from the following two items:

(@ If HC Hande(H') CE, thenweset H = H N A; for eachi € I. It holds that
H'=J;¢; H), H € HN A;, and

ei(H)=e;(H)N®; C U[ej(Hj/-) No;|= [U ej(H]’.)} N®; CEND,.
Jel jel
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(b) Conversely, if for each i e I, H/ € HN A; and ¢;(H]) € E N @;, then we set
H' =J;.; H/ Itisclear that H' € H. Since A; N A; = ¢ whenever i # j, we have
H’ﬁAizHi’and

e(H') = Uei(H/ NA)C U(E,» Ne)=E. 0O

iel iel

As we saw before, the concept of diagnostic specification sum models the modular-
ization technique of dividing a large system into a number of subsystems. Here, we are
going to introduce the concept of direct product of diagnostic specifications. It can be used
to describe the way that we observe various profiles of a system. The two operations of
specification sum and product are orthogonal in a sense, and they complement each other.

Definition 57 (Direct product of specifications). Let X; = (A;, &;,¢;) (i € I) be afam-
ily of diagnostic specifications. Then their direct product is defined to be [],.; Xi =
(ITies Qi [Lics @i, e), whereforesch D C [, A,

e(D) = {Tie[ ei (proj; (D)) if e;(proj;(D)) # Lforaliel,

iel

otherwise,

and proj; : [[;c; A; — : Ai isthe projectionon A;; i.e., forany d = (dj)jer € [, 4,
proj; (d) = d;. Moreover, we define —x = (—x;)ies for al x = (xp)ier € [, 4i U
[Tics i

Thenotion of direct product iswell-defined; i.e, [ |
cation. However, |

ie1 2i isindeed adiagnostic specifi-
;e7 i isnot necessary to be completewhenall X; (i e I) arecomplete.
Example 58. The direct product of diagnostic specifications models the process that one
extracts his knowledge bases from different profiles of an object and then aggregate them
together into a single knowledge base. Suppose we have a system whose function is deter-
mined by two factors A and B. The causal interactions between defects and findingsrelated
to factors A and B are described by the diagnostic specifications X4 = (A, @4, e4) and
Yp = (Ap, Pp, ep), respectively, where A4 = {d1, d2, dz}, Pa = { f1, f2}, Ap = {c1, c2},
®p ={g1, g2, g3}, and e4 and ep are given by Tables9 and 10. If the two factors A and B
are assumed to be interaction free, then the direct product

Za x Xp = ({(d1. c1), @1, c2), (d2. c1), (d2, c2), (d3, c1), (d3, c2)},

{(f1. 80). (f1. 82). (f1. 83). (f2. 81). (f2. 82). (f2. g3)}. €)
provides a diagnostic knowledge base for the whole system. For example,

e({(d1. c2), (d2, c1), (d2, c2)}) = ea({d1. d2}) x ep({c1. c2})
={(/1. g0, (f1. 82). (f1.83)}.

and the possiblefindings are (f1, g1), (f1, 82), (f1, g3) When (d1, c2), (d2, 1) and (d, c2)
occur simultaneoudly. The following proposition shows that the operation of direct product
of diagnostic specifications preserves monotonicity.
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Table 9
Factor system A
D 9 {d1} {d2} {d3} {dq, d3} {d1, d3} {d2, d3} {dy. d3. d3}
€A 9 9 {/1} 0 {/1) 0 {/1) {f1. f2}
Table 10
Factor system B
D 0 {c1} {c2} {c1, c2}
e 0 {3} 9 {81, 82, g3}

Proposition 59. Let X; = (A;, @;,¢;) (i € I) be a family of diagnostic specifications. If
X; (I €i) areall increasing (respectively decreasing), then [, %; is also increasing
(respectively decreasing).

Proof. Immediate. O
The next proposition demonstrates that the direct product of a family of specification
morphisms is a specification morphism from the direct product of their domains to the

direct product of their co-domains.

Proposition 60. Let M; = (gi,hi) X = (4i,Di,ei) — 2/ = (A/ @/ el’) (iel

be a family of specification morphisms, and let Hie[gi:nzelA — ]‘[ie[ Al and
[Lichi:Tlic; @i = [lie; @] be defined as follows:
<l_[ gi)(d) = (gi(d))ier foranyd = (diier €[] 4i and
iel iel
(]‘[ hi)<f> = (hi(f)ier forany f = (f)ier €[ [ @i
iel iel
Then[1;c; Mi = ([ ;¢ 8i- [ ;s hi) isaspecificationmorphismfrom[[;.; i to[[;c; *
Proof. Forany D C [];.; Ai,
(]‘[ hi) e(D)) = (]‘[h ) (]‘[e,» (proL-(D))) =[] i (ei (proi; (D))
iel iel iel iel
=[1¢i(gi(proi; (D)) =[] e (proj,»((l_[gi)w)))
iel iel iel
(1)) -

iel

We now turn to examine diagnostic problem solving in a direct product system. Given
a diagnostic problem with the observed findings E and hypothesis H. We may observe
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them from different profilesi € 1. The pieces of information that £ and H shine on the
profilei are then represented by the projections proj; (E) and proj; (H ), respectively. Now
in the factor system X;, we employ anotion R; of diagnosis and find a diagnostic solution
Ri proj; (1) (Proj; (E)) with information proj; (£)) and proj; (H ). Thus, we are able to present
a diagnostic solution to the original problem by taking the direct product of these factor
solutions. The following proposition clarify the relation between such a solution and the
solution obtained directly by using a corresponding notion of diagnosisin thewhole system
(when possible). For example, Proposition 61(1) indicates that if we adopt the notion of
most general subset diagnosis then the former is stricter than the latter, and they are the
same whenever al factor systems are interaction freeand E and H appear as cubes. Note
that some conditions introduced in Definition 31 are needed here. We use condition (N C
U) in the case of most specific subset diagnosis and (N 2 N) in the case of most specific
superset diagnosis.

Proposition 61. Let X; = (A;, @;, ¢;) (i € I) beafamily of diagnostic specifications.

(1) |fHGS(Z,’) =(4;,P;, R) foralli e I,and HGS(HieI X)) = (Hiel Aj, Hie[ D, R),
thenfor any E C [[;.; ®; andfor any H C [[;.; 4i,
(L1) Ru(E) S[1;c; Riproj;cy (proj; (E)) if for eachi € I, e; (D) # ¥ whenever D #
@,
(1.2) Ru(E) =T[1;cs Riproj; ) (Proj; (E)) if all X; (i e I) are interaction free, and
H =1]],c; Hi and E =[];.; E; are cubes (E; € ®; and H; C A; for each
iel).
(2) fMco(X;) =(4;, ®;, R;)foralli e I and HGO(HiEI X)) = (Hiel A;, Hie[ D, R),
thenfor any E C [[,.; ®;, andfor any H C [[;.; 4i,
(2.1) Ru(E) S1;¢s Riproj; ) (Proj; (E)); and
(22) Ru(E) =[];cs Riproj; ) (Proj; (E)) if all X; (i € I are interaction free, and
H =], Hiisacube (H; C A; for eachi € I).
3) If I (X)) = (A;, d;, R)) forall i e I, and I1g (]_[iel X)) = (Hiel A;, Hie[ D, R),
thenfor anycube E =[[;.; Ei € [];c; ®: andforanycube H =[[;; Hi S [];c; A,

[ [ Ri#i (Ed) € Ru(E)
iel
provided all X; (i € I) areinteraction free.
(4) Suppose that [Tss(X;) = (A;, @i, Ri) (G € I), and Hss([];c; Zi) = ([ 1e; Ais
[lic; @i, R). If each X; (i € 1) satisfies the following condition:

ei(ﬂ D,> c | Jei(dn),
teT

teT

whereall D, € A; (r € T) are consistent, then for all cubes E =[1[;.; Ei S [[;c; @i
and H =[];.; Hi C ] A:, we have

iel

Ry(E) S [ | Rim; (Ed).

iel
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(5) Suppose that ITsp(X;) = (A;, @i, Ri) ( € I) and Hso([[;c; Zi) = (1e; Ais
[lic; @i, R). If each X; (i € 1) satisfies the following condition:

ﬂad»ga“ja)

teT teT

whereall D; C A; (t € T) areconsistent, thenfor any E C [ |
H =[1;c; Hi €[] A4, itholdsthat

Ru(E) < [ | Ri.u, (proj; E).
iel
6) If g (X)) =(Ai, @i, R) (e D), and IIg([[;c; Zi) = ([ ;e Ais [1ie; i, R), then
foranycube E =[],.; Ei C[[;c; @i andfor anycube H =[[;.; Hi €[ ;s 4i,
Ry(E) S [ [ Rim (Ei)
iel

provided all X; (i € I') areinteraction free.

;e @i and for any cube

Proof. We only prove (1); others are similar.
(1.1) We write

M= {H’ CH:e(H)= Hei (proj;(H")) < E}
iel

and

N = {1_[ H]: H] C proj;(H) and ¢; (H/) < proj; (E) forall i € I}.
iel

Thenitisclear that Ry (E) =M, and
nRi,prOj,«(H) (prOJ,(E)) = HU{H{ - proji(H): e,'(Hi’) - projl»(E)} 2 UN

iel iel
Now it sufficesto show that for any H' € M, thereexists K’ € N with H' C K'. If H' =@,
it is obvious. We now assume that H' # @. It holds that proj;(H’) € proj; (H). In ad-
dition, e; (proj;(H')) < proj;(E) follows from that e(H') = [],; i (proj; (H')) € E and
ej(proj;(H")) # @ foreach j e I — {i}. Then H' C [];., proj;(H') € N.
(1.2)Let E=]]..; Ei and H =[];.; H; becubes. Then proj;(E) = E; and proj; (H) =
H;. We put

N; = {H’ C H;: ei(H]) C Ei}-
Then e;((UNi) € Upnren, €i(H)) € Ei, and (JN; € N;. This yields [[;c; Rin, (Ei) =

(U N. Furthermore, it is easy to see that N € M for cubes E and H. This completes the
proof. O

iel iel

Note that in a direct product diagnostic system both the defects and findings are exam-
ined from different profiles. However, sometimes we only need to analyze the defectsfrom
different angles, leaving the findings unchanged. This motivates the following definition.
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Definition 62 (Optimistic and pessimistic merging of specifications). Let X; = (A;, @, ¢;)

(i € I) be afamily of diagnostic specifications with the same set of findings. Then their

optimistic and pessimistic merging are defined to be &), ; i = ([1;c; 4i, P, e™) and

Oier Zi =(le; Ais @, e7), respectively, wherefor each D C [[;; 4i,

(D) = Uiy € (proj; (D)) if e;(proj;(D)) # Lforaliel,
1 otherwise,

e (D) = [ﬂie[ e; (proj; (D)) if e;(proj;(D)) # Lforadliel,
1 otherwise.

Comparing the above definition with Definitions 44 and 57, we will find that (optimistic
and pessimistic) mergings are mixtures of direct product and (optimistic and pessimistic)
fusions. In the operation of merging, the defects take a structure of direct product. This
reflects the fact that we will examine defects from different profiles. For each profile, the
causal relation between defects and findings is specified separately. Now we have many
different way to aggregate these specifications coming from various profiles. The ways
used in optimistic and pessimistic mergings are respectively union and intersection which
are just at the two extremes of al the possible ways. Obvioudly, this idea follows directly
Definition 44.

Example 63. The two operations of merging express two extreme ways of aggregating
knowledge about causal interactions between findings and different profiles of defects.
Supposethat X4 = (A4, @,eq) and X = (Ap, D, ep), Where Ay = {d1,d2,d3}, Ap =
{c1,c2}, @ ={f1, f2, f3} and e4 and ep aregiven asshownin Tables 11 and 12. And, we
assumethat ¥4 and X'p depict respectively the causal relation between findings and the
profile A of defects and the profile B of defects. Then ¥4 ® Xp = (Ax x Ap, @, eT) and
YAa0Xp= (A4 x Ap, D, e7) represent two different aggregation of X4 and X', and
they are able to serve as a diagnostic knowledge base of the whole system, where

Ap x A ={(d1,c1), (d1, c2), (d2, c1), (d2, c2), (d3, c1), (d3, c2) }.

For example, we have

et ({(d1. c1), (d1, c2), (d3, c2)}) = ea({d1. d3}) Uep({c1, c2}) = { f1. fol,

Table 11
Profile A
D 9 {d1} {do} {d3} {d1,do} {d1,d3} {d2, d3} {d1,d>, d3}
eA @ {f1} {f1} @ {f1} {f1, 2} {f1} {f1, 12, f3}
Table 12
Profile B
D @ {c1} {c2} {c1, c2}

e % {f2} {f1} 0
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and

e” ({(d1. c1). (d1, c2), (d3. c2)}) = ea({d1. d3}) Nep({c1. c2}) = 0.

Monotonicity of diagnostic specificationsis preserved by both optimistic or pessimistic
mergings, but only optimistic merging carries interaction freeness.

Proposition 64. Let X; = (A;, @, ¢;) (i € I) be afamily of diagnostic specifications with
the same set of findings.

(1) Ifall ; (i € I) areincreasing (respectively decreasing), then Q;.; X and (O;; X
are also increasing (respectively decreasing).
(2) Ifall X; (i e I) areall interaction free, s0is Q);; X

Proof. Immediate. O

We consider the problem of constructing a specification morphism between two opti-
mistic (pessimistic) mergings from the morphisms between their component systems. Note
that the operands in an optimistic merging are a family of diagnostic specifications with
the same set of findings. Thus, the finding mappings between the mergings and between
the corresponding components should be same. The following proposition shows that the
direct product of defect mapping between the components together with the fixed finding
mapping forms a specification morphism between the two optimistic mergings under con-
sideration, and it is a morphism between the two pessimistic mergings whenever the fixed
finding mapping isinjective.

Proposition 65. Let M; = (g, h): X; = (4;, @, e;)) — X! = (A}, @', ¢) (i € I) beafam
ily of specification morphisms. Then

(1) TTies Mi = ([1i; i h) is aspecification morphismfrom ), .; Zi 10 Q);;
(2 Tlie; Mi = ([, 8i- h) is a specification morphism from ©,; Z; to O
vided & isinjective.

X!, and
X! pro-

iel

Proof. Straightforward. O

We conclude this section with two propositions concerning the notions of diagnosisthat
form the Lucas refinement diagnosisin an optimistic or pessimistic merging system. Given
adiagnostic problemin an optimistic merging with observed findings E and hypothesis H,
since the finding set is fixed, and the defect set possesses a structure of direct product, we
can analyzethe hypothesis H fromitsdifferent profiles. These profilesof H arethen repre-
sented by proj; (H), where i istheindex in the merging construction. For each component
system i, a diagnostic problem with the original observed findings E is still present, but
the new hypothesisproj; (H) is given, and we are able to find a solution to it by employing
anotion of diagnosisin this subsystem. Now what interests us is the relation between the
diagnostic solution that we hope to find directly in the whole system and the family of di-
agnostic solutions in these subsystems. For most general subset diagnosis, it is shown that
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the former is included in the direct product of the latter. The same result holds for most
specific subset diagnosis, most specific superset diagnosis and most specific intersection
diagnosisif certain global properties of specifications are imposed. On the other hand, the
direct product of solutions to the subproblemsis included in the solution of the original
problem for most general superset diagnosis and most general intersection diagnosis with
some global properties of specifications.

Proposition 66. Let X; = (A;, @, ¢;) (i € I) be afamily of diagnostic specifications with
the same set of findings.

(1) If Mas(Zi) = (Ai, @, R;) (i € I), and ITas(®;; Ti) = ([1;c; Ai» @, R), then for
any E C @ andforany H C [[;.; 4i,
(1.1) Ru(E) S [ies Riproj; () (E); and
(1.2) Ru(E) =1, Riproj, ) (E) if Hisacubeandall X; (i € I) areinteraction
free.
(2) If Meo(Zi) = (Ai, @, Ry) (i € 1), Moo(®;c; Zi) = ([1;e; Ai» @, R),andall Z; (i e
1) fulfil the following condition:

e,»<U D,> > (ei(Dr)
teT

teT
for all D; C A; (t € T), then for each E C @ and for each cube H C [ ]

l_[ Ri proj,(m)(E) € Ry (E).

iel

Aj,

iel

() f a1 (Zi) = (Ai, @, Ri) (i € 1), Ta1(Re; i) = ([ie; 4i» @, R),and all 3; (i €
I) areinteraction free, then for any £ C @ and for any cube H C [, 4,

[ ] Ri.proi, 2y (E) € R (E).
iel
@) If MIss(X3) = (A, @, R;) (i € 1), Tss(Qie; Zi) = ([1e; Ai» @, R), and all X
(i € I) satisfy the condition in Proposition 61(4), then for all E € @ and cubes
Hc Hie[ Ai,
Ru(E) C 1_[ Ri proj; () (E).
iel
(©) If Iso(X) = (Ai, @, R) (i €], Noo(Qie; i) = ([1;; Ai- @, R), and all X
(i € I) fulfil the condition in Proposition 61(5), then for any £ € ¢ and cube
HC Hie[ Ai,
Ru(E) C 1_[ Ri proj; () (E).
iel
(6) If Ng(XZ) = (A, @, R) (i €), [T3(Q;c; Zi) = ([lje; Ai. @, R), and all X; (i €
I) areinteraction free, thenfor any £ C @ andcube H C [[..; Ai,

Ry (E) S [ | Riproj, ) (E).

iel

iel

iel
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Proof. Similar to Proposition61. O
For diagnosisin a pessimistic merging system, we have:

Proposition 67. Let X; = (A;, @, ¢;) (i € I) be afamily of diagnostic specifications with
the same set of findings.

(1) If Hes(XZy) = (Ai, @, Ry) (i € 1), and as(O;¢; Zi) = ([1;; Ai. @, R), then for
any EC @ andforany H C [[;; Ai,
1_[ Ri proj, () (E) € Ry (E).
iel
2 If Ngo(X;) =(A;, P, R;) (i €l), and HGO(@ieI X)) = (Hiel A;i, @, R), then for
any EC @ and H C [[;; 4Ai,

Ru(E) S [ Riproj, i (E),
iel
with the equality when H isa cube.
(3) If Mss(Z)) = (Ai, @, R;) (i € ), and [Tss(O;¢; Zi) = ([T, Ai» @, R), then for any
E C @ andfor any cube H C [[;.; 4i,
Ry (E) S [ | Riproj, ) (E).

iel
The same conclusion holds for most specific superset diagnosis.

Proof. Similar to Proposition61. O

5. Conclusion

Lucas[13] proposed a set-theoretic framework for diagnostic problem solving in which
the knowledge base in a diagnostic system is represented by a diagnostic specification.
A diagnostic specification is defined to be a mapping from defects to observable findings,
and it establishes a causal relation between defects and findings. The solution to a diag-
nostic problem is then given by a notion of diagnosis which maps observed findings to
defects. A refinement diagnosis consisting of six notions of diagnosis wereintroduced and
carefully analyzed by Lucasin [13].

This paper is a continuation of Lucas[13], and its main aim is to examine the influence
of diagnostic specification transformation on diagnostic strategies and to provide some
useful mathematical tools supporting knowledge reuse in diagnostic systems. The concept
of diagnostic specification morphism is introduced in order to describe diagnostic specifi-
cation transformation. The diagnostic strategies, including the six in the Lucas refinement
diagnosis, in the source and target systems of a specification morphism are compared. At
the same time, we propose several operations of diagnostic specifications that can serve
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as mathematical models of knowledge base fusion and merging in diagnostic systems.
Some representations of diagnostic methods in composite diagnostic systems constructed
by using our proposed operations are presented in terms of the corresponding diagnostic
methods in their subsystems.

It isobviousthat the diagnostic systems dealt with here and in [13] are not time-varying,
and the dimension of time is ignored. In many application domains, however, the systems
to be diagnosed are dynamic, and the assumption that the relation between defects and ob-
servationsdoesnot depend on timefactor isnot redlistic. Infact, much effort has been made
to accommodate the dimension of time into diagnostic systems have been madein the pre-
viousresearches. Brusoni et a. [2] defined a spectrum of notions of temporal model-based
diagnosis. As a problem for further studies, we hope to generalize the Lucas framework
of diagnosis so that certain temporal phenomena can be taken into account. Furthermore,
we need to explore the possibility of adding the time factor into the results obtained in this
paper in order to support knowledge reuse in time-varying diagnostic systems.

Uncertainty management is another important problem in diagnostic systems. This is
especially clear in the field of medical diagnosis due to inherent vagueness of human doc-
tor thinking. Indeed, uncertainty has been considered in many early medical diagnostic
expert systems such as MYCIN [21]. An important and much more recent work incor-
porating uncertainty into diagnosis systems was done by Poole [17] using probabilistic
Horn clauses to represent diagnosis knowledge with uncertainty; notions of diagnosisin
his setting were defined by assuming different probabilistic constraints. The Lucas theory
of diagnosis allows modelling particular qualitative approachesto diagnosis, such as those
expressed by strong causality or weak causality, but it does not provide us with an explicit
mechanism for expressing uncertainty. Nowadays, a dominant method of representing un-
certainty in Artificial Intelligence is given by Bayesian networks, or, more generaly, by
probability theory. Thus, an interesting problem for further studies is how to introduce a
suitable mechanism for coping with uncertainty and vagueness into the Lucas framework
of diagnosis and how to model knowledge transformation and reuse in diagnostic prob-
lem solving when uncertainty involved. In particular, what highly concerns us is how to
accommaodate probabilistic information in the formal development presented in this paper.

Acknowledgements

The author is very grateful to Professor Raymond C. Perrault, the Editor in Chief and
theanonymousrefereesfor their invaluable criticisms, commentsand suggestionsthat were
very helpful for improving the presentation of this paper.

References

[1] J. Barwise, J. Seligman, Information Flow: The Logic of Distributed Systems, Cambridge University Press,
Cambridge, 1997.

[2] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web—a new form of Web content that is meaningful
to computers will unleash arevolution of new possibilities, Scientific American 284 (5) (2001) 34.



M. Ying / Artificial Intelligence 163 (2005) 145 45

[3] V. Brusoni, L. Console, P. Terenziani, D. Theseider Dupre, A spectrum of definitions for temporal model-
based diagnosis, Artificial Intelligence 102 (1998) 39-79.

[4] C.C.K. Chang, H. Garcia-Molina, Conjunctive constraint mapping for data translation, in: 3rd ACM Con-
ference on Digital Libraries, Pittsburgh, PA, 1998.

[5] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J. Widom, The
TSIMMIS project: integration of heterogeneous information sources, in: 1PSJ Conference Tokyo, Japan,
1994.

[6] W.J. Clancey, Heuristic classification, Artificial Intelligence 27 (1985) 289-350.

[7] L. Console, C. Picardi, M. Ribaudo, Process algebras for systems diagnosis, Artificial Intelligence 142
(2002) 19-51.

[8] L. Console, P. Torasso, A spectrum of logical definitions of model-based diagnosis, Computational Intelli-
gence 7 (3) (1991) 133-141.

[9] PT. Cox, T. Pietrzykowski, General diagnosis by abductive inference, in: Proceedings of |EEE Symposium
on Logic Programming, 1987, pp. 183-189.

[10] J. de Kleer, A.K. Mackworth, R. Reiter, Characterizing diagnoses and systems, Artificial Intelligence 52
(1992) 197-222.

[11] R.V. Guha, Contexts: aformalization and some applications, PhD Thesis, Stanford University, 1991.

[12] J.E. Larsson, Diagnosis based on explicit means-end models, Artificial Intelligence 80 (1996) 29-93.

[13] PJ.F. Lucas, Analysis of notions of diagnosis, Artificial Intelligence 105 (1998) 295-343.

[14] S. MacLane, Categories for the Working Mathematicians, Springer, New York, 1971.

[15] A.D. Marwick, Knowledge management technology, IBM Syst. J. 40 (2001) 814-830.

[16] J. Nagata, Modern General Topology, North-Holland, Amsterdam, 1985.

[17] D. Poole, Representing diagnosis knowledge, Ann. Math. Artificial Intelligence 11 (1994) 33-50.

[18] J.A. Reggia D.S. Nau, Y. Wang, Diagnostic expert systems based on a set-covering model, Internat. J. Man-
Machine Stud. 19 (1983) 437—460.

[19] R. Reiter, A theory of diagnosis from first principles, Artificid Intelligence 32 (1987) 57-95.

[20] R. Rymon, Goal-directed diagnosis—a diagnosis reasoning framework for exploratory-corrective domains,
Artificial Intelligence 84 (1996) 257-297.

[21] E.H. Shortliffe, Computer-Based Medical Consultation: MY CIN, Elsevier, New York, 1976.

[22] P.C. Weinstein, P. Birmingham, Creating ontological metadata for digital library content and service, Inter-
nat. J. Digital Libraries 2 (1998) 19-36.

[23] G. Weiss (Ed.), Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press,
Cambridge, MA, 2000.

[24] G. Wiederhold, An algebra for ontology composition, in: Proceedings of the 1994 Monterey Workshop on
Formal Methods, US Naval Postgraduate School, Monterey, CA, 1994, pp. 56-61.

[25] W3C Semantic Web Activity Statement, http://www.w3.0rg/2001/sw/Activity.



