2,794 research outputs found

    Parametric matroid of rough set

    Full text link
    Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a combinatorial generalization of linear independence in vector spaces. In this paper, we define a parametric set family, with any subset of a universe as its parameter, to connect rough sets and matroids. On the one hand, for a universe and an equivalence relation on the universe, a parametric set family is defined through the lower approximation operator. This parametric set family is proved to satisfy the independent set axiom of matroids, therefore it can generate a matroid, called a parametric matroid of the rough set. Three equivalent representations of the parametric set family are obtained. Moreover, the parametric matroid of the rough set is proved to be the direct sum of a partition-circuit matroid and a free matroid. On the other hand, since partition-circuit matroids were well studied through the lower approximation number, we use it to investigate the parametric matroid of the rough set. Several characteristics of the parametric matroid of the rough set, such as independent sets, bases, circuits, the rank function and the closure operator, are expressed by the lower approximation number.Comment: 15 page

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe

    NMGRS: Neighborhood-based multigranulation rough sets

    Get PDF
    AbstractRecently, a multigranulation rough set (MGRS) has become a new direction in rough set theory, which is based on multiple binary relations on the universe. However, it is worth noticing that the original MGRS can not be used to discover knowledge from information systems with various domains of attributes. In order to extend the theory of MGRS, the objective of this study is to develop a so-called neighborhood-based multigranulation rough set (NMGRS) in the framework of multigranulation rough sets. Furthermore, by using two different approximating strategies, i.e., seeking common reserving difference and seeking common rejecting difference, we first present optimistic and pessimistic 1-type neighborhood-based multigranulation rough sets and optimistic and pessimistic 2-type neighborhood-based multigranulation rough sets, respectively. Through analyzing several important properties of neighborhood-based multigranulation rough sets, we find that the new rough sets degenerate to the original MGRS when the size of neighborhood equals zero. To obtain covering reducts under neighborhood-based multigranulation rough sets, we then propose a new definition of covering reduct to describe the smallest attribute subset that preserves the consistency of the neighborhood decision system, which can be calculated by Chen’s discernibility matrix approach. These results show that the proposed NMGRS largely extends the theory and application of classical MGRS in the context of multiple granulations

    An N-Soft Set Approach to Rough Sets

    Get PDF
    The philosophy of soft sets is founded on the fundamental idea of parameterization, while Pawlak’s rough sets put more emphasis on the importance of granulation. As a multi-valued extension of soft sets, the newly emerging concept called N-soft sets can provide a finer granular structure with higher distinguishable power. This study offers a fresh insight into rough set theory from the perspective of N-soft sets. We reveal a close connection between N-soft sets and rough structures of various types. First, we show how the corresponding structures of Pawlak’s rough sets, tolerance rough sets and multigranulation rough sets can be derived from a given N-soft set. Conversely, we investigate the representation of these distinct rough structures using the corresponding notions derived from suitable N-soft sets. The applicability of these theoretical results is highlighted with a case study using real data regarding hotel rating. The established two-way correspondences between N-soft sets and diverse rough structures are constructive, which can bridge the gap between seemingly disconnected disciplines, and hopefully nourish the development of both rough sets and soft sets
    • …
    corecore