111,386 research outputs found

    The interaction of representation and reasoning

    Get PDF
    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group

    Theoretical foundations for information representation and constraint specification

    Get PDF
    Research accomplished at the Knowledge Based Systems Laboratory of the Department of Industrial Engineering at Texas A&M University is described. Outlined here are the theoretical foundations necessary to construct a Neutral Information Representation Scheme (NIRS), which will allow for automated data transfer and translation between model languages, procedural programming languages, database languages, transaction and process languages, and knowledge representation and reasoning control languages for information system specification

    Managing data through the lens of an ontology

    Get PDF
    Ontology-based data management aims at managing data through the lens of an ontology, that is, a conceptual representation of the domain of interest in the underlying information system. This new paradigm provides several interesting features, many of which have already been proved effective in managing complex information systems. This article introduces the notion of ontology-based data management, illustrating the main ideas underlying the paradigm, and pointing out the importance of knowledge representation and automated reasoning for addressing the technical challenges it introduces

    Legal linguistic templates and the tension between legal knowledge representation and reasoning

    Get PDF
    There is an inherent tension between knowledge representation and reasoning. For an optimal representation and validation, an expressive language should be used. For an optimal automated reasoning, a simple one is preferred. Which language should we choose for our legal knowledge representation if our goal is to apply automated legal reasoning? In this paper, we investigate the properties and requirements of each of these two applications. We suggest that by using Legal Linguistic Templates, one can solve the above tension in some practical situations

    Biomedical Terminologies and Ontologies: Enabling Biomedical Semantic Interoperability and Standards in Europe

    Get PDF
    In the management of biomedical data, vocabularies such as ontologies and terminologies (O/Ts) are used for (i) domain knowledge representation and (ii) interoperability. The knowledge representation role supports the automated reasoning on, and analysis of, data annotated with O/Ts. At an interoperability level, the use of a communal vocabulary standard for a particular domain is essential for large data repositories and information management systems to communicate consistently with one other. Consequently, the interoperability benefit of selecting a particular O/T as a standard for data exchange purposes is often seen by the end-user as a function of the number of applications using that vocabulary (and, by extension, the size of the user base). Furthermore, the adoption of an O/T as an interoperability standard requires confidence in its stability and guaranteed continuity as a resource

    Knowledge From Pictures (KFP)

    Get PDF
    The old maxim goes: 'A picture is worth a thousand words'. The objective of the research reported in this paper is to demonstrate this idea as it relates to the knowledge acquisition process and the automated development of an expert system's rule base. A prototype tool, the Knowledge From Pictures (KFP) tool, has been developed which configures an expert system's rule base by an automated analysis of and reasoning about a 'picture', i.e., a graphical representation of some target system to be supported by the diagnostic capabilities of the expert system under development. This rule base, when refined, could then be used by the expert system for target system monitoring and fault analysis in an operational setting. Most people, when faced with the problem of understanding the behavior of a complicated system, resort to the use of some picture or graphical representation of the system as an aid in thinking about it. This depiction provides a means of helping the individual to visualize the bahavior and dynamics of the system under study. An analysis of the picture augmented with the individual's background information, allows the problem solver to codify knowledge about the system. This knowledge can, in turn, be used to develop computer programs to automatically monitor the system's performance. The approach taken is this research was to mimic this knowledge acquisition paradigm. A prototype tool was developed which provides the user: (1) a mechanism for graphically representing sample system-configurations appropriate for the domain, and (2) a linguistic device for annotating the graphical representation with the behaviors and mutual influences of the components depicted in the graphic. The KFP tool, reasoning from the graphical depiction along with user-supplied annotations of component behaviors and inter-component influences, generates a rule base that could be used in automating the fault detection, isolation, and repair of the system

    Knowledge representation in space flight operations

    Get PDF
    In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text
    • …
    corecore