50,187 research outputs found

    Relating Knowledge and Coordinated Action: The Knowledge of Preconditions Principle

    Get PDF
    The Knowledge of Preconditions principle (KoP) is proposed as a widely applicable connection between knowledge and action in multi-agent systems. Roughly speaking, it asserts that if some condition is a necessary condition for performing a given action A, then knowing that this condition holds is also a necessary condition for performing A. Since the specifications of tasks often involve necessary conditions for actions, the KoP principle shows that such specifications induce knowledge preconditions for the actions. Distributed protocols or multi-agent plans that satisfy the specifications must ensure that this knowledge be attained, and that it is detected by the agents as a condition for action. The knowledge of preconditions principle is formalised in the runs and systems framework, and is proven to hold in a wide class of settings. Well-known connections between knowledge and coordinated action are extended and shown to derive directly from the KoP principle: a "common knowledge of preconditions" principle is established showing that common knowledge is a necessary condition for performing simultaneous actions, and a "nested knowledge of preconditions" principle is proven, showing that coordinating actions to be performed in linear temporal order requires a corresponding form of nested knowledge.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Exploiting Block Deordering for Improving Planners Efficiency

    Get PDF
    Capturing and exploiting structural knowledge of planning problems has shown to be a successful strategy for making the planning process more ef- ficient. Plans can be decomposed into its constituent coherent subplans, called blocks, that encapsulate some effects and preconditions, reducing interference and thus allowing more deordering of plans. According to the nature of blocks, they can be straightforwardly transformed into useful macro-operators (shortly, “macros”). Macros are well known and widely studied kind of structural knowledge because they can be easily encoded in the domain model and thus exploited by standard planning engines. In this paper, we introduce a method, called BLOMA, that learns domain-specific macros from plans, decomposed into “macro-blocks” which are extensions of blocks, utilising structural knowledge they capture. In contrast to existing macro learning techniques, macro-blocks are often able to capture high-level activities that form a basis for useful longer macros (i.e. those consisting of more original operators). Our method is evaluated by using the IPC benchmarks with state-of-the-art planning engines, and shows considerable improvement in many cases

    2Planning for Contingencies: A Decision-based Approach

    Full text link
    A fundamental assumption made by classical AI planners is that there is no uncertainty in the world: the planner has full knowledge of the conditions under which the plan will be executed and the outcome of every action is fully predictable. These planners cannot therefore construct contingency plans, i.e., plans in which different actions are performed in different circumstances. In this paper we discuss some issues that arise in the representation and construction of contingency plans and describe Cassandra, a partial-order contingency planner. Cassandra uses explicit decision-steps that enable the agent executing the plan to decide which plan branch to follow. The decision-steps in a plan result in subgoals to acquire knowledge, which are planned for in the same way as any other subgoals. Cassandra thus distinguishes the process of gathering information from the process of making decisions. The explicit representation of decisions in Cassandra allows a coherent approach to the problems of contingent planning, and provides a solid base for extensions such as the use of different decision-making procedures.Comment: See http://www.jair.org/ for any accompanying file

    The Use of Knowledge Preconditions in Language Processing

    Full text link
    If an agent does not possess the knowledge needed to perform an action, it may privately plan to obtain the required information on its own, or it may involve another agent in the planning process by engaging it in a dialogue. In this paper, we show how the requirements of knowledge preconditions can be used to account for information-seeking subdialogues in discourse. We first present an axiomatization of knowledge preconditions for the SharedPlan model of collaborative activity (Grosz & Kraus, 1993), and then provide an analysis of information-seeking subdialogues within a general framework for discourse processing. In this framework, SharedPlans and relationships among them are used to model the intentional component of Grosz and Sidner's (1986) theory of discourse structure.Comment: 7 pages, LaTeX, uses ijcai95.sty, postscript figure

    Learning STRIPS Action Models with Classical Planning

    Full text link
    This paper presents a novel approach for learning STRIPS action models from examples that compiles this inductive learning task into a classical planning task. Interestingly, the compilation approach is flexible to different amounts of available input knowledge; the learning examples can range from a set of plans (with their corresponding initial and final states) to just a pair of initial and final states (no intermediate action or state is given). Moreover, the compilation accepts partially specified action models and it can be used to validate whether the observation of a plan execution follows a given STRIPS action model, even if this model is not fully specified.Comment: 8+1 pages, 4 figures, 6 table

    CAPE: Corrective Actions from Precondition Errors using Large Language Models

    Full text link
    Extracting commonsense knowledge from a large language model (LLM) offers a path to designing intelligent robots. Existing approaches that leverage LLMs for planning are unable to recover when an action fails and often resort to retrying failed actions, without resolving the error's underlying cause. We propose a novel approach (CAPE) that attempts to propose corrective actions to resolve precondition errors during planning. CAPE improves the quality of generated plans by leveraging few-shot reasoning from action preconditions. Our approach enables embodied agents to execute more tasks than baseline methods while ensuring semantic correctness and minimizing re-prompting. In VirtualHome, CAPE generates executable plans while improving a human-annotated plan correctness metric from 28.89% to 49.63% over SayCan. Our improvements transfer to a Boston Dynamics Spot robot initialized with a set of skills (specified in language) and associated preconditions, where CAPE improves the correctness metric of the executed task plans by 76.49% compared to SayCan. Our approach enables the robot to follow natural language commands and robustly recover from failures, which baseline approaches largely cannot resolve or address inefficiently.Comment: 8 pages, 3 figures, Under Review at ICRA 202
    • …
    corecore