182,481 research outputs found

    Knowledge Enhanced Graph Neural Networks

    Full text link
    Graph data is omnipresent and has a large variety of applications such as natural science, social networks or semantic web. Though rich in information, graphs are often noisy and incomplete. Therefore, graph completion tasks such as node classification or link prediction have gained attention. On the one hand, neural methods such as graph neural networks have proven to be robust tools for learning rich representations of noisy graphs. On the other hand, symbolic methods enable exact reasoning on graphs. We propose KeGNN, a neuro-symbolic framework for learning on graph data that combines both paradigms and allows for the integration of prior knowledge into a graph neural network model. In essence, KeGNN consists of a graph neural network as a base on which knowledge enhancement layers are stacked with the objective of refining predictions with respect to prior knowledge. We instantiate KeGNN in conjunction with two standard graph neural networks: Graph Convolutional Networks and Graph Attention Networks, and evaluate KeGNN on multiple benchmark datasets for node classification

    Deeper Text Understanding for IR with Contextual Neural Language Modeling

    Full text link
    Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited.Comment: In proceedings of SIGIR 201

    Robust Minutiae Extractor: Integrating Deep Networks and Fingerprint Domain Knowledge

    Full text link
    We propose a fully automatic minutiae extractor, called MinutiaeNet, based on deep neural networks with compact feature representation for fast comparison of minutiae sets. Specifically, first a network, called CoarseNet, estimates the minutiae score map and minutiae orientation based on convolutional neural network and fingerprint domain knowledge (enhanced image, orientation field, and segmentation map). Subsequently, another network, called FineNet, refines the candidate minutiae locations based on score map. We demonstrate the effectiveness of using the fingerprint domain knowledge together with the deep networks. Experimental results on both latent (NIST SD27) and plain (FVC 2004) public domain fingerprint datasets provide comprehensive empirical support for the merits of our method. Further, our method finds minutiae sets that are better in terms of precision and recall in comparison with state-of-the-art on these two datasets. Given the lack of annotated fingerprint datasets with minutiae ground truth, the proposed approach to robust minutiae detection will be useful to train network-based fingerprint matching algorithms as well as for evaluating fingerprint individuality at scale. MinutiaeNet is implemented in Tensorflow: https://github.com/luannd/MinutiaeNetComment: Accepted to International Conference on Biometrics (ICB 2018

    Exploring Interpretable LSTM Neural Networks over Multi-Variable Data

    Full text link
    For recurrent neural networks trained on time series with target and exogenous variables, in addition to accurate prediction, it is also desired to provide interpretable insights into the data. In this paper, we explore the structure of LSTM recurrent neural networks to learn variable-wise hidden states, with the aim to capture different dynamics in multi-variable time series and distinguish the contribution of variables to the prediction. With these variable-wise hidden states, a mixture attention mechanism is proposed to model the generative process of the target. Then we develop associated training methods to jointly learn network parameters, variable and temporal importance w.r.t the prediction of the target variable. Extensive experiments on real datasets demonstrate enhanced prediction performance by capturing the dynamics of different variables. Meanwhile, we evaluate the interpretation results both qualitatively and quantitatively. It exhibits the prospect as an end-to-end framework for both forecasting and knowledge extraction over multi-variable data.Comment: Accepted to International Conference on Machine Learning (ICML), 201

    Accelerating Deterministic and Stochastic Binarized Neural Networks on FPGAs Using OpenCL

    Full text link
    Recent technological advances have proliferated the available computing power, memory, and speed of modern Central Processing Units (CPUs), Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs). Consequently, the performance and complexity of Artificial Neural Networks (ANNs) is burgeoning. While GPU accelerated Deep Neural Networks (DNNs) currently offer state-of-the-art performance, they consume large amounts of power. Training such networks on CPUs is inefficient, as data throughput and parallel computation is limited. FPGAs are considered a suitable candidate for performance critical, low power systems, e.g. the Internet of Things (IOT) edge devices. Using the Xilinx SDAccel or Intel FPGA SDK for OpenCL development environment, networks described using the high-level OpenCL framework can be accelerated on heterogeneous platforms. Moreover, the resource utilization and power consumption of DNNs can be further enhanced by utilizing regularization techniques that binarize network weights. In this paper, we introduce, to the best of our knowledge, the first FPGA-accelerated stochastically binarized DNN implementations, and compare them to implementations accelerated using both GPUs and FPGAs. Our developed networks are trained and benchmarked using the popular MNIST and CIFAR-10 datasets, and achieve near state-of-the-art performance, while offering a >16-fold improvement in power consumption, compared to conventional GPU-accelerated networks. Both our FPGA-accelerated determinsitic and stochastic BNNs reduce inference times on MNIST and CIFAR-10 by >9.89x and >9.91x, respectively.Comment: 4 pages, 3 figures, 1 tabl

    Beyond Material Implication: An Empirical Study of Residuum in Knowledge Enhanced Neural Networks

    Get PDF
    openKnowledge Enchanced Neural Networks (KENN) is a neuro-symbolic architecture that exploits fuzzy logic for injecting prior knowledge, codified by propositional formulas, into a neural network. It works by adding a new layer at the end of a generic neural network that further elaborates the initial predictions accordingly to the knowledge. In the existing KENN, according to material implication rule, a conditional statement is represented as a conjunctive normal form formula. The following work extends this interpretation of the implication by using the fuzzy logic's Residuum semantic and shows how it has been integrated into the original KENN architecture, while keeping it reproducible. The Residuum integration allowed to evaluate KENN on MNIST Addition, a task that couldn't be approached by the original architecture, and the results obtained were comparable to others state of the art neuro-symbolic methods. The extended architecture has subsequently been evaluated also on visual relationships detection, showing that it could improve the performance of the original one.Knowledge Enchanced Neural Networks (KENN) is a neuro-symbolic architecture that exploits fuzzy logic for injecting prior knowledge, codified by propositional formulas, into a neural network. It works by adding a new layer at the end of a generic neural network that further elaborates the initial predictions accordingly to the knowledge. In the existing KENN, according to material implication rule, a conditional statement is represented as a conjunctive normal form formula. The following work extends this interpretation of the implication by using the fuzzy logic's Residuum semantic and shows how it has been integrated into the original KENN architecture, while keeping it reproducible. The Residuum integration allowed to evaluate KENN on MNIST Addition, a task that couldn't be approached by the original architecture, and the results obtained were comparable to others state of the art neuro-symbolic methods. The extended architecture has subsequently been evaluated also on visual relationships detection, showing that it could improve the performance of the original one

    Knowledge Graph Construction in Power Distribution Networks

    Full text link
    In this paper, we propose a method for knowledge graph construction in power distribution networks. This method leverages entity features, which involve their semantic, phonetic, and syntactic characteristics, in both the knowledge graph of distribution network and the dispatching texts. An enhanced model based on Convolutional Neural Network, is utilized for effectively matching dispatch text entities with those in the knowledge graph. The effectiveness of this model is evaluated through experiments in real-world power distribution dispatch scenarios. The results indicate that, compared with the baselines, the proposed model excels in linking a variety of entity types, demonstrating high overall accuracy in power distribution knowledge graph construction task
    corecore