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Abstract

Knowledge Enchanced Neural Networks (KENN) is a neuro-symbolic architecture that ex-
ploits fuzzy logic for injecting prior knowledge, codified by first-order logic formulas, into a
neural network. It works by adding a new layer at the end of a generic neural network that
further elaborates the initial predictions according to the knowledge. In the existing KENN,
prior knowledge is represented as a set of conjunctive normal form formulas, and the represen-
tation of conditional statements is done according to material implication rule. The following
work extends this interpretation of the implication by using the fuzzy logic’s residuum seman-
tic and shows how it has been integrated into the original KENN architecture. The residuum
integration allowed to evaluate KENN onMNIST Addition and Visual Sudoku, examples of
tasks that couldn’t be approached by the original architecture, and the results obtained were
comparable to others state of the art neuro-symbolic methods. The extended architecture of
KENN has subsequently been evaluated also on visual relationship detection, showing that it
could improve the performance of the original underlying neural network.
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1
Introduction

The thesis resumes thework carried out during the internship in theData andKnowledgeMan-
agement Research Unit (DKM)[2] of Fondazione Bruno Kessler. Data and knowledge man-
agement is an interdisciplinary research field between computer science, artificial intelligence,
and mathematics. It comprises a range of practices used to create, represent, share, and exploit
knowledge in any type of domain. A field of particular interest in DKM is Neuro-symbolic AI
(NeSy). It includes the methods that combine the strengths of connectionist AI, like neural
architectures, with the capabilities of human-like symbolic knowledge and reasoning.
During the internship, I worked on a neuro-symbolicmodel called Knowledge EnhancedNeu-
ral Network (KENN)[1][3]. KENN exploits fuzzy logic to inject prior knowledge into the
predictions of a generic neural network. My responsibilities were to extend the model by im-
plementing a new semantic representing implication rules. Also, to test those implementations
on different tasks, in order to evaluate new capabilities and compare themwith the ones of start-
ing architecture.
A given knowledge can be taken as input by KENN under first-order logic formulas written
in conjunctive normal form (CNF). It is then applied to the neural network predictions in or-
der to make them follow the specified logic rules. More precisely, if some of the preactivation
values caused the neural network to make predictions that don’t respect a logic rule, KENN
would either increase or decrease them in such a way that the truth value of all logic rules can
be satisfied. The original architecture handles a set of disjunctive clauses, where the truth value
of each formula is computed by the Gödel t-conorm operation. To augment the truth value of
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each disjunctive clause, KENNmakes use of a t-conorm boost function.
To represent a conditional statement with disjunctive clauses, we can follow the material im-
plication rule, which states that A → B is equivalent to ¬A ∨ B. Although such a rule is in
general valid in classical logic, the same is not true for fuzzy logic where the implication is often
interpreted using a residuum function. In standard t-norm based fuzzy logic, the residuum
function is the unique binary operation that gives the implication truth value equal to that of
the consequent, if the latter is lower than that of the antecedent. Otherwise, it gives the impli-
cation truth value equal to 1.
In the thesis, I present an extension of KENN which implements a residuum boost function.
Similarly to the t-conorm boost function, the residuum boost function is thought to increase
the truth value of implicational logic rules interpreted by residuum of the t-norm. Experimen-
tal results showed how the use of residuumboost function allows to perform further reasoning
starting from neural network predictions as evidenced by the satisfactory results obtained in
MNIST addition andVisual Sudoku puzzle-classification experiments. The same results were
unreproducible with the as-is version of KENN, meaning that the reasoning capabilities were
a successful achievement made possible by the integration of residuum semantics. The two
versions of KENN were also tested on the experiments that require modifications to neural
network predictions. It was the case of scientific publications topic prediction (Citeseer) and
Visual Relationship Detection. In these scenarios, the residuum boost function is not always
the better option for improving the quality of predictions, and a further analysis was done to
understand in which situations the use of a specific boost function instead of the other is more
appropriate.

The thesis is organized as follows. Related works are presented in Chapter 2. Fuzzy logic and
related notions of t-norm, t-conorm, and residuum are explained in Chapter 3, as well as the
as-is functioning of KENN. Chapter 4 describes the integration in the existing architecture of
implication rules, alongside the implementation of residuum boost function. Experimental
results are in Chapter 5. Here, the first two sections, 5.1 and 5.2, present the experiments done
onCiteseer andVisual RelationshipDetection datasets. The last two sections regard the exper-
iments requiring reasoning: MNIST addition 5.3 and Visual Sudoku 5.4.
Concluding remarks and future works are reported in Chapter 6.

2



2
Related work

Examples of recent works exploiting first-order logic inNeural-Symbolic systems areLogic Ten-
sor Network (LTN) (Serafini and d’Avila Garcez, 2016)[4] and Semantic Based Regularization
(SBR) (Diligenti et. al, 2017)[5]. In these methods, the satisfaction of logic rules is maximized
during training. In KENN, logic rules become part of the classifier, of which predictions are
manipulated according to the constraints. The idea of a system injecting prior knowledge into
the structure of a neural network was first defined in Knowledge Enhanced Neural Networks
(Daniele and Serafini, 2019)[1]. In this first version of KENN, the architecture worked just
with propositional logic and was tested in multi-classification tasks, among which was Visual
RelationshipDetection (VRD).A further extension ofKENN(Daniele and Serafini, 2022)[3]
made it adaptable for relational data. The relational version exploited first-order logic to repre-
sent prior knowledge using also binary predicates, which are particularly useful for modeling
links on graph-like domains. Relational KENN was tested on the Citeseer dataset, by repre-
senting publications as nodes and citations as links of a graph. The residuumKENN presented
in this thesis extends the interpretation of conditional statements by adding the residuum se-
mantic alongside the material implication rule used by existing relational KENN.
Another algorithm that implements the idea of having logic constraints to be part of the classi-
fier, is Iterative Local Refinement (ILR) (Daniele, Van Krieken et. al, 2022)[6] which exploits
refinement functions to find refined predictions for given logical formulas. ILR has been evalu-
ated on the task ofMNIST addition, setting a baseline for the evaluation of residuumKENN.
Also Probabilistic Soft Logic (PSL) (Pryor et al., 2022)[7] incorporates results from neural net-
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works into a declarative templating language that uses first-order logical rules to perform logical
reasoning. In (Augustine et. al, 2022)[8], PSLwas combined with a neural image classifier (ne-
uPSL), and then evaluated on Visual Sudoku puzzle classification.
The addition of the new residuum semantic allowed KENN to be evaluated on these last two
tasks (MNIST addition and Visual Sudoku), initially unapproachable with relational KENN
using material implication. Residuum KENN was also evaluated on the tasks carried out in
the works presenting previous versions of KENN, in order to have a comparison with the ar-
chitecture exploiting material implication rule.
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3
Background

3.1 Fuzzy logic

Fuzzy logic is a form of many-valued logic in which the truth values may be any real number
in the interval [0, 1] (this range could be scaled for taking values outside), in such a way it can
handle the concept of partial truth. Basic fuzzy logic is closely related to continuous t-norms,
which play the role of truth functions of conjunction. Each continuous t-norm determines a
semantics of fuzzy logic. Below are summarized the notions of t-norms, and more specifically
theGödel t-norm, fromwhich is possible to define the related t-conorm and residuuum, playing
the role of disjunction and implication in Gödel semantics.
The basic reference is [9].

3.1.1 T-norm

Definition 1. A triangular norm (t-norm) is a function ⊤: [0, 1]2 → [0, 1] such that for all
x, y, z ∈ [0, 1] the following properties are satisfied:

• Commutativity: ⊤(x, y) = ⊤(y, x),

• Associativity: ⊤(x,⊤(y, z)) = ⊤(⊤(x, y), z),

• Monotonicity: y ≤ z ⇒ ⊤(x, y) ≤ ⊤(x, z),

• Boundary condition: ⊤(x, 1) = x.
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FromDefinition 1, it follows the definition of t-conorm.

Definition 2. If⊤ is a t-norm, then its dual t-conorm⊥: [0, 1]2 → [0, 1] is given by:

⊥ (x, y) = 1−⊤(1− x, 1− y).

⊥ maintains all the properties of the t-norm, with the exception of Boundary condition
which becomes: ⊥ (x, 0) = x.
In fuzzy logic, t-norms are the functions that build the semantics of the conjunctive operator
∧, while the corresponding dual t-conorm represents the disjunctive operator ∨.
KENN refers toGödel logic’s semantics to interpret logic formulas. InGödel logic the connec-
tive truth function ∧ is defined as:

tx∧y = ⊤(x, y) = min(x, y)

min(x, y) is a t-norm since satisfies all the properties listed above.
Then the definition of disjunctive operator ∨ is the t-conorm of themin function:

tx∨y = 1−min(1− x, 1− y) = max(x, y)

It is easy to see that the Gödel semantics, like other fuzzy semantics, agree with classical logic
on the values 0, 1. For instance, consider the conjunction: t0∧1 = min(0, 1) = 0 and t0∨1 =
max(0, 1) = 1.

3.1.2 Residuum

In two-valued logic, the implication is true iff the truth value of the antecedent is less then or
equal to the truth value of the consequent. To generalize this concept in fuzzy logic, it can be
said that the truth value of implication should be large when the truth value of the antecedent
is not ”too much larger” than the consequent. In Metamathematics of Fuzzy Logic (Hajek,
1998)[10], the truth function x ⇒ y of fuzzy implication is defined by requiring it to be non-
increasing inx and non-decreasing in y, moreover, to keep guaranteed the idea ofmodus ponens
it is also required that, given truth degree of antecedent x and of function x ⇒ y, one should
be able to compute a lower bound of truth degree of the consequent y.
More formally, considering a t-norm⊤:
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IF z ≤ tx⇒y, THEN ⊤(x, z) ≤ y

In this constraint, z is a possible candidate for tx⇒y, and to make it as large as possible (to
get a more powerful rule), also the opposite should be requested, and the whole would result
in:

⊤(x, z) ≤ y IFF z ≤ tx⇒y

Saying that tx⇒y is the maximal z satisfying⊤(x, z) ≤ y.

From those assumptions, it follows the definition of residuum:

Definition 3. Let⊤ be a continuous t-norm. The residuum of⊤ is the unique operation x ⇒ y

such that ∀x, y, z ∈ [0, 1] ⊤(x, z) ≤ y iff z ≤ tx⇒y, namely:

tx⇒y = max{z|⊤(x, z) ≤ y}.

It is easy to see that for each continuous t-norm⊤ and its residuum⇒:

• x ≤ y iff tx⇒y = 1,

• t1⇒y = x.

Focusing onGödel logic semantics, the Gödel implication is the residuum of Gödel t-norm.
Considering tX , tY , tZ ∈ [0, 1] truth values of predicatesX,Y, Z , it results to be:

tX⇒Y =







1 if tX ≤ tY

tY otherwise
(3.1)

Proof: Assuming tX > tY , if we consider the Gödel conjunction we have that tX⇒Y =

max{tZ |min(tX , tZ) ≤ tY }, thenmin(tX , tZ) = tY iff tZ = tY .
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3.2 Knowledge EnhancedNeural Network

Knowledge EnhancedNeural Networks (KENN) is a neural networkmodel originally defined
in (Daniele and Serafini, 2019[1]) that exploits prior knowledge about the domain of interest.
The idea that inspired its creation was that having prior knowledge related to a specific domain
could make predictions of a generic neural network more solid, in the sense of reducing the
errors that would be unreasonable to the eyes of a domain-expert supervisor. For instance, if
it’s common knowledge that an animated screenmeans that the television is turned on, if anAI
model spots that the screen is animated butwrongly predicts that it is turned off, then it should
change its prediction relying on the fact that every animated screen is turned on. Since neural
networks learn from experience, they are forced to have a knowledge of the domain restricted to
the training data fromwhich their experience is built, in this way, a poorly distributed training
set could lead a neural network to unreasonable and unexplainable predictions. Even though
we are living in the era of big datawhere it ismuch easier to access and elaborate enormousquan-
tities of data and that facilitates the construction of enough big and well-distributed training
sets, the problem presented of having consistent neural network predictions is still a case of in-
terests in scenarios that require few-shot learning or, evenmore, in zero-shot learning problems.
It is in those situations that KENN could be employed to boost the quality of the predictions
of any kind of neural architecture that learns through empirical data.

As told in the Introduction, KENN is a Neural-Symbolic architecture, so, it is important to
understand which are the bonds between neural and symbolic parts. As hinted by the name,
the ”knowledge”, which is modeled in logical rules, is what should enhance the neural network
predictions, and it does that without directly interfering with the neural network’s computa-
tions. All the operations specific to the KENN architecture are carried out after the neural
network computes its outcomes, so the structure as a whole can be seen as an underlying neu-
ral networkwith the logical components attached to its output layer, where the ”enhancement”
operations are performed according to the knowledge.
The first version of Knowledge EnhancedNeural Networks used propositional logic to model
prior knowledge and turned out to have good empirical results on multi-label classification
tasks. However, a strong limitation emerged when dealing with relational domains, where the
translation of prior knowledge into propositional logic requests the usage of binary predicates.
An updated version was then implemented by generalizing its functioning in such a way that
it could deal with relational data (Daniele and Serafini 2023[3]). The new relational KENN
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could then approach also tasks that involved relationships between data samples. In the follow-
ing, we will refer to this version when talking about KENN.

In theKENNarchitecture, prior knowledge is translated into first-order logic formulas with
at most binary predicates, which are given in input to the model. Logic rules must be written
in ConjunctiveNormal Form (CNF), i.e. a conjunction of one or more clauses, where a clause
is a disjunction of literals.
Given the set of predicates P = {p1, p2..., pn} associated to a clause c, then:

c =
n
∨

i=1

li

Where li is either pi(x) or ¬pi(x).
Each clause composes a logic rule. Since it is assumed that the clauses are in CNF, every clause
that defines the prior knowledge has to be satisfied. Also, all variables in each clause are assumed
to be universally quantified.

As a logic rule example, consider:

¬TV ScreenAnimated(x) ∨ TelevisionON(x)

stating that all televisions with an animating screen are turned on.
This is a unary clause and its groundings can be denoted by c[a], which refers to the clause ob-
tained by substituting the x variable with a constant a, meaning that c[a] can now be assigned
a truth value based on the traits of constant a.
A binary clause would instead appear as:

¬Smoker(x) ∨ ¬Friends(x, y) ∨ Smoker(y)

This would state that if a person x is a smoker and he is a friend of another person y, then y
is also a smoker. In this case, a grounding of this clause would need two constants a, b resulting
in c[a, b]. The two constants allow the predicates composing the clause to assume values. For
instance, in Boolean logic, if we know that a is a smoker and he’s friend with b, but b is not a
smoker then the clause assumes truth value¬1∨¬1∨0 = 0 and therefore it would result false.
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The smoker example supplied gives an idea of how to compute clause’s truth values from their
assigned groundings, and for simplicity, it was computed using Boolean algebra. However
KENN operates with neural network preactivations (the values obtained before the output
layer’s activation function is applied, it will be explained later why this detail is important),
so it deals with values belonging to R making Boolean algebra inappropriate to this scenario.
That’s the reason why KENNmakes use of Fuzzy Logic to compute truth values of clauses.
As previously said, KENNuses its neural network preactivations as clause groundings. To have
a better overview on how it does it, suppose we have a NN for a multi-label classification task
with classesQ = {q1, q2, ..., qm}which returns an output y ∈ [0, 1]n×m computed from pre-
activations z ∈ R

n×m, where n is the number of samples si. The knowledge K is defined by a
set P of predicates and a set C of clauses. Consider the set of predicatesP where each predicate
pi(x)means ”x belongs to class qi”, and define a unary clause c containing a non-empty subset of
them. The groundings of c: {c[s1], c[s2], ..., c[sn]} are obtained by substituting the x variable
with constants si, i.e. the samples taken in input by the NN. For every grounded clause c, the
truth value of the predicates in c can be computed by substituting the preactivation values of
the classes that are represented by those predicates. For instance, if c is composed by pi and pj
(i, j ≤ m), then the truth value of c[s1]would be computed from z1i and z1j .
The goal of KENN is to increment the truth value of every clause belonging toC , and it does
so by calculating a residue δ, that is summed toNN’s preactivation. The component that takes
care of this operation is calledKnowledge Enhancer.
Before describing the functioning of the Knowledge Enhancer (KE), it is essential to define the
set of functions that increase the values of a t-conorm called t-conorm boost function, which are
responsible for computing the residue δ. In the following, we report the theory of boosting
functions as defined in (Daniele and Serafini, 2019[1]).

3.2.1 T-conorm boost function

Definition 4. A function δ : [0, 1]n → [0, 1]n is a t-conorm boost function (TBF) if and only if
∀n ∈ N, ∀t ∈ [0, 1]n:

0 ≤ ti + δ(t)i ≤ 1, 0 ≤ i < n

From theMonotonicity property of t-conorm follows the following proposition:

Proposition 1. For every t-conorm⊥ and every TBF δ, ⊥ (t) <⊥ (t+ δ(t)).
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Given that TBFs are generic functions that keep values inside the space [0, 1]n while increas-
ing the value of a t-conorm (which translates into augmenting the truth value of a disjunction),
they are the perfect tool for proposing changes on the groundings of a clause.
Considering the set of all possible TBFs, KENN uses the TBF that increases the outcome of a
t-conorm by applying the minimummodification that guarantees the given improvement.
In a more formal way:

Definition 5. Consider∆ the set of all TBFs, a norm || ∗ || and a t-conorm⊥, a function δ ∈ ∆

isminimal iff:
∀δ′ ∈ ∆ ∀n ∈ N ∀t ∈ [0, 1]n

||δ′(t)|| < ||δ(t)|| → ⊥ (ti + δ′(t)) <⊥ (ti + δ(t)).

Proposition 2. Every δf : Rn → R
n defined as:

δf (t)i =







f(t) if i = argmaxn
j=1tj

0 otherwise
(3.2)

where f is a function such that 0 ≤ f(t) ≤ 1−maxn
j=1tj, is aminimalTBF for the Gödel

t-conorm and lpnorm.

Proof:
Gödel t-conorm⊥(·) is defined as⊥(t) = maxn

i=1(ti); and lp − norm is defined as ||t||p =
(
∑n

k=1 |tk|
p)

1

p . Suppose that δ ∈ ∆ is such that:

||δ(t)||p < ||δf (t)||p

If j = argmaxn
k=1(tk + δ(t)k), we can derive:

⊥(t+ δ(t)) = tj + δ(t)j

and, if i = argmaxn
k=1tk, we have that

⊥(t+ δf (t)) = ti + f(t)

Since ti ≥ tj , we just need to demonstrate that δ(t)j < f(t). Notice that:
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δ(t)j = (|δ(t)j|
p)

1

p ≤ ||δ(t)||p < ||δf (t)||p

Since δf (t) changes only the value of the ith component of twe have that ||δf (t)|| = f(t).

3.2.2 Knowledge Enhancer

The Knowledge Enhancer is the component that implements the minimum TBF introduced
in the previous section. It is responsible for enhancing the outcomes received from the neural
network by proposing changes δ computed from the set of clauses belonging toK . Differently
from the theory proposed in Section 3.2.1, the KE operates on the preactivation z of the final
layer.
The final residue δ is the result of the sum of all δc computed individually for each clause:

y = σ(z + δ), δ =
∑

c∈C

δc

here, y is the matrix containing the final predictions for each sample, z is the preactivation ma-
trix and C is the set of clauses. To compute each δc, KE generates further submodules called
Clause Enanchers (CE), one for each clause: these components are the ones that actually evalu-
ate the clauses and decide which predicate to modify in order to increase their truth value.
Inside each CE, a differentiable approximation of the t-conorm boost function, defined in sec-
tion 3.2.1, is computed on the reference clause.

3.2.3 Clause enhancer

In theClause Enhancer, the notion of the t-conormboost function has been adapted to handle
NN’s predictions. Given that from the definition of TBF, the increased value should stay in
the interval [0, 1], it is impossible to apply a liner function f directly to the output y ∈ R

n

of the NN. Note that y is computed from preactivations z ∈ R
n of the last layer through the

non-linear function σ: Rn → [0, 1]n:

yi = σ(zi) =
1

1 + e−zi

If the values of z are never decreased, then the constraint of Definition 4 holds.
So, as we know from 3.2, the minimal increment for the Gödel t-conorm is δf , we can use that
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function to increase the value of z, obtaining that

y = σ(z) ≤ σ(z + δf (z))

since function σ is monotonic. And considering the function δg such that:

δg(y) = σ(z + δf (z))− σ(z)

We obtain
y ≤ y + δg(y) = σ(z + δf (z)) ∈ [0, 1]n

showing that δg(y) is a minimal TBF.

The CE doesn’t directly compute δg(y) but instead computes δf (z) which are the proposing
changes δc related to a single clause. Since the clause c is a disjunction of literals, the truth value
of each of its groundings can be computed from z by applying the Gödel t-conorm⊥ which
can be augmented by increasing the maximum value zij for each row zi, where j is the index
of a predicate of the clause. After applying the activation function σ, the described operations
would be equal to apply the TBF δg(y) directly to the predictions y.

3.2.4 Relational KENN architecture

Now that has been explained the functioning of Clause Enhancer, the process carried out by
KENN can be described as a whole. Since KENN can also operate in relational domains, the
Knowledge Enhancermust perform a distinction between unary and binary predicates, in such
a way it can elaborate and update their predicate values separately. The theoretical notions of
t-conorm and boosting functions don’t require any adjustment in order to be extended to a
relational domain. The split between unary and binary logic formulas is done before calling
the Clause Enhancer which stays unaware of the kind of predicates it is working on.

To understand how the whole process is performed, let’s consider the matrix z ∈ R
n×m com-

puted by the underlying NN, which contains the class preactivation values for each of the n
samples si. From a logical perspective, z contains the truth values of predicates (classes) for
each grounding (sample).
The boosting function used by the CE isn’t the optimal TBF for the Gödel t-conorm (Daniele
and Serafini, 2019[1]), but instead, the CE applies the softmax function, which is a continu-
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ous and differentiable approximation of the minimal TBF. Indeed, softmax(z) still increases
the highest value more than the others. However, all the literals are increased, and when two
literals have close values, it produces similar improvements to both.
The important thing to underline here is that the TBF approximation is differentiable, allow-
ing for the application of back-propagation to the entire architecture. Moreover, KENN can
learn the truthfulness of a logic rule by assigning it a learnable weightwc. In this way, if it turns
out that a clause isn’t respected in most of the target’s groundtruths, then the model will learn
to ignore that specific clause by dropping itswc to 0.
Asserted that, the computation of a δc[si] relative to the grounded clause c[si] containing pred-
icates Pj(si) results to be:

δc[si],Pj(si) =







wc · softmax(zi)j if Pj(si) ∈ c[si]

−wc · softmax(zi)j if ¬Pj(si) ∈ c[si]
(3.3)

Before computing deltas, the relational KENN performs a pre-elaboration of the z taken
from the NN which is divided in zU and zB containing unary and binary predicates preac-
tivations respectively. Note that, it is not strictly necessary that all predicates must be taken
from the NN’s output. In Chapter 5, it will be shown how some predicates can be provided
directly as features of themodel. Since relational KENNhandles both unary clauses and binary
clauses, it is also necessary to consider them separately. For the unary clauses inKU the changes
calculated for a single grounded predicate Pj(si)will result in:

δKU ,Pj(si) =
∑

c∈KU

Pj(x)∈c

δc[si],Pj(si) (3.4)

To improve binary clauses, i.e. the ones that contain at least one binary predicate, theKE has
a slightly different behavior. Indeed, alongside preactivationsmatrixes zU and zB, it needs two
lists of integers ix, iy for each binary predicate indicating which samples are related through
the binary relations. This information is used to perform a join operation between zU and
zB, resulting in the joined matrix z, where the groundings of the pairs of predicates related
by a binary predicate are considered in the same line zi, alongside the grounding of the binary
predicate referring to them.
This resultingmatrixz is fed into theCE,whichwill treatz as if it contains just unarypredicates.
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When δc is returned by CE, the KE does a group-by operation that gathers back the deltas for
unary predicates and binary predicates. Note that, in this situation, unary predicates’ deltas
are doubled since they refer both to x and y variables that appear on the binary clause. The
proposed changes for a unary predicate Pj([si]), result in:

δKB ,Pj(si) =
∑

a









∑

c∈KU

Pj(x)∈c

δc[si,a],Pj(si) +
∑

c∈KU

Pj(y)∈c

δc[a,si],Pj(si)









(3.5)

The deltas for a binary predicate Pj(x, y) are instead easier to compute since any possible
grounded atom can be found in only one corresponding grounding [si1 , si2 ] of each clause:

δKB ,Pj(si1 ,si2 )
=

∑

c∈KB

Pj(x,y)∈c

δc[si1 ,si2 ],Pj(si1 ,si2 )

After the computations of changes, all deltas are summed together and the resulting prediction
yPj(si) for the grounded unary predicate Pj are:

yPj(si) = σ(zij + δKU ,Pj(si) + δKB ,Pj(si))

Following the same reasoning, for a grounded binary predicate Pj the resulting prediction
would be yPj(si1 ,si2 )

yPj(si1 ,si2 )
= σ(zij + δKB ,Pj(si1 ,si2 )

).
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Figure 3.1: An overview of the complete architecture of KENN presented by Daniele and Serafini [1]. The figure shows in
green the structure of the Knowledge Enhancer while in pink it is shown the Clause Enhancer. In this example, the KE has
two clauses c1, c2 to apply on the preactivation z = [zA, zB , zC , zD]. On the right is shown only the CE that handles
clause c1 : A∨¬B involving only predicatesA,B corresponding to the first two columns of z. At the end of computations
the CE proposes changes δc1A and δc1B to be added to columns zA and zB

3.2.5 Experimental results of KENN

The presented KENN model has been tested on different multi-class classification datasets.
The experiments carriedoutby (Daniele, Serafini 2019[1]) onYeast (Elisseeff andWeston2001),
Emotions (Trohidis et al. 2008), and VRD (Lu et al. 2016) datasets showed that the prior
knowledge inserted in KENN could improve the predictions of the underlying Logistic Re-
gression model.
Further, in (Daniele, Serafini 2022[3]) the extended KENN for relational domains was tested
on Citeseer dataset [11] on top of a multi-layer perceptron. This experiment deserves a deeper
explanation, since it is not only an example of how to shape graph-like relations into binary
clauses, but also is an important baseline that will be approached again in the following chap-
ters by the newResiduumKENN architecture.
The Citeseer dataset consists of 3312 scientific publications classified into one of six classes,
while the citation network consists of 4732 links. Each publication in the dataset is described
by a 0/1-valued word vector indicating the absence/presence of the corresponding word from
the dictionary.
In the experiment theNNusedwas a dense networkwith 3 hidden layers, each with 50 hidden
nodes andReLU activation function. The knowledge consisted of six rules obtained by substi-

16



tuting the topic T in ¬T (x) ∨ ¬Cite(x, y) ∨ T (y)with all the classes. This codifies the idea
that papers cite works that are related to them. From a graph point of view, the predicatesT (x)
represent the class of each node, while the binary predicateCite(x, y) assumes true value 1 if
there is an edge between nodes x and y and 0 otherwise.
Two slightly different experiments were made, one called ”Inductive” where the edges that go
from samples belonging to different data sets (e.g. one in the training set and the other in valida-
tion)were removed, while the other called ”Transductive”meaning that all edges of the original
graph are kept in the training and evaluation of the model.
The efficacy of KENNwas evaluated on different dimensions of training data and by changing
the amount of KE layers.
The results obtained are the following:

We can see how just by adding a single KE layer, KENNoutperforms theNN in each subset
of the training set, and that three KE layers were a sufficient amount for having good results
in relation to the complexity of the model. The importance of having multiple KE layers was
discussed in [3].
Another important thing to notice here is that the injected prior knowledge could, in some
sense, play the role of training data. Indeed, the results in terms of accuracy score carried out
by themodel trained on 25% of the training set with 0KE layers (i.e. just theNN)were outper-
formed by the KENNmodel made of 3 KE using just the 10% of the knowledge. This means
that adding prior knowledge into anNN, beyond improving its results, also facilitates its learn-
ing procedure by making it able to learn the same task even if a smaller number of samples is
seen during training.
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4
Residuum enhanced neural networks

The functioningofKENNexplained in theprevious chapter focusedon increasing truth values
of disjunctive clauses, assuming that to represent an implication rule it would be sufficient to re-
place it by the disjunction between the negated antecedent rule and the consequent one. This
replacement in classical logic is equivalent to the actual implication. However, since KENN
makes use of fuzzy logic semantics, using the material implication isn’t always the best way
to represent conditional statements. Indeed, fuzzy implications are distinguished in two sets,
the so-called S-implications are derived by generalizing the material implication in t-conorms
which is the current interpretation carried out in KENN, whileR-implications are induced by
the residuum of t-norms. It turned out that inmany scenarios the use ofR-implications seman-
tics could allow to inject a ”direction” on conditional statement rules, Daniele et. al (2023)[6].
This chapter explains the implementation of residuum semantics and the related residuum
boost function in KENN architecture. By showing how the functioning of Knowledge En-
hancer and Clause Enhancer modules have been adapted to handle the residuum boost func-
tion alongside the current TBF. This new architecture ofKENNopened theway for approach-
ing new tasks and in some cases to improve the results obtained with the old version.

4.1 Residuum boost function

For Gödel residuum operation we define as follows the residuum boost function (RBF). By con-
sidering the case x ⇒ y, where x and y are two predicates, and tx, ty their respective truth
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values.

Definition 6. A function δ : [0, 1]2 → [−1, 1]2, such that:

• −1 ≤ δ(tx, ty)x ≤ 0

• 0 ≤ δ(tx, ty)y ≤ 1

is a residuum boost function.

We set the following notation: R(tx, ty) = tx⇒y, δ(tx, ty)x = δx

Proposition 3. For every RBF δ, ∀tx, ty ∈ [0, 1]:

R
(

tx + δx, ty + δy
)

≥ R(tx, ty)

Proof:

R(tx + δx, ty + δy) =







1 if tx + δx ≤ ty + δy

ty + δy otherwise
(4.1)

=







1 if tx − ty ≤ δy − δx

ty + δy otherwise

≥







1 if tx − ty ≤ 0

ty otherwise
= R(tx, ty)

Note that, if R(tx, ty) = 1 than δy − δx ≥ 0 ≥ tx − ty, and R(tx + δx, ty + δy) = 1.
Moreover, ifR(tx, ty) < 1, thenR(tx, ty) = ty andR(tx + δx, ty + δy) is either 1 or tx + ty,
both greater ty.

In the other case: δy ≥ 0 =⇒ ty + δy ≥ ty

In paragraph 3.1.1, it has already been said thatKENNuses theTBF that increases the outcome
of formulas by applying the minimummodification that guarantees a given improvement. In
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the original case of disjunctive clauses theminimal TBF was shown in 3.2. The same reason-
ing was adopted for residuum, in this case the RBF to look for is the one that minimizes the
modifications to be done on the Gödel residuum function to refine its outcome on a given
quantity.

Definition 7. Consider∆ the set of all RBFs, Gödel t-norm inducted residuumR. Given norm
|| ∗ ||, a function δ ∈ ∆ is a minimalGödel residuum boost function iff:

∀δ′ ∈ ∆ ∀tx ∈ [0, 1] ∀ty ∈ [0, 1]

||δ′(tx, ty)|| < ||δ(tx, ty)|| → R(tx + δ′x, ty + δ′y) < R(tx + δx, ty + δy)

To find minimal Gödel residuum boost functions we consider separately three cases:

1. tx ≤ ty

2. tx > ty and tx + δx > ty + δy

3. tx > ty and tx + δx ≤ ty + δy

Case 1:

The rule is already satisfied. The truth value of implication (residuum) is already 1 so
the obvious solution is to not change the prediction: δx = δy = 0.

Proposition 4. The RBF δ is minimal if δx = δy = 0 when we are in Case 1.

Proof:
Note that ||δ|| = 0.Meaning that it can’t exist ||δ′|| < ||δ||, so

||δ′(tx, ty)|| < ||δ(tx, ty)|| → R(tx + δ′x, ty + δ′y) < R(tx + δx, ty + δy)

is always satisfied because the assumption is always false.

Case 2:

Since tx > ty and also tx + δx > ty + δy, we have that the truth value of implication is
equal to the truth value of the consequent before and after summing δ, and it does not
depend on the antecedent. As such, the δx should be equal to zero.
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Proposition 5. For every minimal RBF δ it holds δx = 0 in Case 2.

Proof:
Suppose otherwise: δx < 0, δy ≥ 0.
In such a case, it is always possible to define δ′ such that δ′x = 0, δ′y = δy. Note that,
||δ′|| < ||δ||, while the truth value of implication is ty + δy in both cases. Hence, δ is
not minimal.

Case 3:

Since tx + δx ≤ ty + δy, the truth value of the implication after applying the RBF is
1. In order to be minimal, we need a value of δ such that by reducing the norm of δ we
obtain a value smaller than one. As a consequence, we require tx + δx to be equal to
ty + δy (i.e. tx + δx cannot be strictly smaller than ty + δy).

Proposition 6. Every minimal RBF, in Case 3., is a δ such that tx + δx = ty + δy

Proof:
Assume otherwise: tx + δx < ty + δy, meaning that tx − ty < δy − δx
Note that, by assumption of Case 3., tx > ty. We can always define δ′ such that:

0 ≥ δ′x ≥ δx, 0 ≤ δ′y ≤ δy

δ′y − δ′x = tx − ty

Note that the truth value of the implication is still equal to one, while the norm is re-
duced:

||δ||p − ||δ′||p = |δx|
p − |δ′x|

p + |δy|
p − |δ′y|

p ≥ 0

As a consequence, δ cannot be minimal.

Proposition6 canbe intuitively explainedby saying that, tobring implication truth value
to 1 using aminimal RBF, it is sufficient to stop when antecedent and consequent truth
values are equal, without further modifications.
At this point, we know that in Case 3 we need to reduce tx and ty in such a way that the
two become equal. We need to find such a change in order to have the minimal norm.
This choice depends on the selected norm.
For instance, with L2 − norm, the optimal solution would consist on increasing/de-
creasing both equally: δx = −δy. However, such a solution would not be continuous
for all the cases, since in Case 2 we increase only the consequent.
Following (Daniele, van Krieken et al, 2022)* [6], we choose L1 − norm, where every

*In their case, on the definition of a different concept consisting in minimal refinement functions.
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solution which implies δy − δx = tx − ty has the same value for the norm. As a conse-
quence, the solution δx = 0, δy = tx − ty is minimal for L1 − norm.
Note that, with this definition, the RBF behaves exactly as in Case 2, making the func-
tion continuous.

Putting all together, we defined the minimal RBF δr : [0, 1]2 → [−1, 1]2 for L1 − norm

and first-order Gödel logic as:

δr(tx, ty) =
(

0, r(tx, ty)
)

where function r(tx, ty) : [0, 1]2 → [0, 1] is such that:






0 ≤ r(tx, ty) ≤ tx − ty if tx ≥ ty

0 otherwise
(4.2)

In our extension of KENN, conditional formulas are in general written in the form of a con-
junction of literals implying a disjunction of literals:

n
∧

i

Xi ⇒
m
∨

j

Yj

The truth values of the set of predicatesX,Y are x ∈ [0, 1]n and y ∈ [0, 1]m respectively.
Having the truth value of the formula to be:

R
(

⊤(x),⊥(y)
)

= R(tx, ty)

By applying a minimal RBF δr to the formula we obtain:

R
(

tx, ty + r(tx, ty))
)

Note that our goal is to increase the satisfaction of the consequent, which is now defined as
a disjunction of literals, while our definition of RBF considers only the case with a single literal
as a consequent. However, the minimal change to increase a disjunction is alreadymanaged by
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KENN, since it corresponds to the output of a TBF. So we can increase the truth value ty by
applying the TBF δf : Rm → R

m defined as follows:

δf (y)i =







r(tx, ty) if i = argmaxm
j=1yj

0 otherwise
(4.3)

since r(tx, ty) ≤ tx− ty and tx− ty ≤ 1−maxm
j=1yj

†, from Proposition 2 we know that
δf is a minimal TBF.
Finally, note that our new implementation is a generalization of classical KENN, since a dis-
junction rule

∨

i li, can always be expressed as T →
∨

i li with T corresponding to true (one).

4.2 R-implication knowledge enhancer

Before getting into the changes made on Knowledge Enhancer, it is worth underlining the
mathematical differences derivedby interpreting the implication as a t-norm inducted residuum
instead of applying the material implication rule on the t-conorm. First of all, in the case of
x < y, i.e. the antecedent having less truth degree than the consequent, the S-implication
computed from the t-conorm assigns to x ⇒ y truth degree max((1 − x), y). While the
R-implication assigns always a truth value of 1 in such cases. Moreover, when x > y, the S-
implication takes values higher than y (take x = 0.6, y = 0.3, the S-implication x ⇒ y truth
value would be 0.4, while residuum x ⇒ y would be 0.3). The conclusion is that given the
truth values of antecedent x and x ⇒ y using S-implication, is not always possible to compute
a lower bound for consequent y, hence not respecting deductive modus ponens argument of
classical logic.

Inside theKE, logic rules containingR-implication statements are treated alongside disjunctive
clauses, the main difference resides in the way the Clause Enhancer increases the truth value of
those rules. Indeed, it has been implemented an ad hoc Residuum Clause Enhancer (RCE),
which makes use of RBF to increase the truth values of R-implication formulas.
It is important to note that, for every implication formula φ ⇒ ω, having ω to be written
in CNF leads to rewriting the formula as

∧

i

(

φ ⇒ ωi

)

where ωi is the i-th clause of ω. On
the other hand, having φ written in disjunctive normal form (DNF) allows us to equivalently
write φ ⇒ ω as

∧

i

(

φi ⇒ ω
)

where φi is the i-th conjunction. As it has been explained in the

†note that ty = maxm
j=1

yj by definition of Gödel t-conorm
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first chapter, KENN aims to validate all logic rules injected during the definition of the model,
meaning that, given a conjunction of implication formulas

∧

i

(

φi ⇒ ωi

)

eachφi ⇒ ωi can be
seen by the architecture as different formulas to be independently manipulated. This means
that the irreducible implication formulas that the KE has to handle are written in the form
∧

i φi ⇒
∨

i ωi, such that on the antecedent appears just a conjunction of literals while in the
consequent a disjunction of literals.

4.3 Residuum clause enhancer

In this new architecture, the KE sums together all the modifications suggested by all clause en-
hancers created for each logic rule specified in the definition of the knowledge. At this level of
computation, KE doesn’t treat the deltas differently based onwhether they come from implica-
tion formulas or not. Indeed, the updating rules 3.4 and 3.5 don’t change in the newResiduum
KENN, where the different treatment reserved to the two kinds of logic rules, disjunctive
clauses and implication statements, is carried out at CE level. It is the task of the Residuum
Clause Enhancer to improve the truth degree of implication formulas, (even though it doesn’t
handle clauses anymore, the word clause has been kept in the name to underline the similarity
with original clause enhancer), and it is the duty of KE to create a dedicatedCE for each type of
logic rule in the injected knowledge. As done for disjunctive clauses, also RCEs exploit boost
functions to improve the validity score of implication formulas, by using an RBF.
To show how modifications are proposed by the RCE, consider a matrix z ∈ R

n×m repre-
senting them classes preactivations computed by the underlying NN for the n samples si, the
computation of a δc[si] relative to the grounded implication formula c[si] having antecedent
predicatesA ⊆ {P1, ..., Pm} and consequent predicatesQ ⊆ {P1, ..., Pm}, is defined as:

δc[si],Qj(si) =



























max

(

min
(

wc,min
|A|
w=1

(

Aw(si)
)

−Qj(si)
)

, 0

)

if j = argmax
|Q|
i=1Qi(si), Qj ∈ c

−max

(

min
(

wc,min
|A|
w=1

(

Aw(si)
)

−Qj(si)
)

, 0

)

if j = argmax
|Q|
i=1Qi(si),¬Qj ∈ c

0 otherwise

(4.4)
wherewc is the learnable parameter relative to formula c.

Note that, this definition respects the notion of the residuum boost function, since when the
truth value of antecedent predicates (computed by minimum function, i.e. Gödel t-norm for
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conjunction) is lower than the maximum of the consequent (Gödel t-conorm), then
min

|A|
w=1

(

Aw(si)
)

−Qj(si) < 0 and the proposed modification is 0. Otherwise, the modifi-
cation is the minimum between the difference of their truth values and the weight wc, which
by definition respects the constraint exposed when definingminimal residuum boost function
(4.2). In other words, the task of RCE is to bring the truth degree of the consequent side of
implication closer to that of the antecedent side, if it is not already greater.

To conclude, the new architecture exploits the residuum instead of material implication to
interpret conditional statements, and it does so by adding a new component, the Residuum
Clause Enhancer. This component implements a different boost function specific to improv-
ing residuum outcome. The KE behavior doesn’t change in terms of computations, it contin-
ues to sum up all modifications returned by the whole set of clause enhancers without concern
about which type of boost function they carry out, the only difference is that now KE must
create the specific sub-components according to which logic rule it has to validate.
The following chapter will focus on the experiments done to empirically verify what are the
advantages of adding this interpretation for implication rules and in which situations it is par-
ticularly useful. Since this kind of interpretation makes use of a boost function that modifies
just the consequence, it is possible to tell the model which predicates are the ones that could
be modified and which ones can instead be assumed. It is going to be shown how this innova-
tionmade the model applicable to tasks that couldn’t be approached before, presenting results
comparable to other neuro-symbolic methods.
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5
Experiments

In this chapter will be discussed the experiments done to test the capabilities of the imple-
mented Residuum KENN model. The chapter is divided into four sections. The first two
sections are dedicated to experiments already approached by KENN, consisting of the Citeseer
dataset and Visual Relationship Detection for spatial predicates. These first two tasks are on
the set of experiments that require prior knowledge to correct predictions. Here, the aim of
KENN is to supervise NN predictions by applying modifications to the predicates according
to the logic rules.
Going further, in the following two sections are presented experiments not yet approached by
KENN:MNIST addition andVisual Sudoku. These tasks are distinct from the previous two.
The objective is to perform further reasoning starting from the information returned by the
NN, which remains unchanged by the knowledge. Here the neural and symbolic components
of KENN focus on different parts of the task: the underlying NN takes care of low-level per-
ception, while the KE layers perform the reasoning.
The results have shown that the residuum semantics is particularly beneficial compared to ma-
terial implication when it comes to approaching the tasks requested by the latter type of exper-
iments.
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5.1 Citeseer

The experiment presented is carried out on Citeseer dataset[11]. Section 3.2.5 has already
briefly introduced the task and showed some results obtained by applyingmaterial implication
KENN.
The results obtainedwith theold architecture showed that exploiting logic helped to get a signif-
icant improvement, especially when the comparison with a simple multi-layer perceptron was
done reducing the training set size, meaning that, prior logic could reduce the model’s need
to elaborate a significant amount of training samples in order to reach acceptable classification
scores.

5.1.1 Dataset

The dataset contains a selection of papers, where each of them is represented by bag-of-words
vectors indicating the absence or presence of a word in the paper’s text (with the paper we
indicate all the information regarding it, which comprises the header, the abstract, citations
and full text). The word vocabulary was built by gathering all the words present in the papers
composing the dataset, removing stopwords and words with document frequency less than
10. The result of these procedures is a vocabulary of size 3703 unique words. A document is
encoded by a vector d ∈ {0, 1}3703:

d = [d1, d2, ..., d3703]

where each di gets value 1 if vocabulary word i is in document d and 0 otherwise.
The dataset contains, alongside documents encoding, the representation of the graph indicat-
ing citations among them. In the graph, the nodes represent documents while the edges indi-
cate the citation relationship between them. The papers are a total of 3312 andwere selected by
asserting that each of themwould be cited by at least one other paper, meanwhile, the directed
edges going from paper A to paper B modeling the relation paper A is cited by paper B are a
total of 4732.
The papers are distinguished in 6 classes: Artificial intelligence (AI), Information retrieval (IR),
Machine learning (ML), Agents, Human-computer interaction (HCI), and Database (DB),
and the task is to map each paper to the correct class.
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5.1.2 Experiment

The experiment was firstly carried out bymodifying the one presented in the work Knowledge
EnhancedNeuralNetwork forRelationalDomains[3], convertingmaterial implication logical
rules into residuum semantics.
The original experiment aimed to predict the paper classes by merging the knowledge of their
word composition and citations graph. The idea behind the logic inserted into KENNmodel
was that papers belonging to the same class cite works that are related to them. In first-order
logic, this idea translates into:

Given a topic T ∈ {Agents, AI,ML,DB,HCI, IR} then:

¬T (x) ∨ ¬Cite(x, y) ∨ T (y)

The same reasoning was applied when testing residuum KENN on the same dataset. While
the experimental setup was kept the same, the knowledge was simply translated in such a way
it could be handled by Residuum Clause Enhancers. The modified prior knowledge to be
injected into the new architecture appears as:

T (x) ∧ Cite(x, y) → T (y)

representing the same idea if considering the material implication rule of classical logic, but
leading to different interpretations in a scenario that exploits fuzzy logic semantics.

As previously said, the experiment was initially carried out by the same setup as in the rela-
tional KENN paper. The dataset has been split into training, validation, and test sets. The
performance of the model was analyzed by varying the dimensions of the training set. Since
the whole dataset was split into training and testing, it came up the opportunity to test the
model performance with different approaches of considering train and test sub-graphs. In-
deed, when creating dataset subsets, each containing exclusive documents, the edges that go
from documents belonging to different sets could be either removed or kept during training
and inferenceprocesses. Theprocedureperformedon thedataset resulted fromremoving edges
that connect documents that don’t belong to the same set has been called inductive learning,
while the opposite is named transductive.
The performance of residuum KENN has been evaluated on both tasks separately, using a
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dense multi-layer perceptron (MLP) as underlying NNwith 3 hidden layers, each with 50 hid-
den nodes and ReLU activation function. The NN takes in input the bag-of-words vectors
representing each document, while it doesn’t elaborate the edges (i.e. citations information)
among them. The edges are injected into the relational KENN model by giving as input the
indexes of documents (nodes) that cite each other, as explained in section 3.2.4. TheKE creates
the groundings by considering the pairs of connected nodes and improving the truth value of
the logic rules where the binary predicate Cite(x, y) assumes truth value 1, so only when the
two nodes are linked in the graph.
The experiment was run by selecting as training set the 10%, 25%, 50%, 75%, and 90% of
dataset’s nodes and using three layers of KEs, since in the original experiment it empirically
turned out to be a sufficient amount. For each training subset the learning and evaluation pro-
cedures were repeated 50 times and the average between themwas taken as a reference result in
order to better estimate the expected value of evaluation accuracy, which is a random variable
given the random nature of the training procedure.
The outcome is summarized in the following figures:

Figure 5.1: KENN improvements over underlying neural network

It is easy to see that both material implication and residuum KENN improve the perfor-
mance of the simple NN. The improvements are much more significant when it comes to
transductive learning, due to the fact that the number of edges is higher and, unlike KE lay-
ers, the NN doesn’t exploit information given by them.
The model using residuum couldn’t improve the performance of KENN using material impli-
cation or at least reproduce its results. The plot shows indeed a worsening in the accuracy of
predicting documents topic. What theTBF-basedKEdoes in this experiment is tomodify doc-
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ument preactivations only when they are linked in the graph. Note that, if two nodes x, y of
the graph are not linked it means thatCite(x, y) assumes the minimum possible value. Since
theCite predicate is always negated, all logic rules are automatically satisfied whenCite(x, y)

is false. In such a case, the truth value of¬Cite(x, y) is always the highest. Hence, ifCite(x, y)

is false the KE changes only its value, keeping the document class predictions unchanged. On
the other hand, when two nodes are linked, the binary predicate is the one having the lowest
value, and the truth value of one between ¬T (x) and T (y) is increased, in particular the one
corresponding to the greater preactivation returned by the NN. Then, what actually happens
is that the KE increases the truth value of the predicate corresponding toT (y) (the cited paper)
only when it is higher than the truth value of ¬T (x). On the contrary, it decreases the truth
value of T (x) only when the truth value of¬T (x) is higher than T (y). In other words, a TBF-
based KE improves the document’s predicate corresponding to the preactivation that is more
likely to be the true one, regardless of which is the cited and which is the citing.
When theKEuses the residuumboost function it alsomodifies the unary predicates onlywhen
their respective documents are linked in the graph, but the way it decides the improvements to
apply is quite different compared to TBFs. As explained in the previous chapter, logic rules
with implication inject a direction on the predicates to be modified, so, in this experiment,
only T (y) (the preactivation of document y being of topic T ) is modified, and the cited doc-
ument’s preactivation value is increased to get it as high as the truth value of predicate T (x),
while preactivations of T (x) are never adjusted. In brief, an RBF can adjust the prediction
only for samples y, while a TBF can adjust the prediction for both samples x and y. Note
that both antecedent and consequent predicates are generated by the NN. As a consequence,
there is no reason to trust the antecedent more than the consequent, so applying a residuum
boost function instead of a t-conormboost function doesn’t have an advantage in this scenario.

Since the first results suggested that material implication fits better than residuum interpre-
tation in this task, another approach was tried to improve existing results by mixing the two
types of logical rules in order to exploit both of their strengths.
The idea has been applied in transductive learning and consists of applying the material im-
plication rule when linked nodes belonged to the same set (either training or evaluation sets)
while using residuum implication for nodes linked across sets. More precisely, if two docu-
ments belonged to different sets, the property of RBF to decide which one would be modified
gave the opportunity to change just preactivations of nodes belonging to the training set, with
the goal of facilitating the training procedure. The prior knowledge for this adjusted exper-

31



iment consisted of both types of rules, but this time the binary predicate Cite(x, y) was dis-
tinguished on the three available possibilities: CiteSame(x, y) ifx and y belong to the same set,
CiteTrTs(x, y) if the edge connecting thenodes goes fromtraining to test sets andCiteTsTr(x, y)

if it goes from test to train. The logic rules composing knowledgeK would now appear as:

¬T (x) ∨ ¬CiteSame(x, y) ∨ T (y)

T (y) ∧ CiteTrTs(x, y) → T (x)

T (x) ∧ CiteTsTr(x, y) → T (y)

The experiment has been carried out with the same setting presented previously, but this
time the results are shown using a plot that contains all single run’s results, in order to have a
better overview of the distribution of accuracy scores and deltas resulting from the comparison
with NN performance. The mixed-knowledge KENN outcomes are compared again with the
ones carried out by the model taken as baseline, i.e. material implication KENN.
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Figure 5.2: The histograms showing the result densities obtained on transductive learning for each training dimension. In
the left columns are printed the accuracy scores for each of the three models while on the right are the improvements in
accuracy carried out by KENN models w.r.t. the NN. In green are depicted the deltas computed using material implication,
while in yellow are the ones computed from mixed knowledge and NN.

In the figure emerges that the distributionof improvements compared toNNis clearerwhen
the training dimension is very small. At the same time, it is not that clear whether the use of the
two different sets of prior knowledge makes a difference. Focusing on the delta’s columns, the
curves approximating values distribution are strongly overlapping suggesting that there isn’t a
significant difference in using a knowledge instead of the other, even though in each row the
improvements given frommixed-knowledge KENN seem to have a larger variance.
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Since from that plot isn’t clear which model performed better on average, it is useful to take
a look at the same plot used for the initial experiment:

Figure 5.3: Improvements over the underlying neural network using the new set of logic rules

Here we can see how material implication KENN still performs better than knowledge-
mixed one. Even though the new approach shows some improvements particularlywhen using
90% of the training set if compared to the results in figure 5.1 (that is what was expected to be
seen since it made use of material implication for a subset of nodes) it still hasn’t been enough
to reach baseline KENN performance.

5.1.3 Results discussion

In this first experiment, the results obtained weren’t the hoped ones, given that the modifica-
tions implemented in the KENN architecture during this work didn’t turn out to be useful
for improving the results. However, it is worth noticing that the new architecture of KENN
doesn’t actually performworse since it can still reproduce the results of classic KENNby inject-
ing just material implication rules. Hence, it would be more correct to affirm that residuum
logic rules, and not residuumKENN,makeCiteseer predictionsworse. Moreover, theCiteseer
experiment was useful for giving a hint on which kinds of scenarios are more adapted for ma-
terial implication rules instead of residuum ones and inspired thinking on practical differences
in the behaviors of these two approaches. The outcomes suggested that in situations where the
classes to predict appear as multiple predicates in the same logic rule, then the idea of increas-
ing the truth value of themost ”probable” onewithout distinguishing between antecedent and
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consequent predicates is a better approach, due to the fact that there isn’t amore reliable predic-
tion that can play the role of a trusted assertion. Therefore, when the classifier’s preactivations
are all of the same level of quality, it is more advantageous to improve them through TBFs.
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5.2 Visual relationship detection

Visual RelationshipDetection is a computer vision task regarding the understanding of spatial
relations or interactions between objects in images or video. Visual relationships are not a new
concept. The task of predicting relationships from detected objects was formalized in Lu et al.
(2017) [12], which introduces a dataset that presents a variety of relationships per object type.
Before that, the use of visual phrases describing relations between entities was already used for
improving other computer vision tasks such as object recognition [13], or image retrieval [14].
From then on, visual relationship detection (VRD) has seen a rapid evolution. To tackle the
problemmany neuro-symbolic approaches has been defined. Donadello and Serafini [15] used
LogicTensorNetwork for the detection of unseen visual relationships, by assuming that logical
knowledge allows to explicitly state relations between subjects/objects and relation predicates.
KENN has been evaluated on a VRD dataset by Daniele and Serafini [1].
Continuing on this trend, in this work residuum KENN is evaluated on 2.5D visual relation-
ship detection dataset (Su et al. [16]). This dataset extends the classic formalization of visual
relationship detection by adding predicates regarding depth (that is why 2.5D). The reason for
the choice of this dataset is that logic knowledgeworking along visual perception could be help-
ful in understanding depth relations (for example, a further object appears smaller than a closer
one).

5.2.1 Dataset

The 2.5D-VRD dataset is made from images of Open Images V4Dataset (OID)(Kuznetsova
et al., 2020) [17]. The dataset contains 110.894 images for 2.5VRD annotation, each image
contains bounding boxes annotating the objects of 600 classes from OID. A bounding box
is referred to by 4 coordinates, indicating the corners inside which the detected object is con-
tained. For each image, the dataset contains information regarding bounding box coordinates
alongside the class of the object contained in them. Separately are indicated the labels of predi-
cates for each pair of objects. The spatial predicates introduced in this VRD dataset are depth
and occlusion. For each pair of objects a predictor is expected to guess which one is closer
to the camera’s point of view and, if they are overlapped, which are the occluded and the oc-
cluding. The dataset proposes two sub-tasks, within-image and across-image prediction. In
within-image, the relationship’s predicate prediction is done on objects that are in the same
image. In the across-image task, the objects compared come from two different images. Here
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the occlusion predicate loses meaning, so the only predicate to be predicted is the distance rela-
tionship in relation to the respective points in which the photos were taken.
For each predicate a model should tell which is the closer and further object, or if they are at
the same distance. The dataset contains also ”unsure” labels, but those kinds of samples were
removed to simplify the classification task. The same thing applies to occlusion predicate: if
the model detects an occlusion it has to specify which object occludes the other or if they mu-
tually occludes each other, otherwise it should predict ”no occlusion”. Here is an example of
an image taken from both within-image and across-image tasks:

Figure 5.4: Within‐image example on the left, across‐image on the right. With relative annotations.

For this task, the article collecting the dataset presents a two-stage approach: object detec-
tion and predicate prediction. The dataset contains row images and labels either for objects
bounding boxes and relationships. One could either use an end-to-end approach that starts
from detecting the object and later predicts the relations from the detected objects. A simpler
task assumes labeled bounding boxes to be given as input to the model, which would then per-
form just predicate prediction.
In this experiment, since thematter of interest was using prior knowledge to understand spatial
relationships, I followed the second approach, using bounding box truth coordinates as input
as well as their ground truth labels. Also, it was taken a subset of the images composing the
2.5D-VRD training set, while validation and test sets were kept the same. For thewithin-image
task, the train set contains 10.559 visual relationships, which means 21.123 object bounding
boxes, while in the across-image it is smaller and contains 520 pairs of images and 10.562 ob-
jects.
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5.2.2 Experiment

During the learning and evaluation procedures, the only information made available to the
predictors were objects bounding box coordinates. Since the across-image task didn’t achieve
worthy results, the results showed are the ones that occurred in the within-image task, which
turned out to bemore adapted for prior knowledge definition. The ideawas to exploit informa-
tion about bounding boxes to correct occlusion predictions, affirming that object bounding
boxes that overlap (i.e. the intersection area is higher than a threshold parameter) imply that
there is occlusion between the two objects, even though it doesn’t explain which object oc-
cludes the other, so there are used together intersection information computed from the input
and distances prediction returned by underlying NN. The logic rules designed for this experi-
ment are:

• Intersection(x) ∧Object1Closer(x) → Object1Occludes(x)

• Intersection(x) ∧Object2Closer(x) → Object2Occludes(x)

• Intersection(x) ∧ SameDistance(x) → MutualOcclusion(x)

• ¬Intersection(x) → NoOcclusion(x)

where x represents a pair of objects. Intersection(x) is the predicate manually computed
from the bounding box coordinates. All the others instead, assume truth values according to
NN predictions. For material implication KENN, the adjusted rules are:

• ¬Intersection(x) ∨ ¬Object1Closer(x) ∨Object1Occludes(x)

• ¬Intersection(x) ∨ ¬Object2Closer(x) ∨Object2Occludes(x)

• ¬Intersection(x) ∨ ¬SameDistance(x) ∨MutualOcclusion(x)

• Intersection(x) ∨NoOcclusion(x)

In the sameway, as it was done forCiteseer experiments, themodels were evaluated on differ-
ent amounts of the training set. Once again, symbolic information turns out to be an effective
ingredient when the amount of data available for learning is reduced. By evaluating the whole
training set, we allow theNN to learn the logic behind data,making it redundant to inject prior
knowledge.
The baseline NN, and also the one underlying KENN prediction, used for this experiment is
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a basicMLPmade of two linear layers and dropout. The KENNmodel is evaluated both with
residuum semantics and material implication rules.
The experiments were performed using 1%, 5%, 10%, and 20% percent of the training set.
This time, the metric used to assert the quality of the results has been F1-score, due to the un-
balanced nature of the dataset. All the experiments have been running for 100 runs. To assert
the significance of the experiment a t-test was performed by comparing the populations con-
sisting of the results returned by the MLP and KENN models. The metric used to test the
significance of obtained outcomes was the p-value computed from the t-test which refers to
the probability that the results occurred by chance. Since they are a probability, p-values are in
interval [0, 1], so low p-values indicate the data did not occur by chance. For our experiments,
we consider them reliable if the related p-value took a value below0.05. The p-values computed
are all less than 10−5, so the results are considered significant.
The results obtained are summarized in the following four tables, each for one percentage of
the training set.

Models F1-score distance F1-score occlusion
MLP 59.1% 71.3%

residuum 59.8% 77.0%
material implication 59.9 77.1%

Table 5.1: 1% of training set, 100 runs

Models F1-score distance F1-score occlusion
MLP 62.8% 72.7%

residuum 61.3% 77.4%
material implication 62.7% 78.1%

Table 5.2: 5% of training set, 100 runs
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Models F1-score distance F1-score occlusion
MLP 66.8% 74.4%

residuum 66.3% 79.0%
material implication 66.5% 78.1%

Table 5.3: 10% of training set, 100 runs

Models F1-score distance F1-score occlusion
MLP 68.2% 75.5%

residuum 68.1% 79.5%
material implication 66.9% 78.0%

Table 5.4: 20% of training set, 100 runs

In the table are reported f1-scores of distance and occlusion prediction. Even though logic
rules defined for this problem only attempted to improve occlusion prediction, also distance
f1-scores are printed. That is because, unlike residuum KENN, in the material implication
model the Clause Enhancers could possibly decide to modify preactivations of the antecedent
side, which involves distance predictions. Hence, there was a reason to check whether the ma-
terial implication model could perform better on distance predicates.
Getting into the results achieved, it is possible to see howbothKENNmodels could give a boost
to the MLP performance for the occlusion predicate. In the first evaluation involving just 1%
of the training set (which is about one hundred samples), neuro-symbolic models reached an
f1-score of 77% that significantly improves the one carried out by the MLP which is just a
71.3%. By increasing the quantity of training sets the pattern remains the same. The MLP
improves its results together with KENN models, but its performance grows slightly faster if
compared to KENN. As expected to be seen, the neural-onlyMLP is more data-demanding, it
reaches 75.5% f1-score with 20% of the training set, for a total improvement of 4.2%. While
residuumKENNalready starts by 77% and increases its score to 79.5%with a smaller improve-
ment (but a better final result) of2.5%. This shows again howaddingprior knowledge removes
the need to see data. This is proven by the fact that neuro-symbolic models using 1% of the
training set performed better on occlusion prediction than anMLP trained on the 20%.
About the comparison between the KENNmodels, what emerges from the tables is that mate-
rial implication doesn’t seem to improve the results for the distance predicate. Remember that
KENN modifies predictions returned by the underlying NN. So, if the NN classification on
the distance predicate is too unreliable, the errors are spread also on the final enhanced pre-
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dictions. For occlusion prediction, the two models stabilize on similar performances, with
residuum KENN showing better f1-scores on evaluations with 10% and 20% of the training
set, with a difference of 0.9% and 1.5% respectively. It possibly means that using a boost func-
tion only working on the consequent side of the implication arrow, could have helped in oc-
clusion predicate predictions.

5.2.3 Results discussion

Visual relationship detection experiment confirmed the hypothesis also suggested by the Cite-
seer experiment, regarding the fact that in KENN residuum semantics aren’t a revolutionary
tool compared to material implication interpretation if exploited in a scenario where the goal
is to correct neural network predictions. The results showed that residuum KENN can im-
prove neural network predictions, especially in situations where the amount of data available
for learning is not big enough. This is not an upgrade from the original KENN using the ma-
terial implication rule, which also in this experiment could confirm the same ability. However,
it is worth noting that in this situation, differently from the Citeseer experiment, the model
performing slightly better here is residuum KENN. An explanation comes from the reasons
presented in the introduction of chapter 4 for the implementation of residuum semantics: the
way that the residuum boost function allows to ”direct” changes in the preactivations. Hav-
ing residuumKENN focusing on changing only occlusion predictions, causes it to have better
performance on them, without losing ”quality” on distance predicates which were already low.
As we can see, when the task requires working onNN predictions, and not using them for fur-
ther reasoning, it is impossible to definitively tell which kind of implication interpretation is
the best one.
Visual relationship detection was a task that opened many other possibilities for evaluating
KENN. During the work, many ideas have been attempted to reach better results in distance
predicate and in the across-image task. Even though those attempts didn’t lead to good results,
either due to the nature of the dataset or for current limits of KENN architecture, they could
possibly be an incentive for future works or architecture upgrades. Logic rules that could sim-
plify prediction were added also for the distance predicate. The first idea was that, at parity of
object class, a smaller bounding box could indicate a further object. Another one was that, for
perspective reasons, a bounding box starting lower in the image, could possibly mean that the
object is closer to the camera.
In the across-image task, given that it is impossible to define logic rules inspired by geometric
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reasoning, it was made an attempt to insert in the model the logic of transitive property. In
the across-image dataset, the same object is compared to the other ones multiple times, so the
ideawas tomake predictions that respect the transitive relations in distance comparisons. Since
transitive relation requires three variables, which isn’t (yet) supported byKENN, a trick was to
use as a domain triplets of objects, interpreting the distance relation as an unary predicate. For
instance, the predicateAB(x) would mean ”the objectA of triplet x is closer than the object
B of triplet x”. The results weren’t as good as expected. The weak predictions on the distance
predicate caused a high propagation of errors in the KE layers. However, this attempt could
possibly motivate further implementations in KENN architecture that could permit it to han-
dle logic rules involving more than two variables.
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5.3 MNIST addition

The following experiments were designed to be more adaptable for a residuum approach in or-
der to better highlight its properties. The next two sections show how the focus moves from
modifying NN predictions to using those predictions as a means for carrying out further de-
ductions that aren’t directly faced by theNN.The third experiment regarded the evaluation of
KENNonMNIST addition. The idea was conceived to test ResiduumKENN’s ability to em-
ulate logical reasoning skills. This task was originally formulated in (Manhaeve et al. 2018)[18]
and is an extension of the classic learning task on theMNISTdataset (Lecun et al. 1998)[19] to
a more complex problem that requires reasoning. TheMNIST dataset is composed of 70.000
examples of handwritten digits data each provided by 28×28 pixel grayscale image. In the re-
formulated task, instead of using labeled single digits, the training procedure is done on a pair
of images labeled with the sum of individual labels. This demands further reasoning compared
to the low-level perception required to recognize digits, which is already well handled by deep
learning models. Even though digit sum can be directly learned by a standard neural classifier,
addressing the higher-level reasoning with logic rules defining the addition operation leads to a
better generalization. For example, if we also add logic rules for the sum of two-digit numbers,
the model would continue to function without necessitating retraining. The same is not true
for a neural classifier.
The implementation of residuum opened the way for KENN to approach the addition task,
bringing it to the same level as other neuro-symbolic methods. Here, residuum semantics al-
lows defining addition rules by using sum predicates as consequences of the perceived digits.

5.3.1 Dataset

The experiment’s dataset was built by customizing the original MNIST dataset, where each
sample would now consist of a pair of digits images labeled by their sums. In our dataset, there
are 3000 samples for the training set and 5000 for testing. Each sample was built by randomly
choosing two images from theMNIST dataset and computing their sum from the digits labels.
Note that, in this experiment digits labels are assumed to be unknown, so a single MNIST
addition example would look like a triplet (x, y, z):

( , , 11)

where x and y are images ofMNIST handwritten digits, and z is a label representing an inte-
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ger in the range {0, ..., 18}.
The results carried out by residuum KENN were compared with ones obtained by another
neuro-symbolic method called iterative local refinement (ILR) introduced in (Daniele et al.
2023)[6], that integrates refinement functions for different fuzzy logic operators as a neural
network layer to efficiently find refinements for logical formulas of any complexity.

5.3.2 Experiment

To perform the experiment it was firstly necessary to feed into the KE a prior knowledge defin-
ing addition. Consider a triplet t = (x, y, z), where x, y are images of theMNIST dataset and
z is the sum of their labels. We can define predicates representing digits and their sum. The list
of predicates injected in the model is:

{X0(t), ..., X9(t), Y0(t), ..., Y9(t), S0(t), ...S18(t)}

whereXi(t) stands for ”digit depicted in image x of triplet t is i” and similarly Yi(t) refers to
image y. The predicates Si(t) stand for ”sum of digits depicted in images x and y of triplet t is
i”. Given those predicates, each rule was then built by combining each possible pair of digits
and specifying on the consequent side the respective sum. The whole set of logic rules would
result in:

∀i, j ∈ {0, ..., 9}

Xi(t) ∧ Yj(t) → Sumi+j(t)

This time the KE doesn’t work, as previously done, on preactivation space, but instead ma-
nipulates directly class values returned by the softmax activation function. In this way digits
predicates Xi(t) and Yi(t) can only assume values in interval [0, 1]. The truth values con-
cerning sum predicates are manually initialized to 0 (False). Thanks to the definition of the
residuum boost function, they can increase until they reach theminimum value between pred-
icatesXi(t), Yi(t). In this way, only when it happens that both image labels are correctly pre-
dicted then the predicate corresponding to their sum would be the higher value. Differently
fromCiteseer, here the predicted values are computed directly and only by the symbolical side
of KENN. In this task, the NN’s job only regards perception on images while the reasoning
behind sum computation is carried out exclusively by the KE layers using a residuum boost
function.
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In this experiment, the role of perceptionwas playedby a convolutional neural network (CNN)
made by three convolutional layers interpolated by two maximum pooling layers using ReLu
activation function, followed by a sequential classifier consisting of two layers also using ReLu
activation. The whole architecture KENNwas completed by adding three KE layers on top of
the CNN. Data samples were elaborated separately by the CNN which returned two vectors
x,y ∈ [0, 1]9, which were then fed into the KEs and concatenated to the zero-vector of sums.
The model then returned the ”enhanced” sums vector from which the loss is computed.
The evaluation was run 10 times with batch size 128 and number of epochs 40, using Adam
optimizer and learning rate 0.01. There were evaluated the quality of predictions regarding
sums and single digits. As evaluation metrics were used accuracy score for sums and f1-score
for digits prediction. The obtained results are the following:

Model Sum accuracy Digits F1-score
ILR 92, 4%± 3.5 96.1%± 1.9

residuum KENN 91.1%± 1.7 95.7%± 0.8
material implication

KENN 10.4%± 0.0 2.6%± 0.0

Table 5.5: The table compares ILR, residuum KENN, and material implication KENN average results obtained in the MNIST
Addition experiment. 10 runs

In the table, we can see how KENN using material implication couldn’t solve the task. On
the other hand, residuum KENN could reach metrics scores roundly close to ILRs, meaning
that residuum semantics could accomplish the task of MNIST addition. Since the results of
ILR and residuum KENN are pretty close to each other, a significance test was carried out to
make further conclusions on which of the two models performed better.
A t-test was used to compare if the differences between averages of results obtained in each
evaluation run arose from random chance or were reliable. The p-values were computed by
comparing the results obtained by ILR and residuumKENN in each run. The p-value for the
accuracy scores is 0.313, while for f1 scores is 0.630. Meaning that it was concretely probable
that the averages obtained were given by random chance. This doesn’t mean that the results
aren’t significant, but simply that it cannot be said with certainty that ILR performance was
better just because it presented higher means.

To have lower p-values and consequently more significant results, I decided to increment the
number of runs for evaluating the performance, bringing it to 30 runs. This time, the obtained
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averages were:

Sum accuracy Digits F1-score
ILR 85.0%± 20.8% 83.8%± 31.9%

residuum KENN 85.3%± 20.3% 89.3%± 23.1%
p-value 0.403 0.323

Table 5.6: Results of the same experiment showed in table 5.5, but this time computed on 30 runs.

This table presents very different results compared to before. Indeed, we can see a strong
decrement in both accuracies and f1-scores, followed by an even higher increase in the standard
deviation. This consequently brought the p-values to result higher thanwe expected, given the
high standard deviations.
By analyzing every single run can be noted few outliers that highly drop qualities of digits clas-
sification (and so decreases also sum classification) to be around 1%. This behavior regarded
both ILR and residuum KENNmodels, and to better understand its nature, it is here shown
the related confusion matrix.

Figure 5.5: Confusion matrix on the MNIST classification for a local minimum

During the learning process, the underlying CNN gets stuck on a local minimum, where it
recognizes each digit either as the correct digit minus one or plus one. Then, themodel obtains
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the correct prediction in close to 50% of the cases. For example, suppose the digits are a 3 and a
5. The 3 is classified as a 2 or a 4, while the 5 is classified as a 4 or a 6. If themodel predicts 2 and
6 or 4 and 4, it returns the correct sum (8), otherwise, it does not. This problem was already
pointed out in (Daniele et al. 2023)[6] for ILR. It was interesting to see that also residuum
KENN presents the same issue with a similar frequency. In 30 runs ILR got stuck in a local
minima three times while two times for residuum KENN. The sample size is still too small to
conclude that KENN is less prone to these local minima, even though the standard digits f1-
score in the table presents a higher value and a less standard deviation for residuumKENN, the
p-value is still too high (0.32) to draw definite conclusions.

5.3.3 Results Discussion

During this experiment the performance of residuum KENN reached that of ILR, confirm-
ing the belief that adding residuum semantics in KENN couldmake it able to perform further
reasoning starting from low-level perception. Even though it doesn’t remove local minimum
issues, it is further interesting to see if on a larger enough sample size which of the two models
is less prone to getting stuck in them. This test wasn’t carried out due to the amount of com-
putational time required to have a sufficient amount of runs that could empirically prove the
existence of a significant difference between KENN and ILR. This experiment could be a new
goal for future work.
The presented task was tried to be approached also by the original KENN architecture, but its
results weren’t shown given its inability to learn the addition operation by defining it just using
material implication. This experiment showed therefore in what kind of scenarios residuum se-
mantic is a great graft for KENN. The satisfactory results obtained in this experiment by the
application of the residuumboost function suggested further analysis and testing of those new
capabilities of KENN.
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5.4 Visual sudoku

Visual Sudoku Puzzle Classification (ViSudo-PC)[8] is a neuro-symbolic task, which consists
of determining whether a completed Sudoku puzzle is correctly solved. Sudoku is a puzzle
game in which there is a 9×9 grid, called a “puzzle” or “board”, in which each cell is populated
with numbers 1–9. A puzzle is correct if no row, column, or non-overlapping 3×3 sub-grid
(or “block”) contains the same number.
Thepuzzle is built fromfour canonical visual datasets, that areMNIST,KMNIST[20], FMINST[21],
and EMNIST[22]. For a 9×9 puzzle, the first nine characters are taken from these datasets and
used to fill the puzzle. As in MNIST addition, the model that approaches the problem firstly
has to correctly recognize character and then exploit logic reasoning to determine the correct-
ness of the puzzle, which is the only property given as supervision during the learning phase
(digits true labels are hidden to the model).
This experiment was used to test the abilities of residuumKENNon approaching amore com-
plex task compared to addition.

5.4.1 Dataset

ViSudo-PC dataset contains completed Sudoku puzzles along with their classification: ”cor-
rect” if solved, ”incorrect” otherwise. Each cell of the puzzle instead of containing symbolic
information (e.g. digits labels) is provided in the form of an image depicting digits or charac-
ters based on the reference dataset from which puzzles were built. The data sources that were
used to create the puzzles are:

MNIST Samedataset used for addition, composedby70.000 samples of28×28pixel grayscale
images depicting handwritten digits.

EMNIST Stands for extendedMNIST. It introduces additional examples of handwritten dig-
its as well as examples of handwritten English letters. The dataset contains a total of
814.255 characters. The digits are more frequent than letters and the number of im-
ages per letter is uneven since they roughly equate the frequency of use in the English
language. The dataset is available in ByClass and ByMerge splits. Which have a differ-
ent amount of classes because in the ByMerge version capital and lowercase letters are
merged in the same label, while in ByClass the same letter has a lowercase and a capital
label.
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KMNIST Kuzushiji-MNIST contains 70.000 28×28 grayscale images, perfectly balanced
like the original MNIST dataset, spanning 10 classes taken from Hiragana, a syllabary
part of the Japanese writing system.

Figure 5.6: Example of KMNIST images

FMNIST Fashion-MNIST is a dataset containing articles taken from an online retailer’s shop-
ping list. Images consist of a training set of 60,000 examples and a test set of 10,000 ex-
amples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.

Figure 5.7: Example of FMNIST images

As previously said, those datasets are just the foundations of the ViSudo-PC dataset, which
deserves a thorough description. No matter which kind of dataset is chosen as a character
provider, ViSudo-PC presents different splits and subtasks that are independent of the type
of images.
In the first place, the dataset offers also a tinier version of the original 9×9 version, made of
4×4 puzzles and thought to relieve the computational load that 9×9 requires.
To construct each puzzle, a set of cell labels respecting all Sudoku’s constraints is randomly gen-
erated, and then the images corresponding to those labels are assigned to each cell (cell labels are
kept hidden). The pools of images for each cell label are never shared between train, validation,
and test splits. To generate incorrectly solved puzzles existing correct puzzles are corrupted (a
random generation of incorrect puzzles would have many mistakes). Puzzles are corrupted via
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substitution or replacement, which means that puzzles can be corrupted either by swapping
two random cells in the same puzzle or by randomly choosing a location in the puzzle and an
alternate label. The number of corruptions made into a correctly solved puzzle is determined
by a geometric distribution.
Puzzles can possibly share the same images with each other. In such a case, the connectivity be-
tween puzzles is determined by an overlap parameter ω. Considering a pool of images I , ω|I|
images are randomly sampled from I and added to it, meaning that the new collection would
be I + ω|I|. Adding overlap allows the predictor to recognize the same entity being used in
the same or different puzzles.

The dataset provides five different tasks to provide increasingly difficult problems. In each
of them, the goal remains to classify Sudoku puzzles as correct or incorrect, but it varies the
exact method of choosing data sources and cell labels.

Basic In the basic task a single data source is specified, and the first d characters of that data
source are used to fill the puzzles. The images replacing cell labels are chosen randomly
from the pool of images taken from the data source selected.

PerSplit This task generalizes the Basicmethod by randomly selecting, from the specified data
source, the d cell labels to use inside a single split. In this way, each split uses a different
set of labels, so the challenge is now that any architecture approaching this task must be
effective on several types of images, and not specific to one label set.

PerPuzzle Here the idea is the same as the PerSplit method, but this time the cell labels (and
the corresponding images) are randomly selected for each puzzle. The difficulty here is
that, if the pool of cell labels is sufficiently large each cell label may be represented by
even fewer examples than in PerSplit. Meaning that for this task, a predictor should rely
mostly on symbolic information instead of learning an image classifier on the train split

PerCell In this task instead of limiting in each puzzle the use of d characters, the cell label
is randomly chosen for each cell in each puzzle, meaning that it can use up to d2 cell
labels. Even though more than d characters are used, the constraints to respect remain
the same, but this task takes the idea of having fewer examples of each cell label even
further to complicate the role of an image classifier.

Transfer learning The last task is transfer learning, The same process used for Basic is used
here, except that two disjoint sets of cell labels are chosen, one for training and another
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one for test and validation, making symbolic reasoning a necessary component for ap-
proaching the problem.

The tasks refer to themethod of building the puzzle, but they all share the same structure on
which data are organized. Each split set row is a tensor inRd2×28×28 where d2 is the number of
cells in the puzzle and 28 × 28 the dimension of the image depicting the character in the cell.
So, a set containing n samples would be represented by a tensor inRn×d2×28×28.

5.4.2 Experiment

Residuum KENNwas evaluated on Basic and PerSplit tasks on 4×4 puzzles. The data source
considered for these experiments was only theMNIST dataset. Indeed, the main focus was on
symbolic reasoning rather than low-level perception. The experiment was taken on these two
tasks to investigate the order of improvements carried by the injection of symbolic reasoning
and whether this gap would expand by increasing the difficulty of the problem.
Logical rules should codify that the same digit (character) cannot appear twice in the same row,
column, and block. The most straightforward way to decide whether a Sudoku is correctly
solved is to check for the existence of at least one occurrence that doesn’t respect the constraints
and classify it as incorrect. So, considering a 4×4 puzzle S, the predicates Pci(x) with ci ∈

C = {c1, c2, c3, c4} states ”cell x contains character ci”. We have to check that for all pairs of
cells in the puzzle that are on the same row, column, or block there isn’t the same characterC .
Otherwise, the puzzle is incorrect. We can do that in the following way:

∀x, y in S

∧

c∈C

Pc(x) ∧ Pc(y) ∧ Connected(x, y) → Wrong(S)

withConnected(x, y)meaning that x and y are in the same row, columns or block:

Connected(x, y) ↔ SameRow(x, y) ∨ SameColumns(x, y) ∨ SameBlock(x, y)

The formula contains the binary predicate Connected(x, y) which can be handled by the
relational version of KENN. However, it was decided to bypass the procedure of drawing a
graph connecting cells that are in the same rows, columns, or squares. Moreover, since each
sample of the dataset is a list of images for each cell of the Sudoku puzzle, the groundings for
a variable x in the KE would represent a whole Sudoku puzzle and not a single cell in it. The
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cells would instead be represented by the columns returned by an underlying CNN carrying
the task of low-level perception. Each of them takes 4 possible values (the number of characters
that could be in each cell), for a total of 16×4 predicates. Each column in theCNNprediction
could then be interpreted with the predicate Pj,ci(x) stating ”in puzzle x, the cell j contains
character ci”. Given the structure of the dataset and the consequent CNN output, a possible
solution that could be handled by theKE layerswas to compute all possible unique pairs of cells
without repetition that are on the same row, column, or square. After that, rewrite the formula
for validity check without using binary predicates, but by considering from the beginning just
the pairs of cells for whichConnected(x, y) is true.
Calling A the set containing all possible pairs for which Connected(x, y) is true, the rules
would be:

∀ Sudoku puzzle x
∧

ci∈C

∧

j∈A

(

Pj1,ci(x) ∧ Pj2,ci(x) → Wrong(x)
)

Note that in this formula, a single constraintPj1,ci(x)∧Pj2,ci(x) → Wrong(x) constitutes
a logic rule to be elaborated by the KE. To verify the validity of a Sudoku puzzle is necessary
to verify the truth value of all those rules. As done forMNIST addition,Wrong(x) predicate
are manually defined and initially set to 0, and truth values of predicatesPj,ci(x) are in interval
[0, 1] (due to softmax activation function in the CNN). If the antecedent of the implication
has a high truth value, meaning that a constraint isn’t respected, then the KE would increase
the value ofWrong(x) to be as high as the antecedent. However, in the practical application
of residuum KENN, putting all logic rules for each pair of cells in the same layer turned out
to be a problem. Since the KE proposes the changes for all the logic rules simultaneously, the
total increment for the predicateWrong(x) resulted to be much higher than the one it was
supposed to be. For instance, consider just the constraints regarding the first row containing
two 1, which are:

• P1,1(x) ∧ P2,1(x) → Wrong(x)

• P1,1(x) ∧ P3,1(x) → Wrong(x)

• P1,1(x) ∧ P4,1(x) → Wrong(x)

• P2,1(x) ∧ P3,1(x) → Wrong(x)

• P2,1(x) ∧ P4,1(x) → Wrong(x)
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• P3,1(x) ∧ P4,1(x) → Wrong(x)

Let’s say that the underlying CNN predicts 1 to be in cell 2, resulting in a high truth value
of predicateP2,1(x), let’s say 0.9. At the same time the CNN is not sure of 1 being in the other
cells of the first row, so predicatesP1,1(x),P3,1(x),P4,1(x)would all get low truth values, such
as 0.1. Relying on the predictions of the underlying CNN the first row of the puzzle would
be correct, so after the elaboration carried out by the KE,Wrong(x) should have a low truth
value. Instead, what happens is that the KE computes deltas for each of the six constraints
and then increases the value of the consequent predicate using all of them. Referring to the
example, since the truth value of the antecedent conjunction would be 0.1 in each rule, the KE
would propose to apply an increment of 0.1× 6 on theWrong(x) truth value, bringing it to
0.6. Which is much higher than desired. To solve this problem, each logic rule was assigned
to a specific KE layer. In this way, the constraints and the relative increment could be handled
one at a time. If we consider the example, after applying the first constraint,Wrong(x)would
be incremented to 0.1. Now, the following constraints wouldn’t affect its value since the pred-
icate had already reached a truth value equal to the antecedent conjunction one.

Considering all pairs for a 4×4 puzzle, the KENN architecture designed for the experiment
would have 288KE layers (4 character times 6 pairs times 4 (number of rows), all multiplied by
3 to consider also columns and squares). The CNN underlying KE layers are made of 2 con-
volutional layers interspersed with max-pooling layers and ReLu activation function, followed
by two sequential linear layers with 4 output neurons in which is applied softmax activation
function.
In the Basic task, the experiment was carried out using different sizes of the training set. In one
case all the splits were merged, making the training set contain 2200 samples as much as the
test set, while the same evaluation was done using just one split, for a total of 200 samples for
training and 200 for testing. The results obtained by residuum KENN were compared to the
ones obtained just by the CNNunderlying it. The results obtained have been computed by av-
eraging the accuracy scores of 10 runs and are shown in the following table. The p-values have
been computed by performing a t-test on the two populations consisting of accuracy values
obtained from the CNN and residuum KENNmodels. The same test was repeated for both
training sets.
At the bottom of the table is showed also the results of material implication KENN, which
reaffirms its unsuitability for this type of task.
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Accuracy train set 200 Accuracy train set 2200
CNN 52.3%± 3.0% 72.3%± 14.7%

residuum KENN 76.4%± 12.7% 93.2%± 9.0%
p-value 2× 10−4 5× 10−3

material implication
KENN 50.0% 50.0%

Table 5.7: Residuum KENN and CNN results on the Basic task on 10 runs with two different train sets

The p-values are sufficiently low so the results cannot be considered the result of chance.
The table shows a significant improvement in the performance of residuumKENN compared
to CNN not exploiting symbolic reasoning. As expected, adding prior knowledge modeling
Sudoku constraints brought a great improvement in the accuracy scores. Lookingmerely at the
difference between the two averages to understand the scope of this improvement ismisleading,
due to the high standard deviation in all evaluations. That is because, as in theMNISTaddition
experiment, bothmodels are prone to stack on local minima. The accuracy scores, if we do not
consider ”bad runs”, change drastically, growing on average to 56% for CNN and 91% for
residuum KENN if trained on a single split, and to 84%, 97% if trained on all splits.
Since residuum KENN reaches an almost perfect score in the Basic task when trained on a
sufficiently large amount of puzzles (if it doesn’t split into local minima), the next challenge
was to evaluate it on a more difficult task, consisting of PerSplit. Here, differently from the
Basic, the set of characters that appear in the puzzles is no longer limited to {1, 2, 3, 4}, but
the digits are randomly selected in each split and the model ignores which ones have been used
for building the puzzles. Given that, each digit has fewer images available for which the model
can learn to recognize, complicating the task on theCNN.TheKENNmodel used to approach
this task was the same as the one designed for Basic, but this time all the splits were merged to
perform the evaluation. The results obtained are the following:

Average Accuracy
CNN 73.5%± 10.5%

residuum KENN 77.1%± 8.0%
p-value 0.11

material implication
KENN 50.0%

Table 5.8: Residuum KENN and CNN results on PerSplit task, 20 runs

This table shows with confidence (p-value equals 0.11), that even by complicating the task
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residuum KENN keeps working better than baseline CNN, even though the standard devia-
tion is considerably high for the occurrence of local minima (if we ignore them, CNN has an
average of 79% while KENN of 84%). An undesirable behavior is that, although the perfor-
mance of CNN remains on average as bad as in the Basic task, the residuum KENN shows a
significant decrement in its performance, about 16% worse than in Basic. The reason for this
occurrence is explained in the next section.

5.4.3 Results discussion

The experiment of ViSudo puzzle classificationwas initially thought to confirm the hints given
by the experiment on MNIST addition, suggesting that residuum could add capabilities of
symbolic reasoning into KENN architecture.
The logic behind checking the validity of Sudoku puzzles isn’t very hard, but it still requires
more complex reasoning if compared to simple addition. However, residuum KENN showed
still better results compared to perceptive-only CNN. The improvement was more marked in
the Basic task with respect to PerSplit, but in both tasks significant increments were carried out
by residuum. From the two tables, we can see how the PerSplit results obtained by KENN are
worse if compared to the ones in the Basic task, even though the CNN doesn’t significantly
decrease its performance from one to the other. An explanation for this behavior is that in the
Basic task, the perception phase is more reliable, so the quality of prediction only depended
on the ability of the model to understand the constraints for the validity of Sudoku puzzles.
Since KENNhad prior knowledgemodeling the procedure for checking Sudoku’s constraints,
its accuracy was almost perfect. The CNN is instead more likely to get stuck on this high-level
reasoning, explaining the huge gap in the models’ performances in the Basic task.
On the other hand, in the PerSplit task the situation is quite different. Here there are fewer
images available for each character to allow theunderlyingCNNtoaccurately distinguish them.
Those kinds of errors propagate further during the KE elaboration and may sometimes taint
final predictions. This entails that CNNdidn’t suffer from the increasing difficulty of the task,
because its performance already struggled in Basic, while residuum KENN got into a great
worsening (although still better thanCNN) because in this task it cannot completely rely upon
CNN character predictions.
For this reason, it wasn’t decided to further evaluate residuumKENNon themore challenging
tasks presented in subsection 5.4.1, keeping themopen for evaluationswith a further improved
architecture. Despite that, the obtained results in Basic and PerSplit tasks have been considered
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sufficiently satisfying to prove the logical reasoning abilities of residuumKENN. Evenmore, if
we consider the improvements that the developed architecture has been able to make from the
starting KENN, where material implication semantics isn’t suitable for solving ViSudo puzzle
classification, the achievements of residuum turn out to be a success.
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6
Conclusion

The empirical analysis was performed to test the advantages of interpreting conditional state-
ments using fuzzy logic’s residuum semantic instead of the material implication rule. The ex-
periments carried out suggested that the newly implemented architecture of KENN, which
includes a residuum boost function, can generalize the interpretation done by material impli-
cation. It also opens prospects of a KENN architecture able to perform reasoning beyond
neural network predictions. In the experiments where the task was to correct neural network
prediction, the use of residuum instead of material implication does not boost, in general, the
quality of predictions with respect to classic KENN architecture. The characteristics of the
t-conorm boost function are generally more suitable for refining tasks. If needed, a t-conorm
boost function can modify also the truth value of the antecedent side of a conditional state-
ment interpreted usingmaterial implication. Thatwas a feature especially useful in theCiteseer
experiment. However, the new implementations do not prevent KENN from continuing to
interpret conditional statements as it used to do, meaning that all results obtained in previous
works are reproducible in the renewed architecture.
The greatest benefits obtained by residuum interpretation were shown in the last two experi-
ments ofMNISTAddition andVisual Sudoku, both requiring reasoning abilities. The residuum
boost function allows the manipulation of the neural network perceptions which are used to
assign a truth value to predicates beyond the ones caught by the NN, simulating a reasoning
process. This capability made it possible to achieve results comparable to the state-of-the-art
in these kinds of experiments. Moreover, those tasks couldn’t be approached with KENN us-
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ing material implication, meaning that residuum semantics has been a great addition to the
pre-existing KENN architecture for adding reasoning-like abilities.

6.1 Future work

In future works, it may be useful to investigate residuum semantics inducted by t-norms other
than the Gödel t-norm. Focusing on the current residuum architecture, it could be made suit-
able for handling ternary predicates, as emerged in the VRD experiment, where such a feature
could be useful for modeling transitive relations in prior knowledge. Another improvement
could be made by ensuring the occurrence of minimal increments even when the same predi-
cates appear multiple times in the set of logic rules. In the Visual Sudoku experiment, we work
around the problem by assigning a specific KE layer for each implication formula, even though
itmakes thewhole system slower. An efficient solutionwould allow the evaluation of residuum
also on the more complex tasks of Visual Sudoku, as well as in other challenging experiments.
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A
Source code

The following appendix shows part of the code written to implement residuum semantics in
the sub-components ofKENN.The implementationshavebeen carriedoutusingPytorch* .

The Forward method in Relational KENN class:

1 def forward(self, unary, binary, index1, index2)
2 -> (torch.Tensor, torch.Tensor):
3

4 if len(self.unary_clauses) != 0:
5 deltas_sum, deltas_u_list = self.unary_ke(unary)
6 u = unary + deltas_sum
7 else:
8 u = unary
9

10 if len(self.binary_clauses) != 0 and len(binary) != 0:
11 joined_matrix = self.join(u, binary, index1, index2)
12 deltas_sum, deltas_b_list = self.binary_ke(joined_matrix)
13

14 delta_up, delta_bp = self.group_by(u, deltas_sum, index1, index2)
15 else:
16 delta_up = torch.zeros(u.shape)
17 delta_bp = torch.zeros(binary.shape)

*PyTorch, the PyTorch logo and any related marks are trademarks of The Linux Foundation.
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18

19 if len(self.implication_unary_clauses) != 0:
20 deltas_sum, deltas_u_list = self.implication_unary_ke(unary)
21 u_impl = u + deltas_sum
22 else:
23 u_impl = u
24

25 if len(self.implication_binary_clauses) != 0:
26 joined_matrix = self.join(u, binary, index1, index2)
27 deltas_sum, deltas_b_list = self.implication_binary_ke(joined_matrix)
28 delta_impl_up, delta_impl_bp = self.group_by(
29 u, deltas_sum, index1, index2)
30 else:
31 delta_impl_up = torch.zeros(u.shape)
32 delta_impl_bp = torch.zeros(binary.shape)
33

34 return self.activation(u_impl + delta_up + delta_impl_up),
35 self.activation(binary + delta_bp + delta_impl_bp)

Listing A.1: When relationalKENN object is called, it needs as parameters unary and binary predicates truth values. For the
latter, two lists of indexes indicating which samples are connected in the binary predicates are needed. Based on the clauses
it received as input, relationalKENN takes care of calling the dedicated KE. If there are binary clauses, it is at this level that the
join operation between unary and binary matrixes is performed before calling the KnowledgeEnhancer instance. The returned
deltas are then summed into the unary matrix by grouping by the sample of interest.

The Forward method in Knowledge Enhancer class:

1 def forward(self, ground_atoms, using_max=False) -> (torch.Tensor, [torch.Tensor,
torch.Tensor]):

2 scatter_deltas_list: [torch.Tensor] = []
3 light_deltas_list = []
4 weights = []
5 for enhancer in self.clause_enhancers:
6 scattered_delta, delta = enhancer(ground_atoms)
7 scatter_deltas_list.append(scattered_delta)
8 if self.save_training_data:
9 light_deltas_list.append(delta)
10 weights.append(enhancer.clause_weight.numpy()[0][0])
11

12 deltas_data = [light_deltas_list, weights]
13 if using_max:
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14 stacked_deltas = torch.stack(scatter_deltas_list)
15 _, indexes = torch.abs(stacked_deltas).max(dim=0)
16 return torch.gather(stacked_deltas, 0, indexes.unsqueeze(0)), deltas_data
17 else:
18 return torch.stack(scatter_deltas_list).sum(dim=0), deltas_data

Listing A.2: When a KnowledgeEnhancer object is invoked, it is responsible for collecting the deltas returned by all the
ClauseEnhancer instances inside it.

The Forward method in Clause Enhancer class:

1

2 def forward(self, ground_atoms) -> (torch.Tensor, torch.Tensor):
3 # [b, l]
4 selected_predicates = self.select_predicates(ground_atoms)
5

6 delta = self.conorm_boost(selected_predicates, self.signs)
7 # [b, 2|U|+|B|]
8 scattered_delta = torch.zeros_like(ground_atoms)
9 scattered_delta[..., self.gather_literal_indices] = delta
10

11 return scattered_delta, delta

Listing A.3: When a ClauseEnhancer object is called, it gathers the truth values of the predicates (that are in the parameter
ground_atoms) and calls the t‐conorm boost function for computing the deltas.

The Forward method in the ResiduumClause Enhancer class:

1

2 def forward(self, ground_atoms) -> (torch.Tensor, torch.Tensor):
3

4 antecedent_predicates, consequent_predicates = self.select_predicates(
ground_atoms)

5 delta = self.conorm_boost([antecedent_predicates, consequent_predicates], self.
signs)

6

7 scattered_delta = torch.zeros_like(ground_atoms)
8 scattered_delta[..., self.consequent_literal_indices] = delta
9
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10 return scattered_delta, delta

Listing A.4: When a ResiduumClauseEnhancer object is called, it gathers the truth values of the predicates (that are in the
parameter ground_atoms) and calls the residuum boost function for computing the deltas. Differently from standard CE, it
distinguishes between antecedent and consequent predicates.

T-conorm boost function class:
1

2 class GodelBoostConormApprox(BoostFunction):
3

4 def forward(self, selected_predicates: torch.Tensor, signs: torch.Tensor):
5 self.clause_weight.data = torch.clip(self.clause_weight, self.min_weight,

self.max_weight)
6

7 clause_matrix = selected_predicates * signs
8 return signs * softmax(clause_matrix, dim=-1) * self.clause_weight

Listing A.5: Implementation of the approximation of a minimal t‐conorm boost function

Residuum boost function class:
1

2 class GodelBoostResiduum(BoostFunction):
3

4 def forward(self, selected_predicates: [torch.Tensor, torch.Tensor], signs: [
torch.Tensor, torch.Tensor]):

5 self.clause_weight.data = torch.clip(self.clause_weight, self.min_weight,
self.max_weight)

6

7 antecedent_matrix = selected_predicates[0] * signs[0]
8 consequent_matrix = selected_predicates[1] * signs[1]
9

10 conjunction_val = torch.min(antecedent_matrix, 1)[0]
11 disjunction_val = torch.max(consequent_matrix, 1)[0]
12 indices_consequent = torch.argmax(consequent_matrix, 1)
13

14 formula_unsatisfied = disjunction_val < conjunction_val
15 delta = torch.zeros(consequent_matrix.size()[0], consequent_matrix.size()

[1])
16 delta[np.arange(delta.size()[0]), indices_consequent] = \
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17 torch.minimum(self.clause_weight, conjunction_val - disjunction_val) *
formula_unsatisfied

18 delta *= signs[1]
19 return delta

Listing A.6: Implementation of a minimal residuum boost function
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