44,545 research outputs found

    Metaphor as categorisation: a connectionist implementation

    Get PDF
    A key issue for models of metaphor comprehension is to explain how in some metaphorical comparison , only some features of B are transferred to A. The features of B that are transferred to A depend both on A and on B. This is the central thrust of Black's well known interaction theory of metaphor comprehension (1979). However, this theory is somewhat abstract, and it is not obvious how it may be implemented in terms of mental representations and processes. In this paper we describe a simple computational model of on-line metaphor comprehension which combines Black's interaction theory with the idea that metaphor comprehension is a type of categorisation process (Glucksberg & Keysar, 1990, 1993). The model is based on a distributed connectionist network depicting semantic memory (McClelland & Rumelhart, 1986). The network learns feature-based information about various concepts. A metaphor is comprehended by applying a representation of the first term A to the network storing knowledge of the second term B, in an attempt to categorise it as an exemplar of B. The output of this network is a representation of A transformed by the knowledge of B. We explain how this process embodies an interaction of knowledge between the two terms of the metaphor, how it accords with the contemporary theory of metaphor stating that comprehension for literal and metaphorical comparisons is carried out by identical mechanisms (Gibbs, 1994), and how it accounts for both existing empirical evidence (Glucksberg, McGlone, & Manfredi, 1997) and generates new predictions. In this model, the distinction between literal and metaphorical language is one of degree, not of kind

    Multi-task Neural Network for Non-discrete Attribute Prediction in Knowledge Graphs

    Full text link
    Many popular knowledge graphs such as Freebase, YAGO or DBPedia maintain a list of non-discrete attributes for each entity. Intuitively, these attributes such as height, price or population count are able to richly characterize entities in knowledge graphs. This additional source of information may help to alleviate the inherent sparsity and incompleteness problem that are prevalent in knowledge graphs. Unfortunately, many state-of-the-art relational learning models ignore this information due to the challenging nature of dealing with non-discrete data types in the inherently binary-natured knowledge graphs. In this paper, we propose a novel multi-task neural network approach for both encoding and prediction of non-discrete attribute information in a relational setting. Specifically, we train a neural network for triplet prediction along with a separate network for attribute value regression. Via multi-task learning, we are able to learn representations of entities, relations and attributes that encode information about both tasks. Moreover, such attributes are not only central to many predictive tasks as an information source but also as a prediction target. Therefore, models that are able to encode, incorporate and predict such information in a relational learning context are highly attractive as well. We show that our approach outperforms many state-of-the-art methods for the tasks of relational triplet classification and attribute value prediction.Comment: Accepted at CIKM 201

    Does William Shakespeare REALLY Write Hamlet? Knowledge Representation Learning with Confidence

    Full text link
    Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.Comment: 8 page

    Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning

    Full text link
    Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.Comment: This paper is accepted by WWW'1

    Interaction Embeddings for Prediction and Explanation in Knowledge Graphs

    Full text link
    Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.Comment: This paper is accepted by WSDM201
    • …
    corecore