4 research outputs found

    Détection de bateaux dans les images de radar à ouverture synthétique

    Get PDF
    Le but principal de cette thèse est de développer des algorithmes efficaces et de concevoir un système pour la détection de bateaux dans les images Radar à Ouverture Synthetique (ROS.) Dans notre cas, la détection de bateaux implique en premier lieu la détection de cibles de points dans les images ROS. Ensuite, la détection d'un bateau proprement dit dépend des propriétés physiques du bateau lui-même, tel que sa taille, sa forme, sa structure, son orientation relative a la direction de regard du radar et les conditions générales de l'état de la mer. Notre stratégie est de détecter toutes les cibles de bateaux possibles dans les images de ROS, et ensuite de chercher autour de chaque candidat des évidences telle que les sillons. Les objectifs de notre recherche sont (1) d'améliorer 1'estimation des paramètres dans Ie modèle de distribution-K et de déterminer les conditions dans lesquelles un modèle alternatif (Ie Gamma, par exemple) devrait être utilise plutôt; (2) d'explorer Ie modèle PNN (Probabilistic Neural Network) comme une alternative aux modèles paramétriques actuellement utilises; (3) de concevoir un modèle de regroupement flou (FC : Fuzzy Clustering) capable de détecter les petites et grandes cibles de bateaux dans les images a un seul canal ou les images a multi-canaux; (4) de combiner la détection de sillons avec la détection de cibles de bateaux; (5) de concevoir un modèle de détection qui peut être utilisé aussi pour la détection des cibles de bateaux en zones costières.Abstract: The main purpose of this thesis is to develop efficient algorithms and design a system for ship detection from Synthetic Aperture Radar (SAR) imagery. Ship detection usually involves through detection of point targets on a radar clutter background.The detection of a ship depends on the physical properties of the ship itself, such as size, shape, and structure; its orientation relative to the radar look-direction; and the general condition of the sea state. Our strategy is to detect all possible ship targets in SAR images, and then search around each candidate for the wake as further evidence.The objectives of our research are (1) to improve estimation of the parameters in the K-distribution model and to determine the conditions in which an alternative model (Gamma, for example) should be used instead; (2) to explore a PNN (Probabilistic Neural Networks) model as an alternative to the commonly used parameteric models; (3) to design a FC (Fuzzy Clustering) model capable of detecting both small and large ship targets from single-channel images or multi-channel images; (4) to combine wake detection with ship target detection; (5) to design a detection model that can also be used to detect ship targets in coastal areas. We have developed algorithms for each of these objectives and integrated them into a system comprising six models.The system has been tested on a number of SAR images (SEASAT, ERS and RADARSAT-1, for example) and its performance has been assessed

    Modeling Boundaries of Influence among Positional Uncertainty Fields

    Get PDF
    Within a CIS environment, the proper use of information requires the identification of the uncertainty associated with it. As such, there has been a substantial amount of research dedicated to describing and quantifying spatial data uncertainty. Recent advances in sensor technology and image analysis techniques are making image-derived geospatial data increasingly popular. Along with development in sensor and image analysis technologies have come departures from conventional point-by-point measurements. Current advancements support the transition from traditional point measures to novel techniques that allow the extraction of complex objects as single entities (e.g., road outlines, buildings). As the methods of data extraction advance, so too must the methods of estimating the uncertainty associated with the data. Not only will object uncertainties be modeled, but the connections between these uncertainties will also be estimated. The current methods for determining spatial accuracy for lines and areas typically involve defining a zone of uncertainty around the measured line, within which the actual line exists with some probability. Yet within the research community, the proper shape of this \u27uncertainty band\u27 is a topic with much dissent. Less contemplated is the manner in which such areas of uncertainty interact and influence one another. The development of positional error models, from the epsilon band and error band to the rigorous G-band, has focused on statistical models for estimating independent line features. Yet these models are not suited to model the interactions between uncertainty fields of adjacent features. At some point, these distributed areas of uncertainty around the features will intersect and overlap one another. In such instances, a feature\u27s uncertainty zone is defined not only by its measurement, but also by the uncertainty associated with neighboring features. It is therefore useful to understand and model the interactions between adjacent uncertainty fields. This thesis presents an analysis of estimation and modeling techniques of spatial uncertainty, focusing on the interactions among fields of positional uncertainty for image-derived linear features. Such interactions are assumed to occur between linear features derived from varying methods and sources, allowing the application of an independent error model. A synthetic uncertainty map is derived for a set of linear and aerial features, containing distributed fields of uncertainty for individual features. These uncertainty fields are shown to be advantageous for communication and user understanding, as well as being conducive to a variety of image processing techniques. Such image techniques can combine overlapping uncertainty fields to model the interaction between them. Deformable contour models are used to extract sets of continuous uncertainty boundaries for linear features, and are subsequently applied to extract a boundary of influence shared by two uncertainty fields. These methods are then applied to a complex scene of uncertainties, modeling the interactions of multiple objects within the scene. The resulting boundary uncertainty representations are unique from the previous independent error models which do not take neighboring influences into account. By modeling the boundary of interaction among the uncertainties of neighboring features, a more integrated approach to error modeling and analysis can be developed for complex spatial scenes and datasets

    Klir and Yuan's Fuzzy Sets and Fuzzy Logic

    No full text
    corecore