341 research outputs found

    Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot

    Full text link
    [EN] Reducing the energy consumed by a car-like mobile robot makes it possible to move at a lower cost, yet it takes more working time. This paper proposes an optimization algorithm for trajectories with optimal times and analyzes the consequences of restricting the energy consumed on the trajectory obtained for a car-like robot. When modeling the dynamic behavior of the vehicle, it is necessary to consider its inertial parameters, the behavior of the motor, and the basic properties of the tire in its interaction with the ground. To obtain collision-free, minimum-time trajectories quadratic sequential optimization techniques are used, where the objective function is the time taken by the robot to move between two given configurations. This is subject to constraints relating to the vehicle and tires as well as the energy consumed, which is the basis for this paper. We work with a real random distribution of consumed energy values following a normal Gaussian distribution in order to analyze its influence on the trajectories obtained by the vehicle. The energy consumed, the time taken, the maximum velocity reached, and the distance traveled are analyzed in order to characterize the properties of the trajectories obtained. The proposed algorithm has been applied to 101 examples, showing that the computational times needed to obtain the solutions are always lower than those required to realize the trajectories. The results obtained allow us to reach conclusions about the energy efficiency of the trajectories.Valero Chuliá, FJ.; Rubio Montoya, FJ.; Llopis Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica. 37(11):1998-2009. https://doi.org/10.1017/S0263574719000407S199820093711Rubio, F., Valero, F., Lluís Sunyer, J., & Garrido, A. (2010). The simultaneous algorithm and the best interpolation function for trajectory planning. Industrial Robot: An International Journal, 37(5), 441-451. doi:10.1108/01439911011063263Liu, S., & Sun, D. (2014). Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning. IEEE/ASME Transactions on Mechatronics, 19(2), 401-411. doi:10.1109/tmech.2013.2241777Renny Simba, K., Uchiyama, N., & Sano, S. (2016). Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 41, 31-42. doi:10.1016/j.rcim.2016.02.00

    Efficient trajectory of a car-like mobile robot

    Full text link
    This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here https://riunet.upv.es/. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.[EN] Purpose The purpose is to create an algorithm that optimizes the trajectories that an autonomous vehicle must follow to reduce its energy consumption and reduce the emission of greenhouse gases. Design/methodology/approach An algorithm is presented that respects the dynamic constraints of the robot, including the characteristics of power delivery by the motor, the behaviour of the tires and the basic inertial parameters. Using quadratic sequential programming with distributed and non-monotonous search direction (Quadratic Programming Algorithm with Distributed and Non-Monotone Line Search), an optimization algorithm proposed and developed by Professor K. Schittkowski is implemented. Findings Relations between important operating variables have been obtained, such as the evolution of the autonomous vehicle's velocity, the driving torque supplied by the engine and the forces acting on the tires. In a subsequent analysis, the aim is to analyse the relationship between trajectory made and energy consumed and calculate the reduction of greenhouse gas emissions. Also this method has been checked against another different methodology commented on in the references. Research limitations/implications The main limitation comes from the modelling that has been done. As greater is the mechanical systems analysed, more simplifying hypotheses should be introduced to solve the corresponding equations with the current computers. However, the solutions are obtained and they can be used qualitatively to draw conclusions. Practical implications One main objective is to obtain guidelines to reduce greenhouse gas emissions by reducing energy consumption in the realization of autonomous vehicles' trajectories. The first step to achieve that is to obtain a good model of the autonomous vehicle that takes into account not only its kinematics but also its dynamic properties, and to propose an optimization process that allows to minimize the energy consumed. In this paper, important relationships between work variables have been obtained. Social implications The idea is to be friendly with nature and the environment. This algorithm can help by reducing an instance of greenhouse gases. Originality/value Originality comes from the fact that we not only look for the autonomous vehicle's modelling, the simulation of its motion and the analysis of its working parameters, but also try to obtain from its working those guidelines that are useful to reduce the energy consumed and the contamination capability of these autonomous vehicles or car-like robots.Valero Chuliá, FJ.; Rubio Montoya, FJ.; Besa Gonzálvez, AJ.; Llopis Albert, C. (2019). Efficient trajectory of a car-like mobile robot. Industrial Robot An International Journal. 46(2):211-222. https://doi.org/10.1108/IR-10-2018-0214S211222462Ghita, N., & Kloetzer, M. (2012). Trajectory planning for a car-like robot by environment abstraction. Robotics and Autonomous Systems, 60(4), 609-619. doi:10.1016/j.robot.2011.12.004Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60, 416-442. doi:10.1016/j.trc.2015.09.011Li, B., & Shao, Z. (2015). Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots. Advances in Engineering Software, 87, 30-42. doi:10.1016/j.advengsoft.2015.04.011Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. doi:10.1016/j.robot.2016.09.008Rubio, F., Valero, F., Lluís Sunyer, J., & Garrido, A. (2010). The simultaneous algorithm and the best interpolation function for trajectory planning. Industrial Robot: An International Journal, 37(5), 441-451. doi:10.1108/01439911011063263Sariff, N., & Buniyamin, N. (2006). An Overview of Autonomous Mobile Robot Path Planning Algorithms. 2006 4th Student Conference on Research and Development. doi:10.1109/scored.2006.4339335Renny Simba, K., Uchiyama, N., & Sano, S. (2016). Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 41, 31-42. doi:10.1016/j.rcim.2016.02.002Tokekar, P., Karnad, N., & Isler, V. (2014). Energy-optimal trajectory planning for car-like robots. Autonomous Robots, 37(3), 279-300. doi:10.1007/s10514-014-9390-

    Real-Time Trajectory Generation and Control of a Semi-Omnidirectional Mobile Robot

    Get PDF
    When controlling a wheeled mobile robot with four independently steerable driving wheels, the control of the wheel coordination must be handled. Both the direction and velocity of the wheels must be coordinated to allow for proper operation of the robot. The focus of this work is on the coordination of the wheel directions. Such coordination is mostly done by solving constraint equations of the system kinematics, but when the demands on the coordination are high, it is sometimes necessary to include the steering dynamics in the coordination control. With dynamics included the complexity of the wheel coordination increases, since constraints dependent on required angle changes and current velocities must be fulfilled. By calculating the dynamic limitations in each control cycle, the steering limit for the whole wheel base within the current control cycle can be found. With use of such wheel base limit, followable and coordinated wheel trajectories can be generated online. This thesis includes the construction of a dynamic model for inclusion of the steering dynamic limitations affecting the performance the most, the construction of the online trajectory generation idea, as well as implementation and validation on the real target wheeled mobile robot platform

    Autonomous Campus Mobility Platform

    Get PDF
    This Major Qualifying Project (MQP) is based around the development of a robotic vehicle for use in improving mobility. The main objective was to create an autonomous vehicle capable of navigating a person or cargo back and forth from Higgins Laboratory on the Worcester Polytechnic Institute (WPI) main campus to the Robotics Laboratory located at 85 Prescott Street, approximately 0.6 miles away. An autonomous robot was uniquely designed as a personal mobility platform to navigate its environment using onboard navigation and sensing system

    Vision-Based Soft Mobile Robot Inspired by Silkworm Body and Movement Behavior

    Get PDF
    Designing an inexpensive, low-noise, safe for individual, mobile robot with an efficient vision system represents a challenge. This paper proposes a soft mobile robot inspired by the silkworm body structure and moving behavior. Two identical pneumatic artificial muscles (PAM) have been used to design the body of the robot by sewing the PAMs longitudinally. The proposed robot moves forward, left, and right in steps depending on the relative contraction ratio of the actuators. The connection between the two artificial muscles gives the steering performance at different air pressures of each PAM. A camera (eye) integrated into the proposed soft robot helps it to control its motion and direction. The silkworm soft robot detects a specific object and tracks it continuously. The proposed vision system is used to help with automatic tracking based on deep learning platforms with real-time live IR camera. The object detection platform, named, YOLOv3 is used effectively to solve the challenge of detecting high-speed tiny objects like Tennis balls. The model is trained with a dataset consisting of images of   Tennis balls. The work is simulated with Google Colab and then tested in real-time on an embedded device mated with a fast GPU called Jetson Nano development kit. The presented object follower robot is cheap, fast-tracking, and friendly to the environment. The system reaches a 99% accuracy rate during training and testing. Validation results are obtained and recorded to prove the effectiveness of this novel silkworm soft robot. The research contribution is designing and implementing a soft mobile robot with an effective vision system
    • …
    corecore