34,656 research outputs found

    Key propagation in wireless sensor networks

    Get PDF
    With reference to a network consisting of sensor nodes connected by wireless links, we approach the problem of the distribution of the cryptographic keys. We present a solution based on communication channels connecting sequences of adjacent nodes. All the nodes in a channel share the same key. This result is obtained by propagating the key connecting the first two nodes to all the other nodes in the channel. The key propagation mechanism is also used for key replacement, as is required, for instance, in group communication to support forms of forward and backward secrecy, when a node leaves a group or a new node is added to an existing group

    Lifetime Improvement in Wireless Sensor Networks via Collaborative Beamforming and Cooperative Transmission

    Full text link
    Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as communication techniques that can make effective use of collaborative/cooperative nodes to create a virtual multiple-input/multiple-output (MIMO) system. Extending the lifetime of networks composed of battery-operated nodes is a key issue in the design and operation of wireless sensor networks. This paper considers the effects on network lifetime of allowing closely located nodes to use CB/CT to reduce the load or even to avoid packet-forwarding requests to nodes that have critical battery life. First, the effectiveness of CB/CT in improving the signal strength at a faraway destination using energy in nearby nodes is studied. Then, the performance improvement obtained by this technique is analyzed for a special 2D disk case. Further, for general networks in which information-generation rates are fixed, a new routing problem is formulated as a linear programming problem, while for other general networks, the cost for routing is dynamically adjusted according to the amount of energy remaining and the effectiveness of CB/CT. From the analysis and the simulation results, it is seen that the proposed method can reduce the payloads of energy-depleting nodes by about 90% in the special case network considered and improve the lifetimes of general networks by about 10%, compared with existing techniques.Comment: Invited paper to appear in the IEE Proceedings: Microwaves, Antennas and Propagation, Special Issue on Antenna Systems and Propagation for Future Wireless Communication

    Channel-based key generation for encrypted body-worn wireless sensor networks

    Get PDF
    Body-worn sensor networks are important for rescue-workers, medical and many other applications. Sensitive data are often transmitted over such a network, motivating the need for encryption. Body-worn sensor networks are deployed in conditions where the wireless communication channel varies dramatically due to fading and shadowing, which is considered a disadvantage for communication. Interestingly, these channel variations can be employed to extract a common encryption key at both sides of the link. Legitimate users share a unique physical channel and the variations thereof provide data series on both sides of the link, with highly correlated values. An eavesdropper, however, does not share this physical channel and cannot extract the same information when intercepting the signals. This paper documents a practical wearable communication system implementing channel-based key generation, including an implementation and a measurement campaign comprising indoor as well as outdoor measurements. The results provide insight into the performance of channel-based key generation in realistic practical conditions. Employing a process known as key reconciliation, error free keys are generated in all tested scenarios. The key-generation system is computationally simple and therefore compatible with the low-power micro controllers and low-data rate transmissions commonly used in wireless sensor networks

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Evaluating the more suitable ISM frequency band for iot-based smart grids: a quantitative study of 915 MHz vs. 2400 MHz

    Get PDF
    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a "default" communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.This research was supported by the MINECO/FEDER project grants TEC2013-47016-C2-2-R (COINS) and TEC2016-76465-C2-1-R (AIM). The authors would like to thank Juan Salvador Perez Madrid nd Domingo Meca (part of the Iberdrola staff) for the support provided during the realization of this work. Ruben M. Sandoval also thanks the Spanish MICINN for an FPU (REF FPU14/03424) pre-doctoral fellowship

    Simulation Platform for Wireless Sensor Networks Based on Impulse Radio Ultra Wide Band

    Full text link
    Impulse Radio Ultra Wide Band (IR-UWB) is a promising technology to address Wireless Sensor Network (WSN) constraints. However, existing network simulation tools do not provide a complete WSN simulation architecture, with the IR-UWB specificities at the PHYsical (PHY) and the Medium Access Control (MAC) layers. In this paper, we propose a WSN simulation architecture based on the IR-UWB technique. At the PHY layer, we take into account the pulse collision by dealing with the pulse propagation delay. We also modelled MAC protocols specific to IRUWB, for WSN applications. To completely fit the WSN simulation requirements, we propose a generic and reusable sensor and sensing channel model. Most of the WSN application performances can be evaluated thanks to the proposed simulation architecture. The proposed models are implemented on a scalable and well known network simulator: Global Mobile Information System Simulator (GloMoSim). However, they can be reused for all other packet based simulation platforms
    • …
    corecore