4 research outputs found

    Mutual-anonymity and Authentication Key Agreement Protocol

    Get PDF
    Abstract: According to the characteristics of trusted computation, we proposed an efficient pseudonym ring signature-based authentication and key agreement protocol with mutual anonymity. The use of ring signature can hide the identity information of communicating parties and effectively prevent the leakage of private information. Finally we derive a shared session key between them for their future secure communication especially in the trusted computation environment. Our protocol reaches the level of universally composable security and is more efficient

    TruSDN: Bootstrapping Trust in Cloud Network Infrastructure

    Get PDF
    Software-Defined Networking (SDN) is a novel architectural model for cloud network infrastructure, improving resource utilization, scalability and administration. SDN deployments increasingly rely on virtual switches executing on commodity operating systems with large code bases, which are prime targets for adversaries attacking the network infrastructure. We describe and implement TruSDN, a framework for bootstrapping trust in SDN infrastructure using Intel Software Guard Extensions (SGX), allowing to securely deploy SDN components and protect communication between network endpoints. We introduce ephemeral flow-specific pre-shared keys and propose a novel defence against cuckoo attacks on SGX enclaves. TruSDN is secure under a powerful adversary model, with a minor performance overhead

    Post-Quantum Anonymous One-Sided Authenticated Key Exchange without Random Oracles

    Get PDF
    Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model

    Trustworthy Wireless Personal Area Networks

    Get PDF
    In the Internet of Things (IoT), everyday objects are equipped with the ability to compute and communicate. These smart things have invaded the lives of everyday people, being constantly carried or worn on our bodies, and entering into our homes, our healthcare, and beyond. This has given rise to wireless networks of smart, connected, always-on, personal things that are constantly around us, and have unfettered access to our most personal data as well as all of the other devices that we own and encounter throughout our day. It should, therefore, come as no surprise that our personal devices and data are frequent targets of ever-present threats. Securing these devices and networks, however, is challenging. In this dissertation, we outline three critical problems in the context of Wireless Personal Area Networks (WPANs) and present our solutions to these problems. First, I present our Trusted I/O solution (BASTION-SGX) for protecting sensitive user data transferred between wirelessly connected (Bluetooth) devices. This work shows how in-transit data can be protected from privileged threats, such as a compromised OS, on commodity systems. I present insights into the Bluetooth architecture, Intel’s Software Guard Extensions (SGX), and how a Trusted I/O solution can be engineered on commodity devices equipped with SGX. Second, I present our work on AMULET and how we successfully built a wearable health hub that can run multiple health applications, provide strong security properties, and operate on a single charge for weeks or even months at a time. I present the design and evaluation of our highly efficient event-driven programming model, the design of our low-power operating system, and developer tools for profiling ultra-low-power applications at compile time. Third, I present a new approach (VIA) that helps devices at the center of WPANs (e.g., smartphones) to verify the authenticity of interactions with other devices. This work builds on past work in anomaly detection techniques and shows how these techniques can be applied to Bluetooth network traffic. Specifically, we show how to create normality models based on fine- and course-grained insights from network traffic, which can be used to verify the authenticity of future interactions
    corecore