10 research outputs found

    Kernelized Supervised Dictionary Learning

    Get PDF
    The representation of a signal using a learned dictionary instead of predefined operators, such as wavelets, has led to state-of-the-art results in various applications such as denoising, texture analysis, and face recognition. The area of dictionary learning is closely associated with sparse representation, which means that the signal is represented using few atoms in the dictionary. Despite recent advances in the computation of a dictionary using fast algorithms such as K-SVD, online learning, and cyclic coordinate descent, which make the computation of a dictionary from millions of data samples computationally feasible, the dictionary is mainly computed using unsupervised approaches such as k-means. These approaches learn the dictionary by minimizing the reconstruction error without taking into account the category information, which is not optimal in classification tasks. In this thesis, we propose a supervised dictionary learning (SDL) approach by incorporating information on class labels into the learning of the dictionary. To this end, we propose to learn the dictionary in a space where the dependency between the signals and their corresponding labels is maximized. To maximize this dependency, the recently-introduced Hilbert Schmidt independence criterion (HSIC) is used. The learned dictionary is compact and has closed form; the proposed approach is fast. We show that it outperforms other unsupervised and supervised dictionary learning approaches in the literature on real-world data. Moreover, the proposed SDL approach has as its main advantage that it can be easily kernelized, particularly by incorporating a data-driven kernel such as a compression-based kernel, into the formulation. In this thesis, we propose a novel compression-based (dis)similarity measure. The proposed measure utilizes a 2D MPEG-1 encoder, which takes into consideration the spatial locality and connectivity of pixels in the images. The proposed formulation has been carefully designed based on MPEG encoder functionality. To this end, by design, it solely uses P-frame coding to find the (dis)similarity among patches/images. We show that the proposed measure works properly on both small and large patch sizes on textures. Experimental results show that by incorporating the proposed measure as a kernel into our SDL, it significantly improves the performance of a supervised pixel-based texture classification on Brodatz and outdoor images compared to other compression-based dissimilarity measures, as well as state-of-the-art SDL methods. It also improves the computation speed by about 40% compared to its closest rival. Eventually, we have extended the proposed SDL to multiview learning, where more than one representation is available on a dataset. We propose two different multiview approaches: one fusing the feature sets in the original space and then learning the dictionary and sparse coefficients on the fused set; and the other by learning one dictionary and the corresponding coefficients in each view separately, and then fusing the representations in the space of the dictionaries learned. We will show that the proposed multiview approaches benefit from the complementary information in multiple views, and investigate the relative performance of these approaches in the application of emotion recognition

    HSIC Regularized LTSA

    Get PDF
    Hilbert-Schmidt Independence Criterion (HSIC) measures statistical independence between two random variables. However, instead of measuring the statistical independence between two random variables directly, HSIC first transforms two random variables into two Reproducing Kernel Hilbert Spaces (RKHS) respectively and then measures the kernelled random variables by using Hilbert-Schmidt (HS) operators between the two RKHS. Since HSIC was first proposed around 2005, HSIC has found wide applications in machine learning. In this paper, a HSIC regularized Local Tangent Space Alignment algorithm (HSIC-LTSA) is proposed. LTSA is a well-known dimensionality reduction algorithm for local homeomorphism preservation. In HSIC-LTSA, behind the objective function of LTSA, HSIC between high-dimensional and dimension-reduced data is added as a regularization term. The proposed HSIC-LTSA has two contributions. First, HSIC-LTSA implements local homeomorphism preservation and global statistical correlation during dimensionality reduction. Secondly, HSIC-LTSA proposes a new way to apply HSIC: HSIC is used as a regularization term to be added to other machine learning algorithms. The experimental results presented in this paper show that HSIC-LTSA can achieve better performance than the original LTSA

    Robust texture classification based on machine learning

    Full text link

    Contributions to Robust Graph Clustering: Spectral Analysis and Algorithms

    Get PDF
    This dissertation details the design of fast, and parameter free, graph clustering methods to robustly determine set cluster assignments. It provides spectral analysis as well as algorithms that adapt the obtained theoretical results to the implementation of robust graph clustering techniques. Sparsity is of importance in graph clustering and a first contribution of the thesis is the definition of a sparse graph model consistent with the graph clustering objectives. This model is based on an advantageous property, arising from a block diagonal representation, of a matrix that promotes the density of connections within clusters and sparsity between them. Spectral analysis of the sparse graph model including the eigen-decomposition of the Laplacian matrix is conducted. The analysis of the Laplacian matrix is simplified by defining a vector that carries all the relevant information that is contained in the Laplacian matrix. The obtained spectral properties of sparse graphs are adapted to sparsity-aware clustering based on two methods that formulate the determination of the sparsity level as approximations to spectral properties of the sparse graph models. A second contribution of this thesis is to analyze the effects of outliers on graph clustering and to propose algorithms that address robustness and the level of sparsity jointly. The basis for this contribution is to specify fundamental outlier types that occur in the cases of extreme sparsity and the mathematical analysis of their effects on sparse graphs to develop graph clustering algorithms that are robust against the investigated outlier effects. Based on the obtained results, two different robust and sparsity-aware affinity matrix construction methods are proposed. Motivated by the outliers’ effects on eigenvectors, a robust Fiedler vector estimation and a robust spectral clustering methods are proposed. Finally, an outlier detection algorithm that is built upon the vertex degree is proposed and applied to gait analysis. The results of this thesis demonstrate the importance of jointly addressing robustness and the level of sparsity for graph clustering algorithms. Additionally, simplified Laplacian matrix analysis provides promising results to design graph construction methods that may be computed efficiently through the optimization in a vector space instead of the usually used matrix space
    corecore