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Beiträge zum Robusten Graphenclustering: Spektralanalyse und
Algorithmen

Kurzfassung

In dieser Dissertation wird der Entwurf von schnellen und parameterfreien Graphen-
Clustering-Methoden beschrieben, die robuste Clusterzuordnungen bestimmen können. Die
Dissertation bietet eine Spektralanalyse sowie Algorithmen, die die erhaltenen theoretischen
Ergebnisse an die Implementierung robuster Graphen-Clustering-Techniken anpassen.

Ein erster Beitrag dieser Arbeit ist die Definition eines spärlichen Graphenmodells, das mit
den Zielen des Graphenclustering vereinbar ist. Dieses Modell basiert auf einer vorteilhaften
Eigenschaft, die sich aus einer blockdiagonalen Darstellung einer Matrix ergibt, die die Dichte
der Verbindungen innerhalb von Clustern und die Spärlichkeit der Verbindungen zwischen
ihnen fördert. Es wird eine Spektralanalyse des spärlichen Graphenmodells einschließlich der
Eigenwertzerlegung der Laplace-Matrix durchgeführt. DieAnalyse der Laplace-Matrixwird durch
die Definition eines Vektors vereinfacht, der alle relevanten Informationen enthält, die in der
Laplace-Matrix enthalten sind. Die gewonnenen spektralen Eigenschaften spärlicher Graphen
werden auf der Grundlage von zwei Methoden, die die Bestimmung des Spärlichkeitsniveaus als
Annäherungen an die spektralen Eigenschaften der spärlichen Graphenmodelle formulieren, an
das Clustering angepasst.

Ein zweiter Beitrag dieser Arbeit besteht darin, die Auswirkungen von Ausreißern auf das
Graphenclustering zu analysieren und Algorithmen vorzuschlagen, die die Robustheit und den
Grad der Spärlichkeit gemeinsam berücksichtigen. Die Grundlage für diesen Beitrag ist die
Spezifizierung grundlegender Ausreißertypen, die in Fällen extremer Spärlichkeit auftreten, und
die mathematische Analyse ihrer Auswirkungen auf dünn besetzte Graphen, um Algorithmen
für das Graphenclustering zu entwickeln, die gegenüber den untersuchten Ausreißereffekten
robust sind. Basierend auf den erhaltenen Ergebnissen werden zwei verschiedene robuste und
spärlichkeitsbasierteMethoden zurKonstruktion vonAffinitätsmatrizen vorgeschlagen. Motiviert
durch die Auswirkungen von Ausreißern auf Eigenvektoren, werden eine robuste Fiedler-Vektor-
Schätzung und eine robuste spektrale Clustermethode vorgeschlagen. Desweiteren wird ein
Algorithmus zur Erkennung von Ausreißern, der auf dem Vertex-Grad aufbaut, vorgeschlagen
und auf die Ganganalyse angewendet.

Die Ergebnisse dieser Arbeit zeigen, wie wichtig es ist, die Robustheit und den Grad der
Spärlichkeit von Graphen-Clustering-Algorithmen gemeinsam zu berücksichtigen. Darüber
hinaus liefert die vereinfachte Laplace-Matrix-Analyse vielversprechende Ergebnisse für die
Entwicklung von Graphenkonstruktionsmethoden, die durch die Optimierung in einem
Vektorraum, anstelle des normalerweise verwendeten Matrixraums, effizient berechnet werden
können.
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Contributions to Robust Graph Clustering:
Spectral Analysis and Algorithms

Abstract

This dissertationdetails the designof fast, andparameter free, graph clusteringmethods to robustly
determine set cluster assignments. It provides spectral analysis as well as algorithms that adapt the
obtained theoretical results to the implementation of robust graph clustering techniques.

Sparsity is of importance in graph clustering and a first contributionof the thesis is the definition
of a sparse graph model consistent with the graph clustering objectives. This model is based on an
advantageous property, arising from a block diagonal representation, of amatrix that promotes the
density of connections within clusters and sparsity between them. Spectral analysis of the sparse
graphmodel including the eigen-decompositionof theLaplacianmatrix is conducted. The analysis
of the Laplacian matrix is simplified by defining a vector that carries all the relevant information
that is contained in the Laplacian matrix. The obtained spectral properties of sparse graphs are
adapted to sparsity-aware clustering based on two methods that formulate the determination of
the sparsity level as approximations to spectral properties of the sparse graph models.

A second contribution of this thesis is to analyze the effects of outliers on graph clustering and
to propose algorithms that address robustness and the level of sparsity jointly. The basis for this
contribution is to specify fundamental outlier types that occur in the cases of extreme sparsity and
the mathematical analysis of their effects on sparse graphs to develop graph clustering algorithms
that are robust against the investigated outlier effects. Based on the obtained results, two different
robust and sparsity-aware affinity matrix construction methods are proposed. Motivated by the
outliers’ effects on eigenvectors, a robust Fiedler vector estimation and a robust spectral clustering
methods are proposed. Finally, an outlier detection algorithm that is built upon the vertex degree
is proposed and applied to gait analysis.

The results of this thesis demonstrate the importance of jointly addressing robustness and the
level of sparsity for graph clustering algorithms. Additionally, simplified Laplacian matrix analysis
provides promising results to design graph constructionmethods thatmay be computed efficiently
through the optimization in a vector space instead of the usually used matrix space.
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If I had an hour to solve a problem I’d spend 55 minutes
thinking about the problem and five minutes thinking
about solutions.

—Albert Einstein

1
Introduction

1.1 Motivation

Machine learning is of paramount importance in modern complex intelligent systems. A
fundamental machine learning task is to discriminate between similar and dissimilar data points,
based on a similarity criterion, to create clusters of points. Clustering arises in diverse areas, e.g.
image analysis [LZX20], medical diagnostics [NRG19], bioinformatics [PEC19], information
retrieval [JV19] and data mining [ASI20], and is an active area of fundamental research. Despite
its application diversity, the notion of a cluster does not have a precise definition and the clustering
problem has been studied from different perspectives. Graph clustering is one of themost popular
techniques for establishing clusters as it is efficient in learning the hidden relationships in a data
set.

In a graph, the vertices of the graph represent the data pointswhile the edgesmeasure association
relationships between them based on non-zero components of an affinity matrix [XT15]. Similar
to the general idea of clustering, the goal of graph clustering is to obtain clusters that are internally
dense while being sparsely connected, or ideally unconnected, to the remainder of the graph.
Problems potentially arise with graph clustering when, for example, clusters are obscured by

1



Figure 1.1: Examplary graph clustering. Left: graph representation of digit samples from the MNIST data base [HS98]. The
red edges represent connections to outliers which are ones that have connections to more than one group of digit samples.
The green, blue and yellow lines represent the within‐cluster edges of digits 9, 4 and 3, respectively. Right: cluster assignment
based on the general graph clustering idea that maximizes the number of intra‐cluster edges while minimizing the number of
inter‐cluster edges.

undesired edges between them, and/or when outliers and noisy data points result in performance
degradation in graph clustering algorithms.

To provide a visual understanding, an examplary corrupted graph model and associated cluster
assignment are shown in Fig. 1.1 for a defined level of sparsity using the well-known handwritten
digit samples from the MNIST data base [HS98]. In the examplary graph model, the red edges
represent connections to outliers while the remaining edges are the informative edges that connect
true samples. The green, blue and yellow lines represent the within-cluster edges of digits 9, 4
and 3, respectively. The red ellipses indicate cluster assignments that are computed based on a
general graph clustering idea, whichmaximizes the number of intra-cluster edgeswhileminimizing
the number of inter-cluster edges to obtain disjoint clusters. As can be seen, the undesired edges
between characters four and nine obscure the clusters and result in assigning unconnected digit
samples into a small cluster. An important property of these over-connected or under-connected
components is that their occurrence is directly related with the graph construction.

The importance of graph construction is illustrated in Fig. 1.2 where graphs are shown for
handwritten digit samples from the MNIST data base for varying sparsity levels. For example,
the dense graph in Fig. 1.2a contains many undesired edges between different characters which
especially makes the task of separating characters four from nine challenging. Additionally, there
are outliers of character three and nine that are not similar to the majority of data. The increased
sparsity in Fig. 1.2b reduces the number of undesired edges between different characters and
provides a better structure for clustering. However, as is evident in Fig. 1.2c, further increasing
the sparsity generates many disconnected components and the underlying structure of the true
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(a) Threshold=0.65 (b) Threshold=0.75

(c) Threshold=0.85

Figure 1.2: Example graph constructions for handwritten digit samples from MNIST data base [HS98].

clusters is completely lost. Summarizing, this means that an inefficient graph construction leads to
inaccurate clustering results due to the obscured true clusters or lost informative edges.

In addition to the above challenges, the number of clusters is, in general, unknown in real-
world graph clustering applications. According to this, for a densely connected graph structure,
the undesired edges between different clusters may result in merging connected clusters into a big
cluster and under-estimating the true number of clusters. On the other hand, increasing sparsity
may lead to assigning unconnected components into different clusters and, consequently, to over-
estimation of the cluster number.

Graph clustering algorithms are often computationally intensive and, especially when analyzing
larger data sets, computation efficiency of such algorithms is of high importance. Typically, for
graphs that are comprised ofN vertices, graph clustering algorithms generally operate onN × N
matrices to construct graph models or to partition them. When the number of vertices in a graph
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is increased with an increase in the number of data samples being analyzed, the computational cost
associated with graph clustering algorithms can be significant and a limiting factor in data analysis.

The main problems associated with graph clustering are that the number of clusters is generally
unknown, the level of sparsity to use is not precisely defined, a large number of vertices leads to high
computational complexity, and outliers in the data underpinning the graph are likely to negatively
impact the establishment of the true cluster structure. There is clear research interest in addressing
these issues and fast and parameter-free graph clusteringmethods that jointly address robustness and
graph construction are detailed in this thesis.

1.2 State-of-the-Art

Graph clustering has been extensively researched during the last decades, e.g. [KWC19, LH18,
Sch07]. In particular, robust graph clustering has received significant research attention, see, for
example, [YCL20, AGR19, ZCS19, LNC18].

Since graph constructionplays a crucial role in obtaining accurate clustering results, one popular
approach for integrating robustness into graph construction is to utilize sparse affinity matrices
[AGR19, LNC18, ZZL18] whose non-zero components represent the edge weights of the graph.
These methods restructure the affinity matrix based on prior information, e.g., the number of
clusters [LNC18] and the level of sparsity [AGR19, ZCS19, LNC18, ZZL18] that is significant
for the graph structure.

Block diagonal (BD) structure of the affinity matrix is a commonly desired property in
graph clustering because it represents clusters of feature vectors by non-zero coefficients that are
concentrated in blocks. Consistent with the general idea of graph clustering (for details, see
Section 1.1 or Section 2.4), this means that a block diagonally structured affinitymatrix is a helpful
tool that provides internally dense clusters that are sparsely connected, or ideally unconnected,
to the other clusters. To impose this advantageous structure on the affinity matrix, commonly
used existing block diagonal representation (BDR) methods use regularization with BD priors,
e.g. based on a low-rank property [XTX15, LLY12, LY11], sparsity [FLW21,WZW17], or a known
number of blocksK [LFL18, XGL17].

Spectral clustering (SC) algorithms that embed the vertices of a graph into a low dimensional
space based on the eigen-decomposition of theLaplacianmatrix, are popular alternatives to address
the graph clustering problem. Consequently, suppressing outliers’ effects in the embedding space,
such as in [YCL20, ZCS19,CNW15, PYT15] has become a further popular research interest in the
literature. However, most of these approaches require prior knowledge, e.g., the label information
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of a data set [YCL20, CNW15] or data dependent parameter tuning to determine the descriptive
features [ZCS19].

While all of the above works focus on robustness, none of them consider the relationship
between the graph construction and the outliers’ occurrence. Additionally, most of the
robust graph clustering methods require prior information whose determination is challenging,
especially in the presence of outliers and heavy-tailed noise that may obscure the underlying
structure. Therefore, the following section states the aim of this work and briefly summarizes our
contributions to robust graph clustering that address the above issues.

1.3 Aims and Contributions

The aim of this doctoral project is to develop fast and parameter-free robust graph clustering
methods. The original contributions of the thesis are with respect to ideal partitioning of sparse
graphs and robustness in graph clustering in the presence of outliers, that are detailed below:

Sparse Graphs for Ideal Partitioning (Chapter 3):

• Motivated by the conformity of BDR to graph clustering objectives, a sparse graph model
providing internally dense and externally unconnected clusters is defined.

• Spectral analysis of the sparse graphmodel is conducted and a vector representing the blocks
as a piece-wise linear function is defined. In this way, the relevant information that is
contained in the Laplacian matrix, i.e., the similarity coefficients and the block sizes, is
transformed into a vector space analysis and spectral analysis of the Laplacian matrix is
simplified.

• The defined sparse graph is adapted to sparsity-aware clustering and graph clustering
methods that naturally determine the appropriate level of sparsity based on the spectral
properties of sparse graph model.

Outliers in Graph Clustering and Robust Solutions (Chapter 4):

• Fundamental outlier typeswhose occurrence depends on the graph construction are defined
for graph clustering. More precisely, unconnected vertices (Type I outliers), vertices that
generate false positive connections between different clusters (Type II outliers) and the
extreme case that groups of vertices are connected to another one (Group similarity), are
considered.
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• To jointly address robustness and sparsity, outliers’ effects on sparse graphs is theoretically
analyzed. In particular, the eigenvalues and the eigenvectors are computed for three
fundamental cases. The developed analysis underpins, via the use of a simplified Laplacian
matrix, the development of fast, robust and sparsity-aware graph clustering algorithms.

• Robust graph clustering methods that mitigate the outliers’ negative impact on the affinity
matrix, the simplifiedLaplacianmatrix analysis, the Fiedler vector and SC, are proposed. All
proposed methods are robust and parameter-free alternatives to solve the graph clustering
problem except for the robust SC method, which requires knowledge of the number of
clusters. In addition to these, an outlier detection algorithm built upon the vertex degree is
proposed and applied to gait analysis.

1.4 Dissertation Overview

The remaining part of the dissertation is organized in four chapters where the main contributions
are detailed in Chapters 3 and 4.

Chapter 2 details the fundamental concepts of graph theory that are relevant for the thesis, and
provides an overview of why sparsity in graph clustering is of importance.

Chapter 3 starts with the theoretical design of a sparse graph model which can provide
ideally separated clusters through the use of BDR. Next, eigenvalues and the eigenvectors of the
sparse graph model are computed and a vector that simplifies the Laplacian matrix analysis by
representing blocks as piece-wise linear function is defined. Spectral analysis of the sparse graph
model is adapted to sparsity-aware clustering by formulating determination of the sparsity level as
approximations to spectral properties of the sparse graph modes.

In Chapter 4, the existence of outliers and robust graph clustering solutions are considered.
To understand how to best integrate robustness, first, fundamental outlier types are defined for
graph clustering. Then, their effects on sparse graphs are mathematically analyzed in terms of
the affinity matrix, overall edge weights, eigen-decomposition and the simplified Laplacian matrix
analysis. Based on the obtained results, robust graph clustering methods providing robustness to
outliers’ effects on the matrix and embedding spaces are proposed. The vertex degree, which is
a significant property to determine outliers in sparse graphs, is used for outlier detection and the
proposed method is applied to gait analysis.

Finally, a summary of the thesis, conclusions and an outlook representing some open problems
and future research directions are detailed in Chapter 5.
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If I were again beginning my studies, I would follow the
advice of Plato and start with mathematics.

- Galileo Galilei

2
Fundamentals of Graph Theory

This chapter introduces fundamental concepts of graph-based cluster analysis. First, basic
definitions and similarity measures for graph construction are presented in Section 2.1 and
Section 2.2, respectively. Then, a general introduction to spectral graph theory is provided in
Section 2.3 and the main ideas of graph partitioning and clustering are detailed in Section 2.4.
Building upon these sections, state-of-the-art spectral methods for graph partitioning are revisited
in Section 2.5. Finally, a discussion of sparse graphs is given in Section 2.6.

2.1 Basic Definitions

Graph theory is an area of extensive research that comprises numerous concepts and various graph
representations [New18,Wes01]. This sectionpresents the relevant theory forweightedundirected
graphs that are used throughout this thesis.

LetX = [x1,x2, . . . ,xN] ∈ RM×N be a data matrix withM denoting the dimension of the
feature vectors andNbeing thenumber of feature vectors. We assume that thedatamatrixX canbe
represented as an undirected weighted graphG = {V,E,W}. Here, V denotes the set of vertices
corresponding to the feature vectors, E is the set of edges representing the relationships between
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X ∈ RM×N

similarity measure

W ∈ RN×N G = {V,E,W}

Figure 2.1: Examplary graph construction process.

these vertices, andW ∈ RN×N is called the affinity matrix whose m, nth component consists of
the edgeweight between themth and the nth vertices that are, respectively, associatedwith themth
and nth column vectors xm ∈ RM and xn ∈ RM ofX. W ∈ RN×N is referred to as the adjacency
matrixA ∈ RN×N when all of its entries take on the value one or zero (for a detailed discussion,
see, e.g., Section 6.2 in [New18]).

To provide a visual understanding, the process of transforming a data matrixX to a graph G is
illustrated in Figure 2.1 for K = 3 clusters. The column vectors ofX, the similarity coefficients
of W and the vertices of G are highlighted in blue, green and orange, respectively, according to
their cluster membership. Additionally, zero-valued similarity coefficients ofW are highlighted in
white. Each non-zero entry ofW is represented by an edge between vertices in the resulting graph.
Hence, choosing an appropriate similaritymeasure, which yields the affinitymatrix given the data,
plays a crucial role in obtaining an informative graph.

2.2 SimilarityMeasures for AffinityMatrix Construction

Due to its central role in defining the graph structure, the measure of similarity between vertices
is a central area of research in graph theory [New18]. One of the most commonly used similarity
measures is known as cosine similarity, i.e.,

wm,n =
x⊤
mxn

∥xm∥2∥xn∥2
, m = 1, . . . ,N and n = 1, . . . ,N, (2.1)

wherewm,n is the similarity coefficient of the affinitymatrixW for themth andnth data vectorsxm

andxn, respectively. Alternatively, an affinitymatrix can be formed, for example, by usingPearson’s
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linear correlation coefficient, as

wm,n =
(xm − μ̂m)

⊤(xn − μ̂n)
σ̂mσ̂n

(2.2)

with associated sample means μ̂m, μ̂n, and sample standard deviations σ̂m, σ̂n, respectively, for
m, n = 1, . . . ,N. A more detailed discussion and additional examples of similarity measures can
be found in [LHN06].

2.3 Spectral Graph Theory

Spectral graph theory is an extensive research area that studies eigenvalues and eigenvectors
of matrices associated with graphs to understand hidden relationships in those graphs [Spi12,
Chu97]. As an introduction to spectral graph theory, this section presents fundamental concepts
that are briefly explained in the sequel.

2.3.1 The LaplacianMatrix

To define the Laplacian matrix, the first step is to compute the matrix D ∈ RN×N which is a
diagonal weight matrix with weights given by

dm,m =
N∑

m=1

wm,n (2.3)

on the diagonal and it is equivalent to the diagonal matrix of degrees for an adjacency matrix.
Throughout this thesis,D ∈ RN×N and dm,m, respectively, denote the overall edge weight matrix
and the overall edge weight that is attached to themth vertex.

After computing the overall edge weight matrix D, the unnormalized Laplacian matrix L ∈
RN×N can be defined as follows:

lm,n =

dm,m if m = n

−wm,n otherwise
, (2.4)

where lm,n denotes the m, nth component of the Laplacian matrix for L = D −W. A visual
summary of the matrices, that have been defined up to now, is provided in Figure 2.2.
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(a)L ∈ RN×N (b)D ∈ RN×N (c)W ∈ RN×N

Figure 2.2: Examplary Laplacian, overall edge weight and affinity matrices.

2.3.2 Eigen-decomposition of the LaplacianMatrix

Let the Laplacian matrix L ∈ RN×N be nonnegative definite with the eigenvalues of the standard
eigen-problem

Lym = λmym, (2.5)

or in a generalized eigenvalue problem form

Lym = λmDym, (2.6)

with associated eigenvalues 0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λN−1 sorted in ascending order. Here, λm
denotes themth eigenvalue and ym ∈ RN is the eigenvector associated with λm.

2.3.3 Fiedler Value and Algebraic Connectivity

Let 0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λN−1 be the sorted eigenvalues of the Laplacian matrix L ∈ RN×N

for N ≥ 2. Then, the second smallest eigenvalue of the Laplacian matrix λ1, that is known as
Fiedler value, is the algebraic connectivity a(G) of graphG, and it is zero-valued if and only ifG is
unconnected [Fie89, Fie73].

Since the Fiedler value provides information about the connectedness of graph, it is directly
linked to the graph cut problem which is the separation of graph vertices into disjoint subsets
[DHZ01]. For example, if the Fiedler value is small, a graph partitioning that is performed using
the associated eigenvector (Fiedler vector), results in a cut in which the ratio of edges crossing
the cut to the number of vertices in the cut is similarly small. [KLJ09]. As a natural result of
its applicability to the graph cut problem, the Fiedler vector has been the subject of many graph
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partitioning approaches, e.g. [New13, OS05, DHZ01], whose main principles will be detailed in
the following sections.

2.4 Graph Partitioning and Clustering

Clustering is a fundamental research area that has various applications, such as, image analysis
[LZX20, SY20], medical diagnostics [NRG19], bioinformatics [PEC19], information retrieval
[JV19] and data mining [ASI20]. Despite its application diversity, the precise definition of cluster
does not exist [SPG17]. As a consequence, the clustering problem has been studied from different
perspectives and this section introduces a survey of some important clustering techniques with a
particular focus on graph partitioning algorithms that can be applied to the clustering problem.

Clustering approaches have been categorised in different ways [HXZ20,HK17, SPG17, XT15].
For example, in [HXZ20], clustering approaches are grouped in four categories: partitional,
hierarchical, density-based and model-based. The hierarchical clustering methods form clusters
based on a hierarchy that is built by iteratively dividing the patterns using the top-down or
bottom-up approach [SPG17]. Agglomerative clustering methods are the bottom-up approaches,
e.g. [MDG21, BYL15], that aggregate the individual points into larger clusters based on the
determined termination conditions. By contrast, the top-down approaches, that are also known as
divisive hierarchical clustering methods, split the data points into smaller clusters based on certain
termination conditions [JZH22]. Unlike hierarchical clustering approaches, partitional clustering
assigns data points to clusters by optimizing some criterion functions where Euclidean distance is
a commonly used criterion [SPG17]. The most commonly used partitional clustering examples
are K-means type methods (e.g., K-means, K-medoids and fuzzy C-means methods), which have
a broad range of extensions, e.g. [BPB21, SY20, SR19]. The key idea of K-means clustering is
dividing the given data set into K clusters such that the average squared Euclidean distance from
the data points to the sample mean of each cluster is minimized. Different from K-means type
strategies, density-based approaches attempt to reveal clusters according to the density of regions
in the data [HXZ20]. For instance DBSCAN [EKS96], which is a well-known density-based
clustering method, assigns data points into clusters for which every cluster member has to contain
at least minimumnumber of neighbors in the given neighborhood radius. OPTICS [ABK99] and
DENCLUE[HG07] are the other popular density-based clustering approaches and there aremany
state-of-the-art approaches that follow this paradigm, see e.g. [BM21, JJ19]. Lastly, model-based
clustering approaches use a probability that is derived from the assumed statistical model as the
clustering criterion [XT15]. These approaches are mainly based on statistical learning [Ras99] or
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Graph partitioning

Figure 2.3: Examplary balanced graph partitioning.

neural network learning [Koh90] and there are many recent works about model-based clustering,
e.g. [SM21, TMZ21, TWS19, TMZ18].

Analogous to performing clustering directly on the data points, clustering can be performed
on the corresponding graph where the vertices of the graph represent the data points while
edges measure association relationships between them [XT15]. One of the most popular graph
clustering algorithms is known as minimal spanning tree (MST) [Zha71] and there are numerous
advanced graph clustering techniques, e.g. [KWC19, SZL19, WLW18]. A common goal for these
approaches is to obtaindisjoint clusterswhere thenumber of edgeswithin the clusters ismaximized
in contrast to the number of edges in between the clusters. This problem is directly linked to graph
partitioning, which can be considered as graph clustering under certain conditions.

2.4.1 The Graph Partitioning Problem

Graphpartitioninghas been extensively researched in the literature and it has different applications,
such as, social networks, road networks and image processing [BMS16]. Beyond its importance in
graph theory, graph partitioning is directly related to the clustering problem. To understand the
relationship between these concepts, this section explains themain ideas behind graph partitioning
with a brief summary of the state-of-the-art approaches.

The graph partitioning problem is the separation of graph vertices into balanced partitions
while minimizing the number of edges that cross the cut [NHG19, ARV08]. This problem
is NP-hard [ARV09] and thus, most of the graph partitioning approaches are heuristic, e.g.,
[FJL20, NHG19]. In addition to existing heuristic graph partitioning approaches, there are
theoretical approximation algorithms for the sparsest cut, edge expansion, balanced separator and
graph conductance problems, such as, [LM14, ARV09, ARV08, LR99].

Toprovide a better understanding, an examplary graphpartitioning is presented inFigure 2.3 for
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a balanced partition in which the number of vertices on the two sides is within a constant factor of
each other. As can be seen, the balanced graph partition produces equally sized clusters that share
the minimum number of edges.

2.4.2 Clustering as Graph Partitioning

Since the goal of clustering is to assign similar data points into the same cluster while assigning
dissimilar ones intodifferent clusters basedon a given similarity criterion [XT15], for a graphwhose
edge weights measure similarity of data points, this objective can be transferred to maximizing the
number of edges for intra-clusters whileminimizing it for inter-clusters. Thismeans that the graph
partitioning problem can be interpreted as a clustering problem.

Even though graph clustering and partitioning solve a very similar problem, clustering
approaches, generally speaking, donot control the size of clusters [SBH16], whilemost of the graph
partitioning approaches attempt to obtain balanced partitions, e.g. [ARV09, ARV08, LR99].
Additionally, the number of clusters is generally assumed to be unknown in clustering approaches
and thus, the number of clusters has to be estimated as well. Herein, a commonly used approach
to estimate the number of clusters (or so called communities [Sch07]) is tomaximize the quality of
the partition, where modularity and conductance are well-known quality measures that have been
commonly used in graph clustering, e.g. [YHJ20, GZZ19]. In the sequel, these metrics are briefly
revisited.

2.4.3 Modularity

Modularity (mod) [New06,GN02], is ametric that evaluates the quality of a partitionwith respect
to the similarity of feature vectors in an affinity matrix. Analogous to the objectives of graph
partitioning and clustering, a cluster assignment yields a high modularity score if the vertices have
more edges within the assigned cluster while they have fewer edges connected to the other clusters.
The modularity score is calculated by

mod =
1
2g

N∑
m,n

[
wm,n −

dmdn
2g

]
1{cm=cn} (2.7)

where dm =
N∑
n=1

wm,n denotes the sum of the weights of edges attached to vertexm, g = 1
2

∑
m,n

wm,n,

and the indicator function 1{cm=cn} is equal to to one if cm = cn and is zero otherwise.
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2.4.4 Conductance

Conductance (cond) evaluates the quality of a partition in terms of the fraction of edges that point
outside the community. Therefore, a small-valued conductance score means good partitioning
performance. It is calculated as [YL15]

cond =

N∑
m,n

wm,n1{cm ̸=cn}

N∑
m,n

wm,n

,

wherewm,n denotes the weight of the edge between themth and the nth vertices, and the indicator
function 1{cm ̸=cn} equals one if cm ̸= cn and is zero otherwise.

2.5 SpectralMethods for Graph Clustering

An alternative to address the graph clustering problem are spectral clustering algorithmswhich are
mainly built upon eigen-decomposition of Laplacian matrices associated with an affinity matrix.
Due to their efficiency and solid theoretical foundation [NC11], they have been the subject of
intense scientific research for decades, e.g., [JDX14, Lux07, SM00, DH73] with a wide range of
applications, such as in computer vision [LNC18], bioinformatics [PZ18], and medical diagnosis
[XGZ71]. From amathematial point of view, after affinitymatrix construction, spectral clustering
only requires solving a linear problem [SPG17], and this makes it advantageous in comparison
to graph cut algorithms [JDX14]. Beyond its mathematical advantage, it does not make any
assumptions on the cluster shapes which makes it applicable to more complex scenarios, such as,
intertwined spirals or other arbitrary nonlinear shapes [LH18]. Additionally, spectral clustering
is applicable to large data sets as long as the graph is sparse (for details about sparse graphs, see
Section 2.6).

Spectral clustering has been studied from different aspects [JDX14], for example, constructing
the affinity matrix, forming the Laplacian matrix, computing and selecting the eigenvectors and
the number of clusters. Among these different spectral clustering approaches, a well-known
spectral clustering algorithm, which is commonly used throughout this thesis, is introduced in
the following.
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Algorithm 1:Unnormalized Spectral Clustering
Input: The data matrixX ∈ RM×N and the number of clustersK
Step 1: Affinity Matrix Construction
Construct the affinity matrixW ∈ RN×N (For details, see Section 2.2)
Step 2: Eigen-decomposition of the Laplacian Matrix
Compute the unnormalized Laplacian matrixL ∈ RN×N forL = D−W

ComputeY = [y0,y1, . . . ,yK−1] ∈ RN×K whose column vectors are the
eigenvectors that are associated to theK smallest eigenvalues ofL
Step 3: K-means Clustering
Treat each row ofY as aK-dimensional feature vector and performK-means clustering
Output: A vector ĉ containing the estimated cluster labels

2.5.1 Unnormalized Spectral Clustering

For a given graphG, themain step for spectral clustering is to compute the Laplacianmatrix which
has not been uniquely determined in the literature [LH18]. As in Section 2.3.1, an unnormalized
Laplacian matrix, also called unnormalized graph Laplacian, associated with an undirected graph
G is considered. The Laplacian matrix L ∈ RN×N is symmetric and nonnegative definite with
eigenvalues 0 ≥ λ0 ≥ λ1 ≥ · · · ≥ λN−1 that are sorted in ascending order. In the following, the
unnormalized spectral clustering algorithm built upon the unnormalized graph Laplacian L is
introduced.

2.6 Sparse Graphs

In numerical analysis, a matrix is called sparse if it has relatively large number of zero-valued
elements and it is called dense if most of its elements are non-zero. The ration of zero-valued
elements divided by the total number of elements is commonly referred to as the sparsity of
a matrix. From a graph clustering point of view, this means that the sparsity of a graph is
directly linked to the number of edges and it has many advantages in graph clustering approaches
[Sch07]. For example, many graph clustering performance measures aim to find clusters that
are internally dense while being sparsely connected, or ideally unconnected, to the rest of the
graph. Another advantage of these graphs is the computational efficiency in which having fewer
number of edges reduces the number of operations in clustering approaches [SPG17]. Motivated
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by its importance in graph clustering, this section presents state-of-the-art sparse affinity matrix
construction methods and the main ideas of a commonly desired sparse matrix structure.

2.6.1 Sparse AffinityMatrix ConstructionMethods

By virtue of its crucial role in graph clustering, the construction of sparse affinity matrices is a
substantial research area and there are many different modalities, e.g. [LKJ20, LSW16, YLR16,
EV13, CYY09].

One of the most traditional ways of constructing a sparse affinity matrix is known as nearest
neighbor graphs. For a given global parameter, which is denoted by p throughout this thesis, the
idea is to obtain a graph in which every vertex has only edges to its p-nearest neighbors based on
the determined metric space, e.g., the Euclidean distance or cosine distance [EPY97]. Similarly,
ε-neighborhood graph construction is built upon the idea that every vertex is connected to other
vertices whose distances are less than the predefined global parameter ε based on the determined
metric space [UST09]. For both methods, a smaller valued global parameter results in greater
sparsity. However, using Euclidean or cosine metric spaces makes these approaches sensitive to
outliers and/or data noise. Additionally, when the data is distributed in differentways, determining
the sparsity based on a single parametermay result in performance degradation for these algorithms
[CYY09]. For instance, p-nearest neighbor graph construction may involve inhomogeneous data
points that are far away from the true clusters when the data is distributed in different ways.

A popular robust alternative to sparse affinity matrix construction is known as ℓ1-graph
construction in which every data point is constructed by the linear combination of the remaining
data points and a noise term by minimizing the ℓ1 norm of both reconstruction coefficients and
data noise [WMM10, CYY09]. In contrast to the above traditional affinity matrix construction
methods, the ℓ1-graph constructionmethod is robust against outliers and the number of neighbor
selection is adaptive for each data point. As a result, utilizing the ℓ1 norm for sparse affinity matrix
construction has been widely studied, see, e.g., [KXF16, NWD16]. Even though the ℓ1-graph
is a robust, sparse and data-adaptive method, finding a sparse representation of each data point
individually, results in missing higher order relationships. In particular, the ℓ1 norm constrained
sparse representation problem tends to select one variable from a group and ignore the others
when there exists a group of highly correlated variables [LSW16]. It has been shown that utilizing
mixed ℓ1, ℓ2 and nuclear norm regularizations balances sparsity and connectedness in a graph
[YLR16]. Therefore, group sparsity techniques, such as, elastic net, are advantageous alternatives
for achieving the group selection effect [LSW16, YLR16].
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(a)W ∈ RN×N (b)G = {V,E,W}

Figure 2.4: Examplary BD affinity matrix and associated graph.

In addition to the above paradigms, sparse graphs have been constructed by imposing a structure
on the affinity matrix, e.g., [LFL18, XGL17, FLX14]. Therefore, the following section provides
a basic understanding of BDR, which is one of the most commonly desired structures in graph
clustering algorithms.

2.6.2 Block Diagonal Representation (BDR)

Toprovide a visual understanding, an examplaryBDaffinitymatrix and associated graph are shown
in Figure 2.4 where the three different colors inW, respectively, indicate the similarity coefficients
associated with the three dense clusters inG. As can be seen, the BD affinity matrix can simply be
separated into different distinct blocks. From a graph clustering perspective, clusters of G, which
are internally dense and unconnected to any other cluster, will provide good partitioning results
with a small-valued conductance and a large-valued modularity.

The generic example also implies that block diagonally structured affinity matrices are desirable
in graph clustering approaches. In particular, if the affinity matrix is BD, i.e., the similarity
coefficients outside the blocks are all zero-valued, applying spectral clustering may provide perfect
clustering results [LFL18]. Due to this fundamental property, the BD structure of the affinity
matrix plays a crucial role in spectral-type subspace clustering approaches, e.g. [LFL18, XGL17,
FLX14] that perform spectral clustering on the designed affinity matrix to assign the data points
into clusters. More detailed information about state-of-the-art BDR approaches and their
application to the subspace clustering problem is provided in the following sections.
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A theory is only as good as its assumptions. If the premises
are false, the theory has no real scientific value. The only
scientific criterion for judging the validity of a scientific
theory is a confrontation with the data of experience.

-Maurice Allais, 1997.

3
Sparse GraphModels for Ideal Partitioning

After explaining fundamental concepts in graph theory, the goal of this chapter is to present a
proposed sparse graph model and its applications to real-world problems. To this end, first the
theoretical design of the sparse graph model and its spectral analysis are provided in Sections 3.1
and 3.2, respectively. Further, the applicability of designed sparse graphs to sparsity aware
clustering is presented in Sections 3.3. Lastly, two different sparsity-aware clustering methods
building upon the spectral properties of the sparse graph model are introduced in Sections 3.4.

3.1 Theoretical Design of the Sparse GraphModel

This section provides a theoretical understanding of the presented sparse graph model which is
designed to obtain good graph partitioning results. Since a graph model consisting of internally-
dense clusters that are unconnected to eachotherwill provide a goodpartitioning result (for details,
see Sections 2.4), the sparse graphmodel is definedusing the advantageous properties of BDaffinity
matrix as follows.
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w1=0.6 w2=0.3 w3=0.9
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(a)W ∈ RN×N (b) G = {V,E,W}

Figure 3.1: Examplary illustration of Definition 3.1.1 (n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3).

Definition 3.1.1. (Sparse Graph for Ideal Partitioning) Let G = {V,E,W} be a sparse
graph where V denotes the set of vertices, E is the set of edges and W ∈ RN×N be a K block zero-
diagonal symmetric affinity matrix with blocksW1,W2, . . . ,WK on its diagonal. Each blockWi,
i = 1, . . . ,K is associated to a number Ni ∈ Z+ > 1 of feature vectors and concentrated around
a similarity constant wi ∈ R+, i = 1, . . . ,K with negligibly small variations. G is called a sparse
graph for ideal partitioning if and only if the similarity coefficients between different blocks are all
zero-valued inW.

To provide a visual understanding, Definition 3.1.1 is illustrated in Figure 3.1. The colored cells
in Figure 3.2a represent non-zero edge weights that the blocks are concentrated around. Similarly,
colors in Figure 3.1b represent the cluster associations of vertices. As canbe seen, for theBDaffinity
matrix as given inDefinition 3.1.1, the sparse graphmodel consists of vertices that are connected to
all other vertices of the same cluster while they are unconnected to the vertices of different clusters.

Definition 3.1.1 shows a special case of a BD affinity matrix for which the blocks are
concentrated around constants. This assumption simplifies the spectral analysis of the sparse graph
model that will be detailed in the following sections.

3.2 Spectral Analysis of the Sparse GraphModel

This section is dedicated to introduce the spectral properties of the sparse graph model. In the
sequel, the Laplacian matrix, eigenvalues, eigenvectors are computed for the given ideal model.
Then, the analysis of Laplacian matrix is simplified by defining a vector that represents the
Laplacian matrix as a piece-wise linear function.
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Figure 3.2: Examplary illustration of the sparse affinity matrixW and associated matricesD andL ∈ RN×N

(n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3).

3.2.1 LaplacianMatrix of the Sparse GraphModel

Let D ∈ RN×N denote the overall edge weight matrix which is a diagonal weight matrix that is

computed from sparse affinity matrixW and has edge weights dm,m =
N∑

m=1
wm,n on the diagonal.

Then, similar to Section 2.3.1, the unnormalized sparse Laplacian matrix is computed as follows:

lm,n =

(Ni − 1)wi if m = n and that is associated with Li

−wm,n otherwise
, (3.1)

where lm,n denotes them, nth component of the sparse Laplacianmatrix forL = D−W andLi is
the ith block of L ∈ RN×N. An examplary plot illustrating, respectively, the sparse affinity matrix
W, the overall edge weight matrixD and the sparse Laplacian matrixL is given in Figure 3.2.
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Figure 3.3: Examplary illustration of Theorem 1 (n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3).

3.2.2 Eigenvalues for the Sparse GraphModel

After computing the sparse Laplacian matrix, our next step is to compute its eigenvalues which is
detailed in the following theorem.

Theorem 1. LetW ∈ RN×N be a sparse affinity matrix in Definition 3.1.1 and letD ∈ RN×N

denote the associatedmatrix of overall edgeweights. Assuming thatL ∈ RN×N is the associated sparse
Laplacian matrix, its eigenvalues will be of the following form based on Eq. (2.6)1

λλλ = sort
(

0, . . . , 0︸ ︷︷ ︸
K

,
N1

N1 − 1
, . . . ,

N1

N1 − 1︸ ︷︷ ︸
N1−1

, . . . ,
NK

NK − 1
, . . . ,

NK

NK − 1︸ ︷︷ ︸
NK−1

)
,

where λλλ ∈ RN denotes the vector of target eigenvalues and sort(·) is the sorting operation in ascending
order.

Proof. See Appendix A.1.1.1

An illustration of Theorem 1 is given in Figure 3.3 for a sparse affinity matrix consisting of
K = 3blocks. By definition, each block is assumed to be concentrated around a constantwi ∈ R+,
e.g. w = [0.6, 0.3, 0.9]⊤. Figure 3.3c confirms the results of Theorem 1 that for each block
i = 1, . . . , 3, the smallest eigenvalue is zero and the remainingNi − 1 eigenvalues are Ni

Ni−1 .
FromTheorem 1, it becomes clear that the eigenvalues contain the block size information. This

valuable knowledge will be later used to learn the structure of W based on the eigenvalues in
Section 3.4.1.

1For the eigenvalues of sparse Laplacian matrixL based on standard eigen-decomposition, see Appendix A.1.2.
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Figure 3.4: Spectral embedding according to the eigenvectors of the Laplacian matrixL whenK = 3.

3.2.3 Eigenvectors for the Sparse GraphModel

The third step of spectral analysis is to compute the eigenvectors of the sparse Laplacian matrix
whose results are summarized in the following theorem.

Theorem 2. Let L ∈ RN×N be the Laplacian matrix corresponding to a K block zero-diagonal
symmetric affinity matrix W ∈ RN×N in which every block k = 1, . . . ,K is associated to
Nk (Nk ∈ Z) > 1 feature vectors and the affinities outside the blocks are zero-valued. Further,
let Y = [y0,y1, . . . ,yK−1] ∈ RN×K be the matrix of eigenvectors associated with the K smallest
eigenvalues of L. Finally, let ei, the ith row vector ofY, denote the embedding vector that represents
the M-dimensional ith feature vector xi in the reduced K-dimensional space. Assuming that the
eigenvectors are orthonormal, the Euclidean distance between any embedding vector pairs ei and ej
associated to distinct blocks k and l is equal to ∥ei − ej∥2 =

√
1/Nk + 1/Nl for k ̸= l and i ̸= j.

Proof. See Appendix A.1.1.2.

Theorem 2 is illustrated in Figure 3.4 for an example consisting ofK = 3 blocks whereμμμk ∈ RK

denotes the cluster centroid corresponding to block k = 1, . . . ,K. As can be seen, the Euclidean
distance between embeddings of distinct blocks is a function of their block sizes.

Different from Theorem 1, Theorem 2 addresses a more general case of Definition 3.1.1 by
removing the assumption that the blocks are concentrated around a similarity constant. Based
on the properties of orthonormality, the embedding results of Theorem 2 show the ideal case of
graph clustering approaches that are built upon the eigenvectors of Laplacian matrix, e.g., SC (for
details, see Section 2.5). An examplary application of this important propertywill be later provided
for sparsity-aware subspace clustering in Section 3.4.2.
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3.2.4 Simplifying LaplacianMatrix Analysis of the Sparse GraphModel

In the preceeding sections, spectral analysis has been performed for N × N Laplacian matrices,
which may lead to computationally heavy methods for large graphs. In this section, we therefore
re-formulate the problem inN× 1 vector space. In particular, assuming thatW is symmetric and
BD2, the analysis is simplified by defining the vector v ∈ RN as follows

vm =
N∑

n=m

lm,n, (3.2)

where vm and lm,n, respectively, denote themth andm, nth components of v andL.
After determining vectorv, our next step is its computation for a sparse Laplacianmatrix which

is detailed in the following theorem.

Theorem 3. Let L ∈ RN×N be the sparse Laplacian matrix associated with the sparse affinity
matrix in Definition 3.1.1. Then, it follows that the vector v associated with L is a piece-wise linear
function of the following form

vm = f(m) =


(m− ℓ1)w1 if ℓ1 ≤ m ≤ u1

...

(m− ℓK)wK if ℓK ≤ m ≤ uK,

where ℓ1 = 1, u1 = N1, ℓi =
i−1∑
k=1

Nk + 1 and ui =
i∑

k=1
Nk for i = 2, . . . ,K.

Proof. See Appendix A.1.1.3.

An illustration of Theorem 3 is provided in Figure 3.5 for an example consisting of K = 3
blocks. The changepoints ofv define the blocks sizes and the coefficients aroundwhich the blocks
are concentrated. Consequently, v provides substantial information about the eigenvalues of L,
which will be used in Section 3.4.1 to design eigenvalue-based affinity matrix estimation methods
that may be computed efficiently through the optimization in a vector space.

2A sparsematrix can be transformed into a BD formusing theReverseCuthill-McKee (RCM) algorithm [CM69].
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Figure 3.5: Examplary sparse Affinity matrix, sparse Laplacian matrix and corresponding vector v (n = [10, 8, 12]⊤ ∈ RK,
N = 30,K = 3).

3.3 Adapting Sparse Graphs to Sparsity-Aware Clustering

Up to now, the determination of sparse graphs and their spectral analysis have been explained.
Beyond the theoretical understanding of sparse graphs, this section discusses the applicability of
sparse graphs to real-world clustering problems.

In Section 2.4, it has been explained that graph clustering approaches maximize the number
of intra-cluster edges while minimizing the number of inter-cluster edges. Concordantly, this
objective can be transferred to structuring an affinity matrix in which the similarity coefficients
corresponding to intra-clusters edges are non-zero valued while that of inter-clusters are zero-
valued. This means that having a sparse affinity matrix, such as, in Definition 3.1.1 will potentially
provide good graph clustering results.

In theory, the sparse affinity matrix in Definition 3.1.1 is anN × N and the spectral properties
of the sparse affinity matrix show that the eigenvalues and the vector v carry all the relevant
information in W, such as, the block sizes and/or the similarity coefficients around which the
blocks are concentrated. In practice, the data may not directly produce an affinity matrix that
follows Definition 3.1.1. However, it is reasonable to use the theory as a target towards which we
regularize the affinity matrix estimator. Therefore, assuming that the eigenvalues in Theorem 1 as
our target, a sparse affinity matrix can be structured by approximating these target eigenvalues.
Additionally, Theorem 2 shows the ideal Euclidean distance between different clusters for a
clustering algorithm that is performedusing the eigenvectors associatedwithK smallest eigenvalues
of aLaplacianmatrix, i.e. SC. Practically, thismeans that an affinitymatrix providing theEuclidean
distance between different clusters as inTheorem2 is potentially a good input to the SC algorithm.
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3.4 Sparsity-Aware Clustering based on Spectral Properties of the Sparse
GraphModel

Motivated by the adaptiveness of sparse graphs to sparsity-aware clustering, this section introduces
two different sparsity-aware clustering methods that are built upon, respectively, the eigenvalues
of the sparse Laplacian matrix in Theorem 1 and the eigenvectors in Theorem 2.

3.4.1 Eigenvalue-based Sparsity Level Control for Clustering

3.4.1.1 Introduction

The construction of an informative graph model plays a crucial role to learn the intrinsic
relationships hidden in data and it has numerous applications such as in clustering/classification
[OFK18, ZZL18, EV13], subspace learning [EV13, CYY09] and semi-supervised learning [LSW16,
CYY09, Zhu08]. In cluster analysis, the graph model represents each feature vector as a vertex
and describes the association relationships using an affinity matrix in which BD structure is a
commonly desired feature [LFL18, XGL17, FLX14, EV12, LW12].

Partly motivated by the natural occurrence of block diagonally structured affinity matrices in
cluster analysis, BDR has been the subject of intense scientific research. Sparse representation
is one of the most common ways of constructing a BD affinity matrix [LFL18, XGL17, FLX14,
EV12]. An alternative way of constructing BD affinity matrices are p-nearest neighbor graphs
which are popular due to their computational simplicity [LW12]. However, a major challenge
for all these methods is to determine the level of sparsity, i.e. the number of neighbors or
the regularization parameter. The choice of the sparsity level has been researched by analyzing
the similarity coefficients’ distribution [TMZ21], via supervised learning algorithms [MDD18,
GCC15], geometric interpretations [ARV09] and connectedness [NH11].

To the best of our knowledge, an unsupervised BDRmethod that uses the eigenvalues of a BD
affinity matrix to deduce the sparsity level has not been proposed in the literature. Therefore, in
[TMZ22], we first analyze the eigenvalues of the Laplacian matrix based on an ideal BD model
(Theorem 1). Then, a key idea is to define a vector that represents the blocks as a piece-wise linear
function (Theorem 3). This enables a graph construction algorithm building upon the piece-
wise linear function that estimates the parameters of the unknown target eigenvalue vector. The
proposed eigenvalues-based block diagonal representation (EBDR)method [TMZ22] is applied to
p-nearest neighbor graph construction. In the following sections, problem formulation, details of
the proposed EBDRmethod, a performance evaluation in comparison to popular BDRmethods
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and a summary are provided.

3.4.1.2 Problem Formulation

Given a dataset of feature vectorsX ∈ RM×N and the number of blocks K, the goal of this work
is to efficiently estimate a K block zero-diagonal symmetric affinity matrixW ∈ RN×N using the
eigenvalue information from Theorem 1 and Theorem 3.

3.4.1.3 Methodology

This section proposes a method to represent the data matrixX as a weighted graph G by finding
a K block zero-diagonal affinity matrixW whose non-zero components in the mth row/column
denote the neighbors of themth vertex. In principle, if there exists aK block zero-diagonal affinity
matrixW as in Theorem 1, the eigenvalues associated with the Laplacian matrix L will be in the
following form

λλλo = sort
(
0, . . . , 0︸ ︷︷ ︸

K

,
N1

N1 − 1
, . . . ,

N1

N1 − 1︸ ︷︷ ︸
N1−1

, . . . ,
NK

NK − 1
, . . . ,

NK

NK − 1︸ ︷︷ ︸
NK−1

)
, (3.3)

where sort(·) denotes sorting operation in ascending order. According to Eq. (3.3), the estimation
ofW can be cast as the following eigenvalue-based optimization program

λ̂λλ = λλλ(p̂) = argmin
pm∈p

∥λλλ(pm) − λλλ(pm)o ∥22. (3.4)

Here, λ̂λλ is the estimated vector of eigenvalues which is a function of the estimated number of
neighbors (i.e., λ̂λλ = λλλ(p̂)). The estimate is theminimizer of Eq. (2.6), where pm is themth candidate
of neighbors from a given vector of candidates p = [p1, p2, . . . , pNp ] ∈ ZNp . The associated
affinity, overall edge weight and Laplacian matrices of dimensionRN×N are denoted, respectively,
byW(pm),D(pm) and L(pm). Finally, λλλ(pm)o ∈ RN is the target vector of eigenvalues associated with
L(pm) whose estimation is detailed in the following step.

3.4.1.3.1 Estimation of the Target Eigenvalue Vector λλλ(pm)o

Step 1) Initialization : Possible Block Sizes
Suppose that v(pm) ∈ RN denotes the vector v associated with W(pm). Further, let N(pm)

c ∈ Z+

denote the number of changepoints and let τττ(pm) = [τ(pm)1 , τ(pm)2 , . . . , τ(pm)Nc
]⊤ ∈ Z+ be the vector
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containing corresponding locations in v(pm) where τ(pm)0 = 0 and τ(pm)Nc+1 = N. Then, the
changepoints in v(pm) are detected by minimizing the following penalized least-squares function
[KFE12]

N(pm)
c +1∑
i=1

τ(pm)
i∑

n=τ(pm)
i−1 +1

(v(pm)n − v̂(pm)n )2 + βN(pm)
c , (3.5)

where β is a penalty parameter, v(pm)n and v̂(pm)n are the nth point in the ith linear segment of
v(pm) and the corresponding least-squares linear fit v̂(pm), respectively. If the decrease in residual
error is smaller than β, Eq. (4.21) rejects including additional changepoints while all possible
changepoints are considered for β = 0. For a defined maximum number of changepoints
Ncmax ∈ Z+, which is a reasonably small number satisfyingK− 1 ≤ Ncmax , β is increased gradually
as long as the function finds fewer number of changepoints than Ncmax . Accordingly, a matrix
N

(pm)
cand = [n

(pm)
1 ,n

(pm)
2 , . . . ,n

(pm)
ξ ]⊤ ∈ Rξ×K whose rows denote the candidate size vectors is

designed by combination of all possible size vectors with ξ =
( Nc
K−1

)
. In practice, the candidate size

vectors consisting the block sizes that are smaller than a defined minimum number of vertices in
the blocksNmin can be removed fromN

(pm)
cand .

Step 2) Plane-based Piece-wise Linear Fit v(pm)

Suppose that Ni denotes the size of the ith segment from a candidate vector of
sizes n

(pm)
cand = [N(pm)

1 ,N(pm)
2 , . . . ,N(pm)

K ]⊤ ∈ RK with cand = 1, . . . , ξ. Further, let
S
(pm)
i = [s

(pm)
i1 , s

(pm)
i2 , . . . , s

(pm)
iNi

]⊤ ∈ RNi×2 denote a sample matrix associated with the ith
linear segment such that s(pm)in = [i, v(pm)in ]⊤ ∈ R2, n = 1, . . . ,Ni. Then, the goal of this step is to
approximate v(pm) using a piece-wise linear function that is determined by estimating K planes,
i.e.

P̂(pm)
i = {s(pm)in |s

(pm)
in ∈ R2, (ϑ̂ϑϑ

(pm)
i )⊤s

(pm)
in + b̂(pm)i = 0}, i = 1, . . . ,K, (3.6)

where ϑ̂ϑϑ
(pm)
i ∈ R2 and b̂(pm)i ∈ R denote, respectively, the normal vector and the bias associated

with the estimated ith plane P̂(pm)
i . The estimation can be performed by solving the K individual

ordinary eigenvalue problems as in [YYZ19]

ΣΣΣ(pm)
i ϑ̂ϑϑ

(pm)
i = Λ(pm)

i ϑ̂ϑϑ
(pm)
i , i = 1, . . . ,K (3.7)

and
b̂(pm)i = −(ϑ̂ϑϑ

(pm)
i )⊤μμμ(pm)i , i = 1, . . . ,K, (3.8)
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where Λ(pm)
i ∈ R is the smallest eigenvalue associated with the ith plane, and ΣΣΣ(pm)

i ∈ R2×2 and
μμμ(pm)i ∈ R2 are, respectively, the covariance matrix and the mean vector of S(pm)

i .3 Then, using the
estimated parameters of theK planes, each segment in the vector v(pm) is estimated as follows

(ϑ̂ϑϑ
(pm)
i )⊤

[
n

v̂(pm)in

]
+ b̂(pm)i = 0, i = 1, . . . ,K, n = 1, . . . ,N(pm)

i , (3.9)

where v̂(pm)in denotes the nth estimated point in the ith segment. Assuming that for each
n
(pm)
cand ∈ N

(pm)
cand , cand = 1, . . . , ξ there exists a piece-wise linear function, the size vector is optimized

as follows:
n̂ = argmin

n
(pm)
cand =n

(pm)
1 ,...,n

(pm)

ξ

∥v(pm) − v̂
(pm)
cand∥

2
2, (3.10)

where n̂ denotes the estimated block size vector and v̂
(pm)
cand ∈ RN is the estimate of vector v(pm)

associated with n
(pm)
cand . The proposed EBDR method is summarized for the p-nearest neighbor

graphs in Algorithm 2.

3.4.1.4 Experimental Results

In this section, EBDR is benchmarked against three state-of-the art BDR approaches, i.e. subspace
segmentation with BD prior (BDSSC) [FLX14], BDR using matrix B (BDR-B) [LFL18] and
implicit block diagonal low-rank representation (IBDLR) [XGL17], and robust kernel low-rank
representation (RKLRR) method [XTX15] that can be reduced to the BD for independent
subspaces and the initial matrix containing all neighbors WN−1. The performance of different
methods is analyzed in terms of their average clustering accuracy p̄acc and computation time t using
the following real-world datasets: Fisher’s iris (Fisheriris) [Fis36], radar-based human gait (Gait)
[TMZ20, SAZ19], ovarian cancer (O. Cancer) [CFR04] and person identification (Person Id.)
[TSM18]. The parameters of the competitors are manually tuned to the best possible p̄acc by using
500 samples in total. Then, t is summarized for 100 Monte Carlo experiments using the selected
parameters. In all experiments, the initial affinitymatrixWn−1 is computed using cosine similarity
and SC is performed as partitioning method. EBDR is computed using the following parameters:
Nmin =

N
2K , p = [5, 10, . . . ,N− 1],Ncmax ∈ [K− 1, . . . , 20].

3The optimal solution to the plane-based piece-wise linear fit problem can be uniquely determined byK covariance
matrices and means of the corresponding K clusters (K blocks for our case) when the objective function reaches the
optimum. For a detailed information, see Corollary 1-2 in [YYZ19].
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Algorithm 2: p-nearest Neighbor Graph Construction
Input: X ∈ RM×N, p ∈ RNp ,Ncmax ,Nmin(optional)
for pm = p1, p2, . . . , pNp do

Eigenvalue vector λλλ(pm)

ComputeW(pm) ∈ RN×N s.t. wm,n = x⊤
mxn

Compute λλλ(pm) ∈ RN using Eq. (2.6)

Target Eigenvalue Vector Estimation λλλ(pm)o

Step 1) Initialization: Possible block sizes
ComputeN(pm)

cand ∈ Rξ×K using Eq. (3.5)
Step 2) Plane-based Piece-wise Linear Fit
for n(pm)

cand = n
(pm)
1 , . . . ,n

(pm)
ξ do

for i = 1, . . . ,K do
Calculate ΣΣΣ(pm) ∈ R2×2 and μμμ(pm) ∈ R2 for S(pm)

i

Find ϑ̂ϑϑ
(pm)
i ∈ R2 and b̂(pm)i ∈ R via Eq. (3.7)-(3.8)

Substitute ϑ̂ϑϑ
(pm)
i , b̂(pm)i in Eq. (3.9) to find v̂(pm)

i ∈ RN(pm)
i

end

Form v̂
(pm)
cand = [(v̂

(pm)
1 )⊤, (v̂

(pm)
2 )⊤, . . . , (v̂

(pm)
K )⊤]⊤ ∈ RN

end
Estimate the block size vector n using Eq. (3.10)

Design λλλ(pm)o using Eq. (3.3)
end

Compute λ̂λλ = λλλp̂ using Eq. (3.4) and obtainW(p̂)

Output: G(p̂) = {V,E(p̂),W(p̂)}
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Dataset K N n p⋆ p̂

Fisheriris [Fis36] 3 150 [50, 50, 50]⊤ 50 50
Gait [SAZ19, TMZ20] 5 800 [160, 160, 160, 160, 160]⊤ 160 165
O. Cancer [CFR04] 2 216 [95, 121]⊤ 100 110
Person Id. [TSM18] 4 187 [38, 40, 47, 62]⊤ 45 45

Table 3.1: Numerical results for real‐world datasets (Ncmax = 8).
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Figure 3.6: Numerical results for the parameterNcmax .

In Table 3.1, the EBDR application to p-nearest neighbor graphs is benchmarked using real-
world datasets. The number of neighbors that provided the best p̄acc is denoted by p⋆. As can
be seen, p̂ provided similar results to p⋆ in all cases. To analyze the effect of Ncmax on p̄acc and t,
the estimated nearest neighbor values and computation time are shown for different Ncmax values
in Figure 3.6a and Figure 3.6b, respectively. The results demonstrate that EBDR approximates
p⋆ values even for a small number of samples. However, large values of Ncmax result in high
computational cost, especially in outlier contaminated datasets, e.g. Gait. Lastly, comparisons
are drawn in terms of p̄acc and t for the different methods in Table 3.2 and Table 3.3, respectively.

The clustering accuracy p̄acc that has been detailed in Table 3.2 shows the best possible
performances for the competitors when the level of sparsity (i.e. the penalty parameter) has been
optimally selected. In particular, the competitor clustering accuracy results are the best results
according to anoracle selectedpenalty parameter/s fromagrid,while estimating the level of sparsity
is part of the optimization for the proposed method. Therefore, Table 3.2 shows that EBDR
improves the performance of WN−1 and performs similar to the best results of the competitors
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Dataset WN−1 BDSSC BDR−B RKLRR IBDLR EBDR

Fisheriris [Fis36] 78.00 96.00 97.33 94.67 94.67 98.00
Gait [SAZ19] 79.63 83.13 86.25 86.75 82.75 80.75
O. Cancer [CFR04] 75.00 81.48 86.57 89.35 77.31 79.17
Person Id. [TSM18] x 95.72 97.33 95.72 95.72 97.33

Table 3.2: p̄acc(%) for real‐world datasets. ‘x’ denotes the results that produce complex‐valued eigenvectors,Ncmax = 8. The
numbers indicate the best p̄acc for the competitors.

Dataset BDSSC BDR−B RKLRR IBDLR EBDR(p̂) EBDR

Fisheriris [Fis36] 0.174 0.041 0.208 0.573 0.015 0.295
Gait [SAZ19] 6.132 4.748 5.394 826.2 0.495 43.29
O. Cancer [CFR04] 2.590 0.099 3.471 1.397 0.041 1.018
Person Id. [TSM18] 0.235 0.489 0.013 0.564 0.019 0.550

Table 3.3: t(seconds) for real‐world datasets. Except for EBDR the level of sparsity assumed to be known and it is defined as p̂
for EBDR(p̂). Ncmax = 8 in all cases.

including an unsupervised sparsity parameter estimation p. In terms of t, the proposed method
shows a significantly better performance when the level of sparsity is assumed to be known for the
competitors. Evenwhen including the nearest neighbor number estimation, EBDR is competitive
in terms of speed, which can be further reduced by tuning p,Ncmax and nkmin .

3.4.1.5 Summary

The eigenvalues associated with the block affinity matrix are analyzed for the generalized eigen-
decomposition to demonstrate the importance of eigenvalues in block affinity matrix design.
Based on our theoretical findings on the eigenvalues and the vector v, we proposed EBDR,
which estimates the number of neighbors by approximating the target eigenvalues. EBDR was
benchmarked on different real-world datasets and it showed promising performance compared to
four optimally tuned popular approaches in terms of both computation time and the accuracy.
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3.4.2 Eigenvector-based Sparsity Level Control for Clustering

3.4.2.1 Introduction

Determining an embedding so that the data points lie in a union of low-dimensional subspaces
is crucial in many real-world problems such as in clustering [SLL19, LFL18, XGL17, XTX15,
FLX14, EV13], supervised learning [GGK13] and semi-supervised learning [QWZ21, LLZ15].
In particular, subspace clustering has numerous applications e.g. motion segmentation [TV17,
RTV08], face clustering [LFL18, EV13], image segmentation [LKJ20] and community clustering
in social networks [CJS14]. Motivated by its broad range of applications, SC has been the subject
of much research, which can loosely be divided into four main categories, i.e., iterative [RA17],
algebraic [TV17, TV17], statistical [RTV08] and SC-based methods [LFL18, XGL17, XTX15,
FLX14, EV13, LY11]. In recent years, the latter have attracted increasing interest due to their
simplicity and promising performance [LFL18, XGL17].

As discussed in Section 2.6.1, the first step of SC-basedmethods is to compute an affinitymatrix.
Block diagonally structured affinity matrices constitute an informative prior, that is frequently
used (e.g., [TMZ22, LFL18, XGL17, FLX14]). A popular strategy to construct a BD models
is to represent the data as a linear combination of feature vectors while regularizing the affinity
matrix coefficients, e.g. with an ℓ1, ℓ2 or nuclear norm [LFL18, XGL17, FLX14]. Recent methods
apply mixed norms, such as, the elastic net, which have the advantage of providing a tradeoff
between sparsity and connectedness [XGL17, YLR16]. A major challenge for all these approaches
is to determine the appropriate level of sparsity which plays a crucial role in SC performance.
Different methods building upon supervised learning algorithms [MDD18, GCC15], similarity
coefficients’ distribution [TMZ21], geometric interpretations [ARV09], connectedness [NH11]
and eigenvalues [TMZ22] have been proposed; however, no optimal approach exists, especially in
the presence of outliers.

In [TMO23], we have proposed a Sparsity-Aware Block Diagonal Representation (SABDR)
method to robustly estimate the appropriate level of sparsity for subspace clustering. The
proposed SABDR approach leverages upon the geometrical analysis of the low-dimensional
structure in SC. In particular, the derived Euclidean distances between the embeddings of different
clusters are utilized to construct the BD affinity matrix. Further, we propose a computationally
efficient density-based clustering (Con-DBSCAN) algorithm, to obtain a robust estimate of
the between-clusters distances that are associated with an available affinity matrix. Unlike the
original DBSCAN [EKS96], by leveraging upon Theorem 2 that decribes the geometry of the
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Figure 3.7: Robustness in spectral analysis.

embeddings, Con-DBSCAN determines the neighborhood search radius around given points
based on their connectedness, therewith leveraging the derived geometric information. This,
in contrast to DBSCAN, enables Con-DBSCAN to efficiently expand clusters with multiple
embedding vectors in a single iteration. The proposed modification leads to a considerable speed-
up without any performance loss. Building upon our theoretic analysis in Section 3.2, we develop
a regularization parameter [LFL18] selection by re-formulating the sparsity level selection problem
as an approximation of the target between-clusters distances.

3.4.2.2 Motivation : DBSCAN for Robust Spectral Analysis

If the affinity matrix of the data is BD, SC may provide excellent results. Furthermore, according
to Theorem 2, a BD affinity matrix will lead to densely connected clusters in the embedding space.
Hence, a density-based clustering approach, such as, DBSCAN [EKS96], is a natural approach
to achieve a BD structure. However, in real-world scenarios the data includes outliers and heavy-
tailed noise which may obscure the distance between embeddings of different clusters. Therefore,
beyond its computational efficiency that has made DBSCAN very popular, we build upon its
intrinsic outlier detection ability to increase robustness for spectral analysis. Figure 3.7 illustrates
this with an example of K = 3 clusters that are hidden in a matrix of corrupted eigenvectors
Ỹ = [ỹ0, ỹ1, ỹ2]. Even though an appropriate level of sparsityprovides densely connected clusters,
the outliers obscure thedistancebetweendifferent clusters as it is shown inFigure 3.7a. By contrast,
as illustrated in Figure 3.7b, DBSCAN identifies the outliers and robustly estimates the between-
clusters distance information.
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3.4.2.3 Problem Formulation

Given a dataset of feature vectors X ∈ RM×N, the aim of the method that is described in the
following is to robustly and efficiently find aK block zero-diagonal symmetric affinitymatrixW ∈
RN×N to clusterX using the spectral information of BD affinity matrices.

3.4.2.4 Methodology

This section details the proposed SABDR method which estimates a BD affinity matrix in three
steps that are detailed in the following sections.

Step 1) AffinityMatrix Construction
Among numerous affinity matrix design methods such as [LFL18, XGL17, XTX15, FLX14,
EV13], this method adapts the BDR method in [LFL18], in which the proposed K-block
regularizer promotes a nonnegative symmetric matrix to be K-BD so that the spectral analysis
described in Section 3.2 is directly applicable.

Let W(m) and L(m) ∈ RN×N, respectively, be the affinity and Laplacian matrix that are
computedbyusing as a regularizationparameter pairpm = [pm,1, pm,2]

⊤ fromamatrix of candidate
regularizationparameter pairsP = [p1,p2, . . . ,pNp ] ∈ R2×Np . Assuming that for everypm there
exists a matrix of eigenvectors4 Y(m) ∈ RN×K, the following sections present the selection of an
appropriate pm based on robust spectral analysis ofY(m) with the proposed Con-DBSCAN.

Step 2) Block Size Estimation using Con-DBSCAN
Step 2.1) Parameter Definition: ε
If follows fromTheorem 2 that there exists a specific level of sparsity that allows for an embedding,
such that the distance between embeddings of the same cluster is minimal while the distance
between embeddings of different clusters ismaximal. This important result implies that there exists
a minimum neighborhood search radius ε that will provide these highly dense clusters.

To provide a visual understanding, the geometric definition of a minimum search radius is
shown in Figure 3.8. Considering a pair of clusters, the two clusters are assumed to have a
maximum Nmax and a minimum Nmin number of samples based on the information that the
maximumblock size results in theminimumdistance from the origin and vice-versa. Clearly,Nmax

can achieve its greatest value forNmax = N − Nmin. Then, using Theorem 2, the minimum ball
can be simply calculated for the large cluster as ε =

√
1/(N−Nmin) + 1/Nmin −

√
1/Nmin.

4If the obtained set is not orthonormal, the Gram-Schmidt algorithm [CK10] can be used.
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Figure 3.8: Examplary illustration of ε definition.

Step 2.2) Parameter Definition: Nmin

As the parameter ε is a function of the minimum number of points Nmin, this section discusses
findingNmin. To begin, DBSCAN assigns a sample to be an outlier if its ε-neighborhood does not
contain at least Nmin neighbors which means that a large value of Nmin results in assigning many
samples as outlier. On the other hand, a large value of Nmin increases the neighborhood search
radius which may result in assigning many samples into a big cluster and the remaining samples
as outliers. Therefore, Nmin must be a reasonably small number which can be easily defined if K
is known. In particular, the parameter can be gradually increased as long as the clustering results
provideK clusters.

Step 2.3) Con-DBSCANAlgorithm
For a matrix E(m) = (Y(m))⊤ = [e

(m)
1 , e

(m)
2 , . . . , e

(m)
N ] ∈ RK×N containing embedding vectors

associated with pm, the goal of this section is to assign embedding vectors into mutually
exclusive clusters using the proposed Con-DBSCAN. As in the original DBSCAN [EKS96],
the method starts with ε-neighborhood computation of an unlabelled embedding vector
e(m)
n ∈ E(m), n = 1, . . . ,N as

N (m)
n = {e(m)

r ∈ RK : ∥e(m)
n − e(m)

r ∥2 < ε}. (3.11)

Here, N (m)
n is the ε-neighborhood set of e(m)

n and e(m)
r is the rth embedding result with

r = 1, . . . ,N and r ̸= n. Similar to [EKS96], Con-DBSCAN assigns e(m)
n into a cluster c(m)

if its N (m)
n includes more neighbors than Nmin. However, there is an important difference in
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how the neighbors are included. While DBSCAN [EKS96] must compute the ε-neighborhood
for every neighbor and iteratively expand cluster c(m) with embedding vectors, using Theorem 2,
Con-DBSCAN expands the cluster c(m) in a single iteration, which leads to a considerable speed-
up without any loss of performance compared to the original DBSCAN. More specifically,
Con-DBSCAN exploits the derived geometric information by comparing the connectedness of a
candidate neighbor to that of the least connected embedding in c(m)which are, respectively, defined
by

κ(m)
cand =

∑
n∈c(m)

w(m)
cand,n , (3.12)

and

κ(m)
min = min

{
κ(m)
n =

∑
r∈c(m)

w(m)
n,r

}
, (3.13)

where κ(m)
cand denotes the connectedness of a candidate neighbor embedding e(m)

cand ∈ N (m)
n , w(m)

n,r

is the n, rth similarity coefficient in W(m), κ(m)
n is the connectedness associated with the nth

embedding vector e(m)
n , and κ(m)

min is the minimum connectedness in cluster c(m). Based on the
embedding idea that connected vertices are embedded closely [BN01], themethod expands clusters
using all highly connected neighbors ∀κ(m)

cand ∈ N (m)
n , such that, κ(m)

cand > κ(m)
min . Then, it iterates the

ε-neighborhood computation on the unlabelled neighbors and repeats the connectedness-based
expansion until no new neighbors that can be assigned to c(m) are found.

3) Sparsity Level Estimation
Let {N̂(m)

1 , N̂(m)
2 , . . . , N̂(m)

K } ∈ Z+ be the block sizes associated with pm that have been estimated
in Section 3.4.2.4. Now, using Theorem 2, the components of the target between-clusters matrix
estimate Δ̂ΔΔ

(m)

T are determined by

Δ̂
(m)

Ti,j =


√

1
N̂i

+ 1
N̂j
, if i ̸= j

0, otherwise
. (3.14)

where Δ̂
(m)

Ti,j is the i, jth component of Δ̂ΔΔ
(m)

T that represents the target Euclidean distance between
cluster i = 1, . . . ,K and j = 1, . . . ,K. Similarly, the components of the between-clusters matrix
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estimate Δ̂ΔΔ
(m)

are computed by

Δ̂
(m)

i,j =

∥μ̂μμ
(m)
i − μ̂μμ(m)

j ∥2, if i ̸= j

0, otherwise
, (3.15)

where Δ̂
(m)

i,j is the i, jth component of Δ̂ΔΔ
(m)

denoting the Euclidean distance between ith and jth
estimated cluster centroids μ̂μμ(m)

i and μ̂μμ(m)
j ∈ RK, respectively. Since for every pm there exists a

distance matrix Δ̂ΔΔ
(m)

, the appropriate regularization parameter pair controlling the sparsity level
can be estimated as follows:

p̂ =argmin
pm∈P

∥Δ̂ΔΔ
(m)

T − Δ̂ΔΔ
(m)
∥F (3.16)

The proposed SABDR for subspace clustering is summarized in Algorithm 3.

3.4.2.5 Experimental Results

In this section, the subspace clustering performance of SABDR [TMO23] is benchmarked against
five state-of-the art affinity matrix construction methods, i.e., sparse subspace clustering (SSC)
[EV13], elastic net subspace clustering (EnSC) [YLR16], BDSSC [FLX14], BDR-B [LFL18],
IBDLR [XGL17] and RKLRR [XTX15] using the real-world data sets of face, object and
handwritten digit images. The application details are as follows.

1. ORL [SH94]: As in [XGL17], 400 face images of 40 different subjects are resized to 32× 32
andX of size 1024× 400 is computed.

2. JAFFE [LAK98]: Similarly, 213 images of 10 subjects are resized to 64× 64 pixels andX of
size 4096× 213 is obtained.

3. COIL20 [NNM95]: X of size 1024 × 400, whose column vectors contain 32 × 32 down-
sampled images, is generated by selecting 20 images randomly for every object.

4. USPS [Hul94]: X with M = 256 and N = 500 is generated by randomly selecting 50
handwritten digit images of size 16× 16 as feature vectors for every digit.

As in [LFL18], performance analysis of every application is conducted for an increasing value
of K, e.g., K = {2, 3, 5, 8, 10} using 100 randomly selected subject combinations. To reduce the
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Algorithm 3: SABDR-based Subspace Clustering
Input: X ∈ RM×N,P ∈ R2×Np ,Nmin(See, Sec. 3.4.2.4),K (optional)
for pm = p1,p2, . . . ,pNp do
Step 1) Affinity Matrix Construction:
Obtain the affinity matrixW(m) ∈ RN×N, e.g. using [LFL18].
ComputeY(m) ∈ RN×K using Eq. (2.6).
Step 2) Block Size Estimation using Con-DBSCAN:
Calculate ε as described in Section 3.4.2.4.
while there exists an unlabelled embedding vector do
Select the first unlabelled embedding e(m)

n and
compute the ε-neighborhoodN (m)

n via Eq. (3.11).
Initialize the cluster label c(m).
if the number of ε neighbors > Nmin then
Expand cluster c(m) using Eq. (3.12) and Eq. (3.13).
else
Assign e(m)

n as outlier.
end
end
Step 3) Sparsity Level Estimation:
Calculate Δ̂ΔΔ

(m)

T and Δ̂ΔΔ
(m)

using Eq. (3.14) and Eq. (3.15).
Update the estimate based on Eq (3.16).
end
Obtain associated Ŷ(p̂) and performK-means.
Output: A vector of estimated cluster labels ĉ

Subspace Performances on ORLData Set

Min-Max Average Clustering Accuracy for Different Regularization Parameters

K SSC EnSC BDSSC RKLRR IBDLR BDR-B SABDR

2 52.6 9 87.4 53.9 9 60.4 51.3 9 66.6 54.7 9 64.1 x 55.0 9 97.0 95.3
3 36.7 9 88.1 36.7 9 62.3 36.8 9 59.4 36.7 9 57.5 36.7 9 68.9 36.7 9 92.8 88.5
5 22.0 9 84.3 22.0 9 67.2 23.3 9 48.1 22.0 9 52.7 22.0 9 64.4 22.0 9 84.8 86.6
8 13.8 9 83.0 13.8 9 71.5 15.9 9 40 13.8 9 69.7 13.8 9 73.8 13.8 9 82.1 80.2
10 11.0 9 81.4 11.0 9 70.5 13.2 9 35.3 11.0 9 69.8 11.0 9 73.1 11.0 9 80.6 78.9

Table 3.4: Face clustering performance of different BDR methods on ORL data set. ‘x’ denotes the failed results.
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Subspace Performances on JAFFE Data Set

Min-Max Average Clustering Accuracy

K SSC EnSC BDSSC RKLRR IBDLR BDR-B SABDR

2 51.4 9 99.2 52.0 9 58.7 50.7 9 68.6 52.0 9 61.8 51.4 9 63.6 52.1 9 99.5 97.5
3 35.0 9 97.7 35.0 9 68.9 35.3 9 71.1 35.1 9 53.9 35.1 9 63.7 35.1 9 97.8 95.0
5 21.4 9 97.2 21.4 9 85.3 22.4 9 87.4 21.4 9 70.3 21.4 9 84.2 21.4 9 97.4 96.6
8 13.5 9 93.4 13.5 9 82.8 15.1 9 93.1 13.5 9 85.9 13.5 9 87.7 13.5 9 92.5 89.2
10 10.8 9 85.0 10.8 9 78.9 12.7 9 85.4 10.8 9 84.0 10.8 9 85.4 10.8 9 85.9 76.5

Table 3.5: Face clustering performance of different BDR methods on JAFFE data set. ‘x’ denotes the failed results.

Subspace Performances on COIL20 Data Set

Min-Max Average Clustering Accuracy for Different Regularization Parameters

K SSC EnSC BDSSC RKLRR IBDLR BDR-B SABDR

2 52.2 9 93.8 52.4 9 62.8 51.1 9 71.8 52.5 9 60.9 52.2 9 68.8 52.7 9 96.6 95.2
3 35.0 9 88.3 35.0 9 65.0 35.4 9 67.8 35.0 9 52.7 35.0 9 67.4 35.4 9 91.2 83.3
5 21.0 9 85.5 21.0 9 74.8 22.3 9 69.5 21.0 9 53.7 21.0 9 70.6 22.1 9 88.4 83.2
8 13.1 9 79.9 13.1 9 76.7 15.3 9 72.2 13.1 9 66.2 13.1 9 70.6 14.3 9 81.3 73.3
10 10.5 9 76.3 10.5 9 73.5 12.8 9 70.2 10.5 9 65.7 10.5 9 67.9 11.6 9 76.8 70.3

Table 3.6: Object clustering performances of different BDR methods on COIL20 data set.

cost, the feature spaces are, respectively, reduced to 10, 8, 10 and 13 using Principal Component
Analysis (PCA), since using a larger feature space did not provide significant improvements.
For the competing methods, the regularization parameters are manually tuned on a grid of 50
values. Finally, SC [Lux07] is performed and the performance is summarized for the average
clustering accuracy p̄acc. The performance of SABDR is analyzed for the default parameter choice
Nmin = N/(2K), except for K = 8 and K = 10 for the USPS data set in Table 3.7, where
the parameter was increased until it computes K distinct clusters (see Sec. 3.4.2.4). A MATLAB
implementation of SABDR is available at:
https://github.com/A-Tastan/SABDR

Tables. 3.4-3.7 summarize the obtained results on face, object and handwritten digit clustering,
respectively. As can be seen, SABDR in nearly all cases reaches a performance close to, or in some
cases even better than that of optimally tuned competitors. This demonstrates its excellent sparsity
level estimation performance.
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Subspace Performances on USPS Data Set

Min-Max Average Clustering Accuracy for Different Regularization Parameters

K SSC EnSC BDSSC RKLRR IBDLR BDR-B SABDR

2 50.8 9 81.9 50.8 9 54.0 50.7 9 94.4 51.0 9 61.8 50.8 9 75.2 50.9 9 89.8 82.0
3 34.0 9 74.5 34.0 9 51.8 34.2 9 87.0 34.0 9 59.7 34.0 9 69.0 34.7 9 78.7 77.1
5 20.4 9 62.7 20.4 9 56.2 22.6 9 79.1 20.4 9 57.8 20.4 9 64.4 21.3 9 62.5 80.3
8 12.8 9 57.8 12.8 9 54.4 19.4 9 70.8 12.8 9 59.1 12.8 9 60.3 13.1 9 56.3 45.6
10 10.2 9 55.8 10.2 9 55.0 18.8 9 66.4 10.2 9 56.6 10.2 9 54.4 10.2 9 61.2 17.4

Table 3.7: Handwritten‐digit clustering performances of different BDR methods on USPS data set.

3.4.2.6 Summary

Based on the derived theoretical information in Section 3.2, we have proposed SABDR [TMO23]
which controls the level of sparsity by robustly estimating the regularization parameter/s. To
use the available BD structure in the objective function, we proposed an efficient density-
based clusteringmethodCon-DBSCAN. SABDR is benchmarked against popular affinity matrix
construction methods and it reached similar or higher performance compared to its optimally
tuned competitors.
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A theory is more impressive the greater the simplicity of
its premises, the more different are the kinds of things it
relates, and the more extended its range of applicability.

—Albert Einstein.

4
Outliers in Graph Clustering and Robust

Solutions

In the previous chapter, a sparse graph model and its applicability to sparsity-aware clustering has
been discussed. Beyond the challenges that are involved in determining the appropriate level of
sparsity, real-world data often includes outliers and heavy tailed noise. Therefore, this chapter
starts with determining fundamental outlier types for graph-based clustering in Section 4.1. To
design robust graph-based clustering algorithms, Section 4.2 analyzes the effect of fundamental
outlier types on sparse graphs. Then, the natural occurrence of outliers based on the level of
sparsity has been detailed in Section 4.3. Finally, proposed robust graph-based clustering methods
are presented in Section 4.4.

4.1 Determining Fundamental Outlier Types for Graph-based Clustering

From Section 3.2.2, it follows that the non-zero eigenvalues of the sparse Laplacianmatrix contain
the block size information. However, in practice, such a sparse Laplacian matrix is not readily
available. Especially for outlier-corruptedLaplacianmatrices, the blocksmight be obscured, which
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Outliers

Block 1

Block 2

Block 3

Outliers :

Block1 :

Block2 :

Block3 :

(a) W̃ ∈ R(N+2)×(N+2)

Type I Outliers

(b) G̃ = {Ṽ, Ẽ,W̃}

Figure 4.1: Illustration of Type I outliers. The colored cells in the corrupted BD affinity matrix W̃ represent non‐zero edge
weights in graph G̃.

results, e.g., in a performance degradation of an eigenvalue-based block size estimate. To quantify
this more precisely, and subsequently derive robust graph-based clustering methods, we define
fundamental outlier types in the following.

4.1.1 Type I Outliers

Motivated by [EV13], we begin by defining the first fundamental type of outliers as follows.

Definition 4.1.1. (Type I Outliers, [TMZ23, TMZ22]) The feature vectors corresponding to the
vertices that do not share edges with any of the samples are called Type I outliers.

Based on this first definition, the similarity coefficient vectors that are associated to Type I
outliers, ideally, are zero vectors. More practically speaking, and motivated by real data examples,
the data-points whose similarity coefficients have negligibly small values may also be called Type I
outliers.

Definition 4.1.1 is illustrated in Figure 4.1 using thewell-knownhandwritten digit samples from
the MNIST data base [HS98]. In the examplary corrupted graph G̃, the unconnected vertices are
the Type I outliers while the vertices of digits 9, 4 and 3 are connected with within-cluster edges
that are highlighted in green, blue and yellow lines, respectively.
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Outliers

Block 1

Block 2

Block 3

Outliers :

Block1 :

Block2 :

Block3 :

(a) W̃ ∈ R(N+3)×(N+3)

Type II Outliers

(b) G̃ = {Ṽ, Ẽ,W̃}

Figure 4.2: Illustration of Type II outliers. The red colored cells in W̃ correspond to edges of Type II outliers.

4.1.2 Type II Outliers

The second fundamental outlier type is called Type II outliers that is quantified in the following.

Definition 4.1.2. (Type II Outliers, [TMZ23, TMZ22])The feature vectors corresponding to the
vertices that share edges with more than one group of feature vectors are called Type II outliers.

Definition 4.1.2 is illustrated in Figure 4.2, which shows that the connectedness of Type II
outliers to multiple groups of feature vectors obscures the true clusters and poses a challenge to
graph-based clustering methods.

4.1.3 Group Similarity

Group similarity is an extreme case of Type II outliers which is detailed the following definition.

Definition 4.1.3. (Group Similarity) If an entire group of vertices shares edges with another group
of vertices this is called group similarity.

4.2 Outlier Effects on Sparse Graphs

To incorporate robustness into graph-based clustering, our next step is to understand the effects of
the above introduced fundamental outlier types on sparse graphs. Therefore, the following sections
analyze their effects from four different perspectives.
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G̃ = {Ṽ , Ẽ,W̃} W̃ ∈ RN×N

Figure 4.3: Illustration of outliers’ effect on the affinity matrix.

4.2.1 Outlier Effects on AffinityMatrix

Since the components of the affinitymatrix are directly linked to the edge weights in the associated
graph model, it is important to analyze the effect of outliers on the affinity matrix.

To provide a visual understanding of outliers’ effects, an examplary Type I and Type II outlier
corrupted graph model, the associated affinity matrix and the empirical distribution of similarity
coefficients are shown in Figure 4.3. Herein, Type I outliers are shown for a practical scenario such
that they have only a few edges and can be considered as an unconnected component compared
to highly connected true samples and Type II outliers. The figure shows that the undesired
edges associated with Type II outliers represent undesired similarity coefficients between different
blocks for a sparse BD affinity matrix. If we analyze the empirical distribution of these similarity
coefficients, it follows that the Type II outliers result in undesired similarity coefficient subspaces.
An important property of these undesired similarity coefficients is that, if similarity coefficients
within the blocks are valued larger than undesired similarity coefficients between different blocks,
the graph structure can be recovered by removing these undesired coefficients. In Section 4.4.1.1,
we developed an unsupervised robust clustering algorithm to shrink these undesired similarity
coefficients to zero.

4.2.2 Outlier Effects onOverall EdgeWeights

This section introduces and discusses outliers’ effects on the overall edge weights and how the
overall edge weights can be used as an outlyingness measure to suppress both Type I and Type II
outliers. According to Definition 4.1.1 a Type I outlier is a relatively unconnected (or ideally,
even totally unconnected) vertex that has noticeably small-valued (or ideally zero-valued) overall
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Figure 4.4: Examplary outlyigness measure of Person Id. [TSM18] data set based on the overall edge weights.

edge weight in comparison to the non-outlying samples of the clusters. This means that, for a
graphmodel including a considerable number of edges within the clusters, clearly, Type I outliers’
overall edge weights will deviate from the typical ones. In contrast to this comparably simple
characterization of Type I outlyingness, Type II outlyingness determination based on overall edge
weight depends on cluster sizes and the parameters of available graph, e.g. the edge weights and the
affinitymatrix. For example, for a graphmodel of not extremely imbalanced cluster sizes, the overall
edge weight of a Type II outlier is smaller-valued than that of the typical data points when the
Type II outlier is connected to multiple groups of vertices with small-valued edge weights. Thus,
while both outlier types behave differently, it is important to note for a connected graph model
of comparable cluster sizes both types of outliers have a common characteristic: their overall edge
weights deviate from that of the typical vertices.

To provide a visual understanding, examplary outlier assignments are shown for sparse graph
models of the Person Id. [TSM18] and Gait [SAZ19] real-world data sets in Figure 4.4 and
Figure 4.5, respectively. In both graphs, the red crosses depict the outliers that include the 15% of
vertices whose overall edge weights deviate maximally from themedian of overall edge weights (the
median represents the typical overall edge weights). As can be seen, the outlier assignment based
on overall edge weight captures both vertices between different clusters (Type II outliers) and the
vertices that are far from every cluster (Type I outliers). In Section 4.4.2.1, we present a robust
Fiedler vector estimation algorithm suppressing outliers’ negative impact based on the overall edge
weight.
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Figure 4.5: Examplary outlyigness measure of Gait [SAZ19] data set based on the overall edge weights.

4.2.3 Outlier Effects on Eigenvalues

4.2.3.1 Type I Outliers’ Effect on Eigenvalues

To understand Type I outliers’ effects on the eigenvalues, it is important to remember the
relationship between the number of connected components of aKBDaffinitymatrixW ∈ RN×N

and the spectrum of the associated graph Laplacian matrix L ∈ RN×N. In [Lux07], it has been
shown that the multiplicity of the zero-valued eigenvalues of L equals the number of connected
components K. Clearly, considering Type I outliers as isolated blocks of size one, the addition of
NI number of Type I outliers leads toNI additional zero-valued eigenvalues.

The effect of Type I outliers on eigenvalues is visualized in Figure 4.6. As can be seen, a Type I
outlier results in an additional zero-valued eigenvalue which is highlighted in dark red color.

4.2.3.2 Type II Outliers’ Effect on Eigenvalues

In contrast to Type I outlier effects that were studied in Section 4.2.3.1, understanding the effect
of Type II outliers on eigenvalues requires further analysis. Therefore, this section analyzes Type II
outliers’ effect on the eigenvalues of the Laplacian matrix for the generalized eigen-decomposition
in Eq. (2.6).1

1For analysis based on the standard eigen-decomposition in Eq. (2.5), see Appendix A.2.2.
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Figure 4.6: Examplary plot of Type I outliers’ effect on eigenvalues (n = [10, 8, 12, 1]⊤ ∈ RK+1,N+ 1 = 31,K = 3).

Theorem 4. Let W̃ ∈ R(N+1)×(N+1) define a symmetric affinity matrix, that is equal toW, except
for an additional Type II outlier that shares similarity coefficients with K blocks where w̃II,K > 0
denotes the similarity coefficient between the outlier oII and the Kth block. Then, for the associated
corrupted Laplacian matrix L̃ ∈ R(N+1)×(N+1) with eigenvalues λ̃λλ ∈ RN+1, it holds that

N1 − 1 elements of λ̃λλ are equal to
N1w1 + w̃II,1

d̃1
,

N2 − 1 elements of λ̃λλ are equal to
N2w2 + w̃II,2

d̃2
,

...

NK − 1 elements of λ̃λλ are equal to
NKwK + w̃II,K

d̃K
,

the smallest element of λ̃λλ is equal to zero,

and the remaining K eigenvalues are the roots of

K∏
j=1

(w̃II,j − λ̃d̃j)
(
−

K∑
j=1

Njw̃II,jd̃j
w̃II,j − λ̃d̃j

− d̃II

)
= 0,

where d̃II =
K∑
j=1

Njw̃II,j and d̃j = (Nj − 1)wj + w̃II,j.

Proof. See Appendix A.2.1.1.

Theorem 4 is illustrated in Figure 4.7. The figure confirms the results of Theorem 4 that Type II
outliers result in an increase in the eigenvalues.
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Figure 4.7: Examplary illustration of Theorem 4 (n = [1, 10, 8, 12]⊤ ∈ RK+1,N+ 1 = 31,K = 3).

4.2.3.3 Group Similarity Effect on Eigenvalues

TheLaplacianmatrix ofDefinition4.1.3 canbe considered as a single connected componentwhich
means that the number of zero-valued eigenvalues equals to one [Lux07]. In contrast to this simple
interpretation, the remaining eigenvalues can be formulated as a function of intra-blocks and inter-
blocks similarity coefficients where inter-blocks similarity coefficients are generally smaller-valued
than that of intra-blocks in real-world scenarios. To provide amathematical understanding of this,
the following theorem quantifies the effect of group similarity on the target eigenvalues.

Theorem 5. Let W̃ ∈ RN×N define an affinity matrix, that is equal toW, except that block i has
similarity with the remaining K − 1 blocks with w̃i,j = w̃j,i > 0 denoting the value around which
the similarity coefficients between blocks i and j are concentrated for j = 1, . . . ,K and i ̸= j. Then,
the eigenvalues λ̃λλ ∈ RN of L̃ ∈ RN×N are as follows:

Ni − 1 elements of λ̃λλ are equal to

Niwi +
K∑

j=1,
j̸=i

Njw̃i,j

d̃i
,

Nj − 1 elements of λ̃λλ are equal to
Njwj +Niw̃i,j

d̃j
,

...

NK − 1 elements of λ̃λλ are equal to
NKwK +Niw̃i,K

d̃K
,

the smallest element of λ̃λλ is equal to zero,
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Figure 4.8: Examplary illustration of Theorem 5 (n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3, i = 1).
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Figure 4.9: Examplary illustration of Theorem 5 (n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3, i = K).

and the remaining K− 1 eigenvalues in λ̃λλ are the roots of

K∏
j=1
j̸=i

(Niw̃i,j − λ̃d̃j)
(
−

K∑
j=1
j ̸=i

d̃jNjw̃i,j

Niw̃i,j − λ̃d̃j
− d̃i

)
= 0,

where d̃j = (Nj − 1)wj+Niw̃i,j, d̃i = (Ni − 1)wi+
K∑
j=1
j̸=i

Njw̃i,j.

Proof. See Appendix A.2.1.2.

The illustration of Theorem 5 is given in Figs 4.8 and 4.9, respectively, for i = 1 and i = K.
As can be seen, the number of zero-valued eigenvalues equals to one while the remaining N − 1
eigenvalues are valued as it has been explained in Theorem 5.
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4.2.4 Outlier Effects on Eigenvectors

Motivated by the advantages of spectralmethods in graph clustering (see, Section 2.5), this sections
analyzes the effect of outliers and group similarity for SC [NJW01] which is one of the most
popular graph clustering method building upon the eigenvectors associated with the K smallest
eigenvalues of the Laplacian matrix.

4.2.4.1 Type I Outliers’ Effect on Eigenvectors

According to [Lux07], the eigenspace of zero-valued eigenvalues is spanned by indicator vectors
of connected components in L. Since Type I outliers can be considered as isolated blocks of size
one, it follows that the eigenspace ofNI additional zero-valued eigenvalues associated with Type I
outliers is spanned by the indicator vectors of theNI outliers.

4.2.4.2 Type II Outliers’ Effect on Eigenvectors

In contrast to simple location understanding of Type I outliers, Type II outliers’ possible location
necessitates further analysis that is conducted in the sequel.

Preposition 4.2.1. Let W ∈ RN×N be a K block zero-diagonal symmetric affinity matrix as in
Definition 3.1.1. Further, letW̃ ∈ R(N+1)×(N+1) define a symmetric affinitymatrix, which is equal
toW, except for anadditionalType II outlieroII that is connected to the vertices associatedwith ithand
jth blocks. Finally, letY = [y0, . . . ,yK−1] ∈ RN×K and Ỹ = [ỹ0, . . . , ỹK−1] ∈ R(N+1)×K be the
matrix of orthonormal eigenvectors associatedwith theK smallest eigenvalues ofLand L̃, respectively.
Then, for em and ẽm, respectively, the mth row vector ofY and Ỹ, denoting the embedding vectors
that represents the M-dimensional mth feature vector in the reduced K-dimensional space, the
embedding vector associated to Type II outlier ẽII is centered between mappings of blocks i and j if
the distance between every pair of embedding vectors correspond to true samples are preserved, i.e.
∥em − en∥2 = ∥ẽm − ẽn∥2 for m ̸= II and n ̸= II.

Proof. See Appendix A.2.1.3.

Preposition 4.2.1 is illustrated for the eigenvectors of the corrupted Laplacian matrix L̃ in
Figure 4.10. As can be seen, a Type II outlier is located between the embeddings of blocks i and j.
In the sequel, a further analysis is conducted for Type II outlier similarity toK blocks.
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ẽm=
[
0, 0,

√
1
N3

]
or ẽm=
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Figure 4.10: Spectral embedding according to the eigenvectors of the corrupted Laplacian matrix L̃ whenK = 3, i = 1 and
j = 2.

Preposition 4.2.2. Let W̃ ∈ R(N+1)×(N+1) define a symmetric affinity matrix, which is equal to
W ∈ RN×N inDefinition 3.1.1, except for an additional Type II outlier oII correlated with K blocks.
Further, letY = [y0, . . . ,yK−1] ∈ RN×K and Ỹ = [ỹ0, . . . , ỹK−1] ∈ R(N+1)×K be the matrix of
orthonormal eigenvectors associated with the K smallest eigenvalues of L and L̃, respectively. Then,
for em and ẽm, respectively, the mth row vector of Y and Ỹ, denoting the embedding vectors that
represents theM-dimensionalmth feature vector in the reduced K-dimensional space, the embedding
vector associated to Type II outlier ẽII converges to the origin, i.e. ∥ẽII∥2 → 0, if and only if the
embedding vectors associated to true samples in Theorem 2 are preserved.

Proof. See Appendix A.2.1.4.

Prepositions 4.2.1 and 4.2.2 explain an ideal case for the location of Type II outliers in the
reduced K dimensional space. In real-world scenarios, the distance between the true samples may
not be preserved due to similarity coefficients betweenType II outliers and true samples. However,
if the clusters are internally dense and sparsely connected to the rest of the graph, the embedding
operationmay provide approximate results to the Prepositions 4.2.1 and 4.2.2. Inmore details, the
embedding idea that minimizes the distance between similar objects while maximizing it for that
of dissimilar ones results in easily separable clusters as in Theorem 2. In such cases, Type II outliers
are more likely to be located as in Prepositions 4.2.1 and 4.2.2.

4.2.4.3 Group Similarity Effect on Eigenvectors

The analysis of the effect of outliers on eigenvectors is extended for group similarity in the following
preposition.
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Figure 4.11: Examplary plot of Type I outliers’ effect on vector v (n = [10, 8, 12, 1]⊤ ∈ RK+1,N+ 1 = 31,K = 3).

Preposition 4.2.3. Let W̃ define an affinity matrix, which is equal toW as in Definition 3.1.1,
except that we impose a constant w̃u > 0 around which the similarity coefficients between blocks i and
j are concentrated. Further, letL ∈ RN×N and L̃ ∈ RN×N denote the Laplacianmatrices associated
with W ∈ RN×N and W̃ ∈ RN×N, respectively. The eigenvectors associated with the K smallest
eigenvalues ofLand L̃, respectively, be the columnvectors of thematricesY ∈ RN×K and Ỹ ∈ RN×K

where K denotes the number of clusters. Finally, let em ∈ RK and ẽm ∈ RK, the mth row vector of
Y and Ỹ, respectively, denote the embedding vectors that represent the M-dimensional mth feature
vector in the reduced K-dimensional space. Assuming that the column vectors ofY and Ỹ are valued
in a range {ymin, ymax}, the squared Euclidean distance between any embedding vector pair em and
en associated with different blocks is greater than that of ẽm and ẽn, i.e. ∥em− en∥22 > ∥ẽm− ẽn∥22.

Proof. See Appendix A.2.1.5.

4.2.5 Outlier Effects on Simplified LaplacianMatrix Analysis

4.2.5.1 Type I Outliers’ Effect on Simplified LaplacianMatrix Analysis

For a Type I outlier-corrupted affinity matrix W̃ ∈ R(N+1)×(N+1) that is identical toW except for
a single Type I outlier oI, the overall edgeweight associatedwith oI is zero-valued, i.e. d̃I = 0. Based
on Theorem 3 and Eq. (3.2), it is straight-forward to show that the component in the associated
corrupted vector ṽ ∈ RN+1 that is associated with the Type I outlier is zero valued, i.e., ṽI = 0.

The vector ṽ ∈ RN+1 associated with a Type I outlier corrupted Laplacian matrix
L̃ ∈ R(N+1)×(N+1) is shown in Figure 4.11. As can be seen, the component that is associated with
the Type I outlier is zero valued in ṽ, i.e., ṽI = 0.
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Figure 4.12: Examplary illustration of Theorem 6 (n = [1, 10, 8, 12]⊤ ∈ RK+1,N+ 1 = 31,K = 3,mII = 1).

4.2.5.2 Type II Outliers’ Effect on Simplified LaplacianMatrix Analysis

Type II outliers’ effect on v is as follows.

Theorem 6. Let W̃ ∈ R(N+1)×(N+1) define a Type II outlier-corrupted BD affinity matrix that is
identical toW ∈ RN×N except for a single Type II outlier that has non-zero similarity coefficients
with all blocks. Assuming that the similarity coefficients associated with the outlier oII and the blocks
j ∈ {1, . . . ,K} are concentrated around w̃II,j, the components, whose indexes are valued between the
outlier index and the largest index of the jth block, such that mII < m ≤ uj, increase by w̃II,j in the
corrupted vector ṽ ∈ RN+1. Further, the component associated with the Type II outlier is given by

ṽII =



0 if 0 < mII < ℓ1

(mII − ℓ1)w̃II,1 if ℓ1 < mII < ℓ2
...

K−1∑
j=1

Njw̃II,j + (mII − ℓK)w̃II,K if ℓK < mII ≤ N+ 1

,

where ℓj denotes the lowest index of the jth block.

Proof. See Appendix A.2.1.6.

Theorem 6 is illustrated in Figures 4.12 and 4.13, respectively, for two different locations of
Type II outlier, i.e. mII = ℓ2 − 1 and mII = 1. As the figures imply, Type II outliers result in
deviations on the vector v.
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Figure 4.13: Examplary illustration of Theorem 6 (n = [10, 1, 8, 12]⊤ ∈ RK+1,N+ 1 = 31,K = 3,mII = ℓ2 − 1).
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Figure 4.14: Examplary illustration of Theorem 7 (n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3, i = 1).

4.2.5.3 Group Similarity Effect on Simplified LaplacianMatrix Analysis

The effect of group similarity on v is as follows.

Theorem 7. Let W̃ ∈ RN×N define a corrupted affinity matrix that is identical to W ∈
RN×N except that block i has non-zero similarity coefficients with the remaining K − 1 blocks with
w̃i,j = w̃j,i > 0 denoting the similarity coefficients around which blocks i and j are concentrated.
These similarities result in an increase by Niw̃i,j in the components associated with the blocks
j = i+ 1, . . . ,K of ṽ ∈ RN while the components of j < i remain the same. Further, the components

associated with block i remain the same for i = 1 and increase by
i−1∑
j=1

Njw̃i,j for 2 ≤ i ≤ K.

Proof. See Appendix A.2.1.7.

The illustration ofTheorem7 is given in Figures 4.14 and 4.15, respectively, for i = 1 and i = K.
Consistent with Theorem 7, group similarity leads to an increase in the target vector v.
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Figure 4.15: Examplary illustration of Theorem 7 (n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3, i = K).

In the following, the worst case of group similarity, i.e., similarity of all blocks is analyzed. Note
that, in this case, eigenvalues can not even be formulated as a function of similarity coefficients
due to the impossibility of simplifying determinants of full matrices via Gaussian elimination.
However, recovering the structure ofW based on v is possible based on the following result.

Corollary 7.1. Let W̃ ∈ RN×N define a corrupted affinity matrix that is identical toW ∈ RN×N

except that each block i = 1, . . . ,Khas non-zero similarity coefficientswith the remainingK−1 blocks
with w̃i,j = w̃j,i > 0 denoting the similarity coefficients around which blocks i and j are concentrated
for j = 1, . . . ,K and i ̸= j. This leads to a piece-wise linear function given by

ṽm =



(m− ℓ1)w1 if ℓ1 ≤ m ≤ u1

(u1 − ℓ1 + 1)w̃1,2 + (m− ℓ2)w2 if ℓ2 ≤ m ≤ u2
...

K−1∑
i=1

(ui − ℓi + 1)w̃i,K + (m− ℓK)wK if ℓK ≤ m ≤ uK

where ℓ1 = 1, u1 = N1, ℓi =
i−1∑
k=1

Nk + 1 and ui =
i∑

k=1
Nk for i = 2, . . . ,K.

Proof. See Appendix A.2.1.8.

The worst case of group similarity is illustrated in Figure 4.16 for aK = 3 BD Laplacian matrix
in which every similarity coefficient is non-zero valued. Consistent with the theoretical results of
Corollary 7.1, undesired similarity coefficient between different blocks result in shifts starting from
the second linear segment.
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Figure 4.16: Examplary illustration of Corollary 7.1 (n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3).

4.3 Sparsity andOutlier Occurrence

With the results of Sections 4.1 and 4.2 in place, we are ready to understand the relationship
between the level of sparsity and the previously defined outlier types to highlight the importance
of jointly addressing robustness and sparsity. In a generic example, Figure 4.17 shows that a
dense graph (top) contains high amounts of group similarity while increasing sparsity reduces the
number of Type II outliers (middle). Finally, further increasing sparsity generates Type I outliers
until at some point the underlying true cluster structure is completely lost. This means that an
inaccurate determination of the sparsity level leads to the above discussed outlier effects for non-
robust graph clustering approaches. In the following sections, we therefore introduce the variety
of proposed robust graph clustering approaches which address robustness from three different
perspectives.

4.4 Robust Graph-based ClusteringMethods

After analysing the effect of outliers and group similarity, our goal is to suppress their effects on
the graph structure. As the affinity matrix directly refers to the graph structure, we first present
the proposed robust and sparsity-aware affinity matrix construction methods. Motivated by the
negative impact of outliers and group similarity on the eigenvectors, the proposed eigenvectors
estimation methods are explained subsequently. Finally, the proposed outlier detection algorithm
building upon vertex degree is introduced.
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Figure 4.17: Example graphs for increasing sparsity (W = X⊤X).
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4.4.1 Robust and Sparsity-Aware AffinityMatrix ConstructionMethods

This section presents three different proposed robust sparsity-aware affinitymatrixmethodswhich
are, respectively, built upon the outliers and group similarity effect analysis on affinity matrices,
vector v and eigenvectors that have been detailed in Section 4.2.

4.4.1.1 Sparsity-Aware Robust Community Detection

4.4.1.1.1 Introduction
Inferring a graph model from empirical observations is a fundamental data science task, and
a large number of graph construction algorithms have been proposed, e.g. [LSW16, EV13,
CYY09, WYG08]. In network modelling, graphs are used to represent the interactions between
components of a system [FSC04], and in cluster analysis, the similarity between features can
be expressed by a weighted graph [TMZ20, WYG08]. Graph models play a crucial role, for
example, in subspace learning [EV13, LLY12], manifold learning [BN01, RS00] and semi-
supervised learning [Zhu08]. In particular, the inference of a graphmodel forms the basis of graph
partitioning [KN11, SM00] and community detection algorithms, which has been a very active
area of research in recent years [BYS17, BEL14, SCB14, MH11, PRE11].

Community detection refers to finding densely connected groups of vertices, which helps to
deduce the underlying structure and relationships that are inherent to the data. A rather important
and typical situation is when the data is corrupted by heavy-tailed noise and outliers [SM21,
TMZ21, LP19,MMY19, ZKO18,OT14]. Thismay lead to a performance degradation for popular
graph-based community detection methods, using modularity optimization e.g. [MH11, BGL08,
New06, New04], which is the most widely used objective function for partitioning [CNM04].
Further approaches include flow-based algorithms [BEL14], modularity total variation-based
approaches [PRE11] andmethods that are built upon local densities of the communities [BYS17].
A reason for the performance loss is that thesemethods apply optimization directly on a graph that
is possibly corrupted with undesired edges that may be caused by outliers and noise. Therefore, in
real-world settings with large and densely connected graphs, including graphs with a considerable
amount of outliers, classical community detection methods may not be capable of recovering a
graph that well-represents the underlying structure of the clean data because they give too much
influence to atypical vertices. For example, methods that use pair-wise Euclidean distances, such as
K-nearest neighbor and ε-ball, are particularly sensitive to noise and outliers [CYY09].

Graph-construction algorithms that use sparse representation may provide a performance gain
compared toEuclidean distance-basedmethods [LSW16,THW16,CYY09,WYG08] and sparsity-
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based characterization of locality relations can be valuable for cluster analysis [TMZ20, CLY13,
BN01]. However, the performance of these clustering methods is sensitive to the level of sparsity
which is essential in graphs. Sparsity in graphs has been extensively researched, e.g. in terms of the
geometry of graphs and there are several approaches [ARV08, LR99] for sparsity approximation.
Nevertheless, sparse methods are also affected by outliers, and determining the suitable level of
sparsity becomes especially challenging. Furthermore, finding such a sparse embedding is often
NP hard [ARV09].

A popular approach to promote sparsity is the LASSO regularization, which brings a relaxation
for increasing sparsity on a graph without necessitating dimension reduction [FHT08]. However,
the performance of the graphical LASSO critically depends on the selection of the penalty
parameter that controls the sparsity of the graph. It is well-known that the selection of the penalty
parameter is a challenging problem in both semi-supervised [LLO20], and unsupervised settings
[MB10, HTF09] and often supervised approaches [OP09, FHT08] or neighborhood selection
[MB06], are used. An interesting approach to sparsity control using the penalty parameter for
graphical LASSO was made in [TWS15] by utilizing knowledge of the number of connected
components of the graph. The approach controls the sparsity based on the a priori knowledge of
the number of clusters, whichmay be difficult to estimate in the presence of outliers. To the best of
our knowledge, robust sparsity control for graphical LASSO has not been applied to community
detection.

To address the above challenges, this section describes a newmethod for Sparsity-aware Robust
Community Detection (SPARCODE). The method that we presented in [TMZ21] begins with
a densely connected graph and produces a preliminary sparsity-improved graph, obtained via an
ℓ1-penalized precision matrix estimation. We also proposed a method to optimize the penalty to
provide a mapping of the feature vectors from different communities in such a way that they are
embedded as far as possible on the real line. Then, undesired andnegligible edges are removed from
the sparsity improved graphmodel and the graph construction is performed in a robustmanner by
detecting the outliers based on connectivity of vertices in the improved sparse graphmodel. Finally,
fast spectral partitioning is performed on the outlier-free vertices of the robust sparse graphmodel.
The number of communities is estimated using modularity optimization on partitions.

4.4.1.1.2 SimilarityMeasures for Graphs
The well-known similarity measures has been detailed in Section 2.2. However, in real-world
problems with large and noisy data sets, directly inferring clusters from Eq. (2.1) or (2.2) may be
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inefficient, or even infeasible. For such settings, sparse graphs provide a more suitable approach
to unveil the underlying data structure. It has been shown that ℓ1 graphs, in which the edge
weights of each vertex are constructed from the remaining vertices and the noise using the ℓ1
norm (see Section 2.6.1), can provide a linear sparse representation of the data with respect to an
overcomplete dictionary of basis elements [CYY09]. If the solution is sufficiently sparse [Don06],
theproblemcanbe generalizedover all atoms inX, using thedatamatrix itself as dictionary [EV13],
i.e.,

Â = argmin ∥A∥1 s.t. X = XA, diag(A) = 0, (4.1)

where Â ∈ RN×N denotes the estimated coefficient matrix and diag(A) ∈ RN is the vector of
diagonal elements of coefficient matrixA.

4.4.1.1.3 Problem Statement
Given a data setX ∈ RM×N, the aim of this work is to find a label vector cK ∈ RN that partitions
X into K independent and mutually exclusive communities. The true community number K is
assumed to be unknown. Further, we assume thatX ∈ RM×Nmaybe subject to heavy-tailed noise
andoutlierswhichobscure thedata structure. Computational efficiency is also of practical interest.
Summarizing, the overall aim is to develop a fast and robust clustering algorithmbased on computing
a sparse graph model.

4.4.1.1.4 Sparsity-aware Robust Community Detection (SPARCODE)
Themain ideas of the proposedmethod are briefly summarized to provide a general understanding
before going into the details. A high-level flow diagram to illustrate the key steps is provided in
Figure 4.18. The community detection problem is addressed as spectral partitioning of sparse
graphs. The proposed algorithm, which we call Sparsity-aware Robust Community Detection
(SPARCODE), starts with a densely connected weighted graph. Assuming that edges within the
communities are more densely connected than the remaining edges, the first step is to increase
the sparsity of a given graph by pushing towards zero the similarity coefficients that belong to
undesired and negligible edges. The sparsity improved graphmodel is obtained via an ℓ1-penalized
precision matrix estimation. The penalty parameter is optimized to provide a mapping of the
feature vectors from different communities in such a way that they are embedded as far as possible
on the real line. In particular, we split the Fiedler vector and optimize according towhat we call the
polarization score. Then, undesired and negligible edges are removed from the sparsity improved
graph model by applying a threshold, and the graph construction is performed in a robust
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Figure 4.18: The main steps of SPARCODE.
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manner. The outliers, which are represented as red points in Figure 4.18, are detected based on
the connectivity of vertices in the improved sparse graph model. Finally, fast spectral partitioning
is performed on the outlier-free vertices of the robust sparse graph model by mapping each vertex
onto a line and applying a balanced partition. The number of communities is estimated using
modularity optimization on the partitions. The steps are detailed in the following sections, a
pseudocode summary is given in Algorithm 4.

Compute Sparsity Improved GraphModel
Graphical models over undirected graphs are a popular method to exhibit conditional
independence structures in multivariate distributions [FHT08, YL07]. Undirected Gaussian
graphical models are of particular interest within this PhD project, because in this case,
revealing the conditional independence structure is equivalent to the recovery of the
support of the precision matrix ΘΘΘ. The Gaussian graphical model is, therefore, defined as
G = {V,E,ΘΘΘ} with a vertex set V = {1, . . . ,N} corresponding to random variables, an edge
set E = {(m, n) ∈ V|m ̸= n,Θm,n ̸= 0} and a precision matrix ΘΘΘ. Thus, if the m, nth entry of
ΘΘΘ equals zero, the two corresponding variables are conditionally independent. A very popular
approach to estimate a sparse precisionmatrix is the graphical LASSO [FHT08], whichmaximizes
a penalized Gaussian likelihood

Θ̂ΘΘ = argmax
Θ̂ΘΘ∈So++

{log|ΘΘΘ| − tr(SΘΘΘ)− ρ∥ΘΘΘ∥1}, (4.2)

where tr denotes trace,S ∈ RN×N is the sample covariancematrix ofW and ρ is a sparsity inducing
penalty parameter. According to Eq. (4.2), Θ̂ΘΘ is nonnegative definite.

The graphical LASSO attempts to find the precision matrixΘΘΘ based on the penalized Gaussian
likelihood function. However, it has been shown that the graphical LASSO solution may not
satisfy Θ̂ΘΘ ∈ So

++ [MH12]. Additionally, recent researches on the graph error model showed that
for a graphwith a constant number of communities, the expected values of the eigenvalues depend
on the probability of edge existence within and between different communities [MVO20]. In the
SPARCODE algorithm the sign of the coefficients is not relevant for reconstructing edges in the
sparsity improved graph model because the sign of the coefficients in the similarity matrix does
not effect edge existence probability. Therefore, a sparsely connected graph Ĝ = {V, Ê,Ŵ} is
obtained by using the (element-wise) absolute value of the estimated inverse covariance matrix Θ̂ΘΘ
as affinity matrix, i.e. Ŵ = |Θ̂ΘΘ|.
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While graphical LASSO provides an efficient way to compute a solution to Eq. (4.2), the
resulting graph structure critically depends on the value of ρ. A key contribution of this work
is to provide a simple but effective clustering-oriented strategy to optimize ρ. The intuition behind
the SPARCODE approach is to determine a value for ρ so that a sparse graph is obtained that can
be easily partitioned by SC techniques. SC techniques map the vertices of a graph onto the real
line. They minimize the sum of the squared Euclidean distances between the endpoints of the
edges while maintaining the average Euclidean distance between random pairs of mapping points
[ARV08].

According to [ARV08], maintaining an average unit Euclidean distance between random pairs
of these mapping points may lead to an excellent partition by cutting the line at a random
point. Achieving such a mapping is NP hard, though there are several approximations in
literature that achieve the sparsest cut [AHK10, ARV09, LR99]. SPARCODE relies on spectral
partitioning methods, which use a relaxation to map graph vertices onto the real line, providing
connected points stay as close together as possible using squared Euclidean distance [BN01].
Let ρi ∈ {ρmin, . . . , ρmax} denote the ith candidate penalty parameter in Eq. (4.2). Then, the
embedding result ŷi ∈ RN of the ith candidate penalty parameter ρi can be approximated by
minimizing the following objective function as in [BN01],

ŷi = argmin
yi

1
2
∑
m,n

∥∥ym − yn
∥∥2
2ŵm,n(ρi) s.t.

yT
i Diyi = 1

yT
i Di1 = 0,

(4.3)

where Di ∈ RN×N is a diagonal weight matrix of Ŵ(ρi) for a given ρi, with weights dm,m =∑
n ŵm,n(ρi) on the diagonal. The vector estimate ŷi = (ŷ1, . . . , ŷN)⊤ is known as the Fiedler

vector and it shows the algebraic connectivity of a graph [Fie75]. The graph can be partitioned
into two subsets by splitting the Fiedler vector, such that ŷm ∈ ŷi,1 for ŷm ≤ 0 and ŷm ∈ ŷi,2

otherwise. Here, ŷi,j denotes the jth subset of ŷi with j = 1, 2 andm = 1, . . . ,N [ST07].
Based on the Fiedler vector, we propose to measure the polarization score for each candidate ρi

by evaluating
Psc(ρi) = med(ŷi,1)−med(ŷi,2), (4.4)

where med(ŷi,j) denotes the median of the jth subset for j = 1, 2. The median is used as a
robust location estimate [MMY19, ZKO18] for each subset ŷi,j. Given a set of candidate penalty
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W = Ŵ(ρ = 0) W = Ŵ(ρ = 0.1) W = Ŵ(ρ = 0.99)

Figure 4.19: The empirical distribution of similarity coefficients for growing penalty parameter values.

parameters ρi ∈ {ρmin, . . . , ρmax}, we estimate ρ by maximizing the polarization score as

ρ̂ = argmax
ρ=ρmin,...,ρmax

Psc(ρ), (4.5)

where ρ̂ denotes the estimated penalty parameter that provides maximum polarization in the
given space. The ideas underlying maximizing polarization score are visualized in Figure 4.19.
Starting from a densely connected graph model including undesired edges between different
communities, the empirical distribution of similarity coefficients is shown for growing values of
penalty parameters where similarity coefficients associated with undesired and target edges are
highlighted with red and green rectangular boxes, respectively. As can be seen, when the sparsity
is further increased, the distinction of undesired and target edges becomes challenging. This is
because now edges from both modes are shrunken to zero. Thus, in SPARCODE the penalty
parameter is estimated as the value which provides maximum polarization in coefficient space.

To reduce computational complexity, we first evaluate Eq. (4.5) on a coarse grid and then use
cubic spline interpolation between ρ̂ and its neighboring samples to find the final value ρ̂. By
means of Eq. (4.5), we propose a problem-dependent tuning of the level of sparsity in Eq. (4.2).
This provides us with an initial robust sparse graph model that we will improve in the following
step.

Compute a Robust Sparse GraphModel
By maximizing the polarization score via Eq. (4.5), we estimated a graph model
Ĝ = {V, Ê,Ŵ(ρ̂)}, for which the edges between different communities are large, while
the edges within the community are small. However, the true graph structure may still be hidden
due to noise and outliers. It is intuitively clear that sparse outlying entries and noise have fewer
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T

Figure 4.20: The thresholding operation of SPARCODE.

non-zero coefficients in the affinity matrix compared to typical data points, and the value of these
coefficients is negligibly small for noise [EV13]. SPARCODE builds upon this graph property to
detect outliers and noisy feature vectors by analyzing the connectivity of graph vertices.

Let Ŵ(s)(ρ̂) = [ŵ
(s)
1 (ρ̂), . . . , ŵ(s)

N (ρ̂)] ∈ RN×N be the set of column-wise sorted similarity
vectors whose nth element denotes the sorted nth similarity vector of the estimated affinity
matrix Ŵ(ρ̂) in ascending order. Then, we obtain the aggregated set of similarity coefficients
u = {u1, u2, . . . , uN} ∈ RN by computing

um =
1
N

N∑
n=1

ŵ(s)
m,n(ρ̂), m = 1, . . . ,N, (4.6)

where um denotes themth element of u and ŵ(s)
m,n(ρ̂) is the element of Ŵ(s)(ρ̂) that belongs to the

mth row and nth column. From Eq. (4.6), a two-mode Gaussian mixture distribution of the ith
similarity coefficient um can be written as

f(um|Ψ) =
2∑
l=1

χl g(um; μl,Σl) (4.7)

where Ψ = {μμμl,ΣΣΣl} denotes the parameter set of the model for l = 1, 2 and g(um; μl,Σl) is the
univariateGaussian probability density functionwithmean μl and variance Σl, and χl is themixing
coefficient of the lth subset.

As illustrated in Figure 4.20, the two-mode Gaussian mixture model for the coefficient vector
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umay be used to separate the outliers from the typical data points based on their aggregated edge-
weights. The left mode will represent the outliers, while the right mode corresponds to typical
data points. The parameters μl, Σl and χl in Eq. (4.7) are estimated using an EM algorithm.
After a K-means initialization step, the EM algorithm maximizes the log-likelihood function of
the coefficient vector u with respect to the parameters of interest in coupled equations using
alternating expectation and maximization steps. In expectation step the probability estimate that
um belongs to the lth subset, withm = 1, 2, . . . ,N and l = 1, 2, can be calculated as

φ̂t
m,l =

χ̂t−1
l g(um; μ̂t−1

l , Σ̂
t−1
l )

2∑
n=1

χ̂t−1
n g(um; μ̂t−1

n , Σ̂
t−1
n )

, (4.8)

where φ̂t
m,l denotes the probability estimate of um that belongs to the lth subset at the tth iteration,

μ̂t−1
l , Σ̂

t−1
l and χ̂t−1

l are the estimated mean, variance, and mixing coefficient of the lth subset in
iteration t−1, respectively. In themaximization step, the parameters are updated using the current
values of φ̂m,l as

μ̂(t)l =

N∑
m=1

φ̂t
m,lum

N∑
m=1

φ̂t
m,l

Σ̂
(t)
l =

N∑
m=1

φ̂t
m,l(um − μ̂(t)l )(um − μ̂(t)l )⊤

N∑
m=1

φ̂t
m,l

χ̂(t)l =

N∑
m=1

φ̂t
m,l

N
.

(4.9)

Then, the threshold can be simply evaluated as the interconnection point of the two distributions,
i.e.

T = argmin
um
|υ̂m,2 − υ̂m,1|. (4.10)

This thresholding operation is visualized in Figure 4.20, where we show the estimated Gaussian
mixture model and the empirical distribution of the aggregated similarity coefficients. The effect
of applying the threshold defined in Eq. (4.10), is to remove the edges that are associated to the
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left mode of the mixture from the estimated graph model Ĝ = {V, Ê,Ŵ(ρ̂)}. As a result, the
feature vectors in data matrixX that have fewer nonzero coefficients with negligibly small values
will be isolated in the graph as can be seen from the right graph model in Figure 4.20. Thus, by
giving them zero degree, outliers and noisy feature vectors are detected and removed, resulting in
a cleaned data matrix X̌ ∈ RŇ and a graph Ǧ = {V̌, Ě,W̌(ρ̂)} with V̌ denoting the estimated
clean vertices, and Ě and W̌(ρ̂) representing the corresponding edges and similarity matrix
whose w̌m,nth element denotes the weight of the edge between mth and nth feature vector of X̌,
respectively.

A Fast Spectral Partition based on the Robust and Sparse Graph
Assuming that Ǧ = {V̌, Ě,W̌(ρ̂)} is cleaned from outliers and that it is sufficiently sparse, the
graph can be partitioned into K communities based on the Fiedler vector with a fast partitioning
method. In practice, however, K is unknown and must be estimated. We therefore present an
approach to estimate the rangeKmin ≤ K ≤ Kmax using typical degrees in the graph.

Let d ∈ Z+Ñ denote a degree vector whosemth element corresponds to the degree of themth
feature vector in X̌ ∈ RM×Ň. Further, let p ∈ RŇ be the empirical probabilities of occurrence
of these degrees in d. Finally, let h ∈ RŇ/2−1 denote the vector of degrees, whose probability is
greater than the median of probabilities, i.e. med(p). Now, the minimum andmaximum number
of communities {Kmin,Kmax} ∈ Z+ can be estimated as

K̂min ≈
Ň

hmax + 1
and K̂max ≈

Ň
hmin + 1

, (4.11)

where hmin = min{h}, hmax = max{h}, hmin + 1 and hmax + 1 represent the
minimum and maximum number of vertices in each community, respectively. The intuition
underlying Eq. (4.11) is to define a range for a candidate number of communities from the
typical connectedness of the graph. Now, for a set of estimated candidate communities
K̂cand ∈ {K̂min, . . . , K̂max}, the graph can be partitioned using the ascending order sorted Fiedler
vector y̌(s) ∈ RŇ of Ǧ = {V̌, Ě,W̌(ρ̂)} as follows.

First, for each mapping result y̌(s)m , with m = 1, ..., Ň, in the Fiedler vector, the standard
deviation of the set containing its two immediate neighbors is computed. The set of immediate
neighbors for mapping results y̌(s)m ,m ∈ {2, . . . , Ň− 1}, is {y̌(s)m−1, y̌(s)m , y̌(s)m+1}. For the special cases
of m = 1 and m = Ň, the sets are defined as {y̌(s)1 , y̌(s)2 , y̌(s)3 } and {y̌

(s)
Ň−2, y̌

(s)
Ň−1, y̌

(s)
Ň }, respectively.
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The standard deviations are collected in a vector defined by

σσσy̌(s) = (σy̌(s)1
, . . . , σy̌(s)Ň

)⊤. (4.12)

Then, to split the graph into an initial balanced partitioning, where each community has the same
number ofmembers, we compute the number qcand ofmapping results that we ignore in the initial
partitioning as

qcand = mod(Ň, K̂cand). (4.13)

The vector y̌(s)
ign ∈ Rqcand of initially ignored mapping results is composed of the mapping results

that are associated to the largest qcand entries of the vector σσσy̌(s) . The complementary vector y̌(s)
rem

is defined by the remaining Ň − qcand entries. Then, the initial partition can be computed by
splitting the y̌(s)

rem into K̂cand equally sized communities. Finally, the initially ignored qcand number
ofmapping results y̌(s)

ign can be assigned byminimizing the distance to the center of initially defined
communities on the real line. Now, the estimated label vector of a given candidate number of
community čK̂cand

∈ RŇ is available for all feature vectors of X̌ where čn denotes the nth feature
vector label.

As the goal of SPARCODE is creating a graph that only includes edges within the communities,
the number of communities K can be estimated by comparing the candidate models in terms of
a suitable clustering quality metric. Modularity is a metric that evaluates the quality of partition
with respect to the similarity of feature vectors in an affinity matrix. It gives a high modularity
score if a vertex has more edges within the assigned community. The estimator for K, therefore,
maximizes the quality of different partitions of the robust graph model, i.e.

K̂ = argmax
K̂cand=K̂min,...,K̂max

{modK̂cand
}, (4.14)

where modK̂cand
denotes the modularity score of candidate number of communities K̂cand that can

be computed using Eq. 2.7.
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Algorithm 4: SPARCODE
Input: An affinity matrixW ∈ RN×N

Step 1: Robust Sparse Graph Model
Step 1.1: Sparsity Improvement
Initialization:
for ρ(0)i = ρ(0)min, . . . , ρ(0)max do

Estimate Ŵ(ρ(0)) via Eq. (4.2)
Map each vertice onto a line using Eq. (4.3)
Get the Fiedler vector ŷ(0)

i

Split ŷ(0)
i into two subsets for a splitting value s = 0

Calculate the polarization scorePsc(ρ(0)i ) via Eq. (4.4)
Stack Psc(ρ(0)i ) into p(0)

sc ∈ RNρ(0)

end
Penalty Parameter Selection:
Find ρ(0)i which maximizes Eq. (4.5) for an initial set
Regenerate a penalty parameter set ρi = ρmin, . . . , ρmax over equally spacedNρ samples
Apply the same framework as in the initialization step
Obtain psc ∈ RNρ for ρi = ρmin, . . . , ρmax
Apply cubic spline interpolation to obtain ρ̂
Step 1.2: Robustness and Outlier Detection
Create Ŵ(s)(ρ̂) ∈ RN×N over a set of sorted similarity
vectors from Ŵ(ρ̂)
Get u ∈ RN via Eq. (4.6)
Estimate υ̂m,l for each coefficient wherem = 1, 2, . . . ,N
and l = 1, 2
Calculate T using Eq. (4.10)
Cut undesired edges in Ĝ using T
Reject outliers whose degree equals zero, d = 0
Form W̌(ρ̂) ∈ RŇ×Ň over estimated outlier-free vectors
Step 2: Fast Spectral Partition
Estimate K̂cand ∈ {K̂min, . . . , K̂max} using Eq. (4.11)
for K̂cand = K̂min, . . . , K̂max do

Create y̌ ∈ RŇ using Eq. (4.3)
Compute σσσy̌(s) and qcand via Eq. (4.12) and Eq. (4.13)
Define y̌(s)

ign ∈ Rqcand and y̌(s)
rem ∈ RŇ−qcand

Apply an initial partition on y̌(s)
rem ∈ RŇ−qcand

Assign y̌(s)
ign ∈ Rqcand

Form čcand ∈ RŇ for K̂cand
Get modK̂cand

via Eq. (2.7) and stack into q ∈ RNK

end
Estimate K̂ using Eq. (4.14)
Output: A vector č for K̂
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4.4.1.1.5 Experimental Evaluation
In this section, the community detection performance of SPARCODE is benchmarked against
state-of-the-art community detection algorithms. We consider a variety of clustering and graph
partitioning data sets to demonstrate the applicability of SPARCODE inboth of these community
detection settings. We select as competitors the following community detection algorithms:
Newman’s Greedy Algorithm (NGA) [New04], Le Martelot (Martelot) [MH11], Newman’s
eigenvector method (NE) [New06], singular value decomposition-based community detection
(SVD) [SD11], the Louvain method (Louvain) [BGL08], the Bayesian approach (BC) [HW08],
Bayesian nonnegative matrix factorization (BNMF) [PRE11], the Combo method [SCB14], the
Infomap method (MAP) [BEL14] and the density peak-based overlapping community detection
method (DenPeak) [BYS17]. The SVDmethod is applicable only onbipartite graphs, for details see
[SD11]. Bayesian cluster enumeration (BCE) [TMZ18], dip-means and kernel dip-means (K. dip-
means) [KL12], x-means [PM00], Gaussian k-means (g-means) [HC04] and DBSCAN [EKS96]
are used as cluster-based competing approaches. The performancemeasures are evaluated both on
synthetic and real-world data sets.

All SPARCODE implementations use the same default parameters as follows: ρ(0)min = 0.1,
ρ(0)max = 0.99,N(0)

ρ = Nρ = 5. AMATLAB code for SPARCODE is available at:
https://github.com/A-Tastan/SPARCODE

PerformanceMeasures
The empirical probability of detection pdet, the conductance cond, the modularity score mod and
the computation time t are used as performance measures. The empirical probability of detection
is estimated as

pdet =
1
NE

NE∑
m=1

1{K̂=K}, (4.15)

where NE denotes the total number of performed experiments, K̂ is the estimated number of
communities and 1{K̂=K} is the indicator function that is defined as

1{K̂=K} =

1, if K̂ = K

0, otherwise
. (4.16)

The conductance and modularity score of the estimated community number can be calculated
using Eqs. (2.4.4) and (2.7), respectively. Themodularity score of SPARCODE is computed based
on the affinity matrix of the sparsity improved robust graph model.
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Initial graph model Estimated graph model

Figure 4.21: Graphical models of Scenario 1.

Method K̂ mod cond t

NGA [New04] 4 0.595 0.069 404.389
Martelot [MH11] 4 0.576 0.120 0.046
NE [New06] 1 0 0 0.023
Louvain [BGL08] 5 0.597 0.116 0.023
BC [HW08] 7 0.525 0.313 1.910
BNMF [PRE11] 5 0.597 0.116 3.855
Combo [SCB14] 5 0.597 0.116 0.910
MAP [BEL14] 4 0.540 0.048 0.092
DenPeak [BYS17] 5 0.597 0.116 0.023
SPARCODE 7 0.643 0.201 0.768

Table 4.1: Performance of 10 graph‐based approaches on Scenario 1 whereK = 7.

Synthetic GraphModel 1: Correlated Communities Study with K = 7
An undirected weighted graph model is considered. It is a variant of the stochastic block model
(SBM) with constant densities within and between communities, respectively, where the vertices
belonging to the same community are more densely connected. The SBM of Scenario 1, i.e.
SBM1(N, ααα, Q), is defined for N = 300 vertices, a probability vector ααα ∈ RK̂ specifying the
distribution of the vertices in the K = 7 communities, and a symmetric connectivity matrix
Q ∈ RK×Kwhoseqi,jth elementdenotes theprobability of an edgebetween ith and jth community
block. In the designed undirected weighted graph model, the first six communities inhibit
correlation between communities in addition to correlations within the community. In contrast,
the seventh community only has correlations within the community. Moreover, the density of
the seventh community is assumed to be higher compared to that of the other six. For illustration
purposes, the graph for the designed affinity matrix is shown on the left side of Figure 4.21, all
parameters to generate the data set are given in Appendix B.1.1.
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Initial graph model Estimated graph model

Figure 4.22: Graphical models of Scenario 1.

Tab. 4.1 summarizes the community detection performance results for Scenario 1 in terms
of the estimated community number, the modularity score, the conductance score and the
computation time. The considered setting is challenging for most algorithms, with the exception
of BC, all benchmark community detection algorithms underestimate the number of clusters
due to the correlations between communities. SPARCODE correctly finds the number of
communities and outperforms BC in terms of the computation time, the modularity and
conductance scores. As shown on the right side of Figure 4.21, the estimated sparsity improved
robust graph model clearly partitions the network into seven communities.

Synthetic GraphModel 2: Robustness Study with K = 3
An undirected weighted graph consisting of three communities in the presence of outliers is
created by again using the community block density-based variant of the SBM for Scenario 2,
SBM2(N, ααα,Q). The communities are correlated with each other in addition to exhibiting strong
correlations within. The outliers correlate equally with all communities with negligibly small
correlation coefficients. The graph for the designed affinity matrix of Scenario 2 is shown on the
left side of Figure 4.22, all parameters to generate the data set are given in Appendix B.1.2. While
the NE, NGA, BC and BNMF community detection algorithms overestimate the community
number because of outliers, the remaining competitor community detection methods estimate
the community number correctly. However, for the competing methods, the outliers cause a
noticeable drop in modularity with a poor performance in terms of conductance except for MAP
method. Although the MAP method shows the best performance with respect to conductance,
it has a poor performance in terms of modularity. By contrast, the SPARCODE algorithm,
overcomes these problems by detecting these outliers in the graphmodel and providing robustness
by minimizing the effect of outliers on the quality of the partition. The estimated graph model in
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Method K̂ mod cond t

NGA [New04] 115 0.219 0.632 775.639
Martelot [MH11] 3 0.326 0.297 0.054
NE [New06] 4 0.288 0.429 0.036
Louvain [BGL08] 3 0.326 0.297 0.041
BC [HW08] 10 0.323 0.301 6.879
BNMF [PRE11] 4 0.325 0.300 3.946
Combo [SCB14] 3 0.325 0.297 0.88
MAP [BEL14] 3 0.208 0.089 0.162
DenPeak [BYS17] 3 0.236 0.336 0.025
SPARCODE 3 0.496 0.151 0.753

Table 4.2: Performance of 10 graph‐based approaches on Scenario 2 whereK = 3.
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(a) Computation time for growing number of vertices (zoom on
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(b) Computation time for growing number of vertices.

Figure 4.23: Computation time for a growing number of vertices for Scenario 2. The results are reported in seconds. The upper
figure zooms into the region concerning networks up to a size of 1000 vertices.

Figure 4.22 shows that, based on the robust sparse graph model, a separation of the communities
is possible and outliers can easily be distinguished from other data points.

Computation Time
The computation time is reported as function of the number of vertices in the network. All
experiments are performed based on Scenario 2 that was explained in the previous section.
All implementations are in MATLAB using the default parameters given by the authors,
except for the Combo and the MAP algorithms, for which we use the available C and Phyton
implementations, respectively. For the proposed SPARCODE algorithm, we compare two
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Figure 4.24: Performance of different partitioning methods in terms of computational complexity. The results are reported in
seconds.

possible implementations: The method referred to as SPARCODE estimates the Fiedler vector
by using the MATLAB function eig for a complete eigen-decomposition and a faster version
SPARCODEF estimates the Fiedler vector from a subset of eigenvectors using the eigs function
for the two smallest eigenvalues. The results are summarized in Figure 4.23. For sample sizes
up to 1000 vertices, SPARCODE is comparable to Combo (see Figure 4.23a), though for large
networks, the computation time of SPARCODEgrows quicker (see Figure 4.23b). SPARCODEF

is faster than Martelot for large networks whereas the computation time for Martelot is smaller
for small sample sizes.

The SPARCODE method would allow for different options to do the partitioning. We
therefore also compare the computation time of the proposed partitioning approach to that of
the well-known SCmethod [NJW01] in the original form usingK-means SPARCODESC−1 and a
simple plug-in robustification version that useK-medoids SPARCODESC−2. All implementations
use a subset of eigenvectors, except for SPARCODE, which uses a complete eigen-decomposition.
As can be seen, SPARCODE, SPARCODESC−1 and SPARCODESC−2 have a similar execution
time, although SPARCODE uses a complete eigen-decomposition. Finally, SPARCODEF

provides a significant improvement in terms of the computation time.
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ζ
K̂ for Different Community DetectionMethods

NGA Martelot NE Louvain BC BNMFCombo MAP DenPeak SPARCODE

0.1 3 3 3 3 3 3 3 3 3 3
0.2 3 3 3 3 3 3 3 1 3 3
0.3 1 3 4 3 3 3 3 1 3 3
0.4 1 3 4 3 3 2 3 1 3 3
0.5 1 3 4 3 2 1 3 1 3 2
0.6 1 2 20 4 2 1 3 1 2 2
0.7 1 2 22 4 2 1 3 1 2 2

Table 4.3: Performance of graph‐based approaches on LFR data sets for βw = 1 andK = 3.
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Figure 4.25: Modularity and conductance for a growing values of ζ for LFR networks.

Synthetic GraphModel: Lancichinetti-Fortunato–Radicchi Networks (LFR)
Lancichinetti–Fortunato–Radicchi networks [LFR08] are adapted for undirected weighted
graphical models using the following parameters in addition to the default setting: number of
vertices N = 300, average degree d̄ = 100, maximum degree dmax = 100, mixing parameter
for weights ζ = 0.1, . . . , 0.7, exponent for the weight distribution βw = 1, 1.5, 2. As it is indicated
in [LFR08], for the mixing parameters beyond ζ = 0.5 the communities are not defined in the
strong sense such that each vertex has more neighbors in its own community than in the others.
Therefore, the target networks can be determined such that ζ < 0.5.

An example of the community detection results, for βw = 1, is summarized in Tab. 4.3.
Changing the values of βw did not lead to a considerable performance difference and thus,
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the results are not reported in detail in terms of βw. The community detection performances
are summarized using modularity and conductance metrics in Figure 4.25. As can be seen,
SPARCODE estimates the community number in the target region with a considerably high
modularity and low conductance. The results also show that even though Martelot, Louvain,
Combo andDenPeak algorithms estimate the community number correctly after ζ = 0.5 bound,
they show noticeably poor performance both in terms of modularity and conductance, which
indicates that vertices may assigned to the wrong communities.

Real-World Benchmark GraphModels
The performance is benchmarked on the following seven real-world networks:

Zachary’s Karate Club (Karate): The network is a social bipartite network that consists of
friendship between 34 members of a karate club [Zac77].

Dolphins: The network is a social network that consists of social interactions of 62 dolphins
withK = 2 communities based on the reaction after a dolphin left from the group [LSB03].

American College Football (Football): The network represents 115 US college teams and the
games that they played [GN02]. The ground truth for the community number is 12.

Political Blogs (P. Blogs): The network consists of blogs aboutUS politics with 1490 vertices
andK = 2 communities as ”liberal” and ”conservative” [AG05].

Jazz Musicians (Jazz): The network consists the collaboration of jazz musicians which can
be divided intoK = 4 communities based on cities where bands are recorded [GD05].

Carpinteria Salt Marsh (C.S.M.): The network is a type of food web which can be divided
into K = 2 based on species as parasites and free-living or K = 4 subwebs based on links,
e.g. parasites-parasites, predator-parasites [LDK06].

Caenorhabditis Elegans (C. Elegans): The biological network examines the neuronal layout
of C. Elegans for 279 neurons that can be partitioned intoK = 3 communities [CHC06].

The cosine similarity, defined in Eq. (2.1), is used to obtain the affinity matrix W for all
networks except for the political blogs network,which is examinedwithPearson’s linear correlation
coefficients as defined in Eq. (2.2) because none of the algorithms estimated the community
number correctly with the cosine similarity.
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Network K NGA Martelot NE SVD Louvain BC BNMF Combo MAP DenPeak SPARCODE

Karate
[Zac77]

K̂
2

2 2 3 2 2 3 2 2 2 2 2
mod 0.292 0.292 0.244 0.262 0.292 0.276 0.292 0.292 0.292 0.164 0.237
cond 0.201 0.201 0.404 0.237 0.201 0.241 0.201 0.201 0.201 0.247 0.179

Dolphins
[LSB03]

K̂
2

2 3 6 2 4 2 3 4 2 4 2
mod 0.364 0.415 0.373 0.364 0.421 0.364 0.371 0.421 0.364 0.342 0.382
cond 0.054 0.242 0.408 0.054 0.305 0.054 0.126 0.306 0.054 0.263 0.113

Football
[GN02]

K̂
12

7 4 8 - 7 5 5 7 7 12 8
mod 0.422 0.406 0.371 - 0.427 0.429 0.424 0.427 0.427 0.351 0.499
cond 0.405 0.316 0.476 - 0.409 0.370 0.373 0.407 0.406 0.539 0.373

P. Blogs
[AG05]

K̂
2

- 541 1 1 505 7 503 4 16 499 2
mod - 0.478 0 0 0.531 0.261 0.521 0.531 0.469 0 0.395
cond - -0.05 0 0 0.112 0.418 0.117 0.117 -

0.02
0 0.087

Jazz
[GD05]

K̂
4

20 21 7 - 21 10 22 3 3 21 4
mod 0.268 0.376 0.316 - 0.379 0.346 0.376 0.379 0.261 0.266 0.322
cond 0.094 0.278 0.462 - 0.271 0.296 0.264 0.275 0.088 0.297 0.404

C.S.M.
[LDK06]

K̂
2,4

10 12 8 1 13 10 14 5 6 11 2
mod 0.199 0.261 0.218 0 0.269 0.237 0.242 0.269 0.226 0.228 0.272
cond 0.019 0.342 0.593 0 0.287 0.075 0.064 0.287 0.036 0.031 0.163

C. Elegans
[CHC06]

K̂
3

81 3 10 - 3 5 3 3 1 2 3
mod 0.170 0.236 0.178 - 0.246 0.180 0.227 0.246 0 0.034 0.246
cond 0.716 0.265 0.651 - 0.355 0.273 0.284 0.355 0 0.076 0.341

Average Results
P̄det 0.333 0.286 0 0.5 0.286 0.143 0.286 0.286 0.286 0.286 0.857
m̄od 0.286 0.352 0.243 0.156 0.366 0.299 0.351 0.367 0.291 0.198 0.336
¯cond 0.248 0.227 0.428 0.073 0.277 0.247 0.204 0.278 0.109 0.207 0.237

Table 4.4: Performance of graph‐based approaches on well‐known networks. The results whose computation takes more than
12 hours and nontarget networks for SVD method are denoted as ”‐”.

The community detection results are summarized in Tab. 4.4. The results include the estimated
community number, the modularity and the conductance scores for all cases for which the
computation time was lower than 12 hours. The community detection results of the SVD
approach are given for bipartite networks, only. As can be seen, the SPARCODE algorithm shows
the best overall performance, and estimates the community number correctly for all networks,
except for the Football network. In particular, it provides reasonably good modularity and
conductance scores as being the fourth algorithm that provides maximum modularity with a
minimum conductance.

Real-World Radar-Based Gait Analysis Data Sets
The performance is benchmarked on the following two radar data sets:

Gait Data Set: As detailed in [SAZ19], the experimental data was collected in an office
environment at Technische Universität Darmstadt using a 24 GHz radar system. The
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Figure 4.26: Scatter plot for three important features of Gait data belonging to five object communities.

(a) Initial graph model (b) Estimated sparsity improved graph
model

Figure 4.27: Graphical models of Gait data set.

data can be grouped into K = 5 different object communities, which are normal walk
(‘Normal’), limping with one leg (‘Limping one’), limping with two legs (‘Limping two’),
walking with a cane (‘Cane’) and walking with a cane out of synchronization (‘Cane out
of sync.’). The data contains 16 measurements per subject (8 towards, 8 away from the
radar) and ten subjects. The duration of each measurement is equal to six seconds. In
total, 800 measurements for five different gait communities of ten subjects were used
in our experiments. As an illustration, a scatter plot of three important features of the
radar-based human gait data is shown in Figure 4.26. It can be seen that the outlying
observations corresponding to the ‘Cane’ community overlap with the true observations
of ‘Normal’. Moreover, the outliers of ‘Limping two’ have a considerable sample size and
strong correlationswith ‘Normal’, whichmakes it a challenging scenario for any community
detection algorithm.
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Figure 4.28: Scatter plot for the first three principal components of Person Id. data over four object communities.

(a) Initial graph model (b) Estimated sparsity improved graph
model

Figure 4.29: Graphical models of Person Id. data set.

In order to represent the underlying structure, for SPARCODE, the similarity measures
that are defined in Eq. (4.1) and Eq. (2.2) are used, respectively, and the resulting graph
is shown in Figure 4.27a. Clearly, the separation into communities from such a graph is
extremely difficult. In contrast, the sparsity improved graph model shown in Figure 4.27b
better reveals separated communities.

Person Id. Data Set: As detailed in [TSM18], the experimental data has been collected in
an office environment at Technische Universität Darmstadt using the same radar system
as explained for the previous data set. The data can be grouped into K = 4 object
communities, each representing a different person. The data set includes themeasurements
of four test subjects that are walking slowly and without swinging their arms, towards and
away from the radar. The duration of recordings is equal to six seconds and the number
of measurements is equal to 13 for each person. In total, 187 stride pairs that are obtained
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from 52 observations of the four subjects are used in community detection.

The scatter plot of the Person Id. data set containing K = 4 different persons is shown
in Figure 4.28. Even though, judging based on visual impression, the examination of the
Person Id. data set seems easier in comparison to human gait data, it still has communities
that correlate with each other which makes the detection of the community number very
difficult.

Just like for the previous radar data set, SPARCODE uses the similarity measures that
are defined in Eq. (4.1) and Eq. (2.2), respectively. The initial and the sparsity improved
robust graph models of the Person Id. data set are shown in Figure 4.29a and Figure 4.29b,
respectively. As can be seen, the estimated sparsity improved graph model is separable into
four communities by eliminating the outliers that are of zero degree. Therefore, a simple
graph partitioning method is sufficient to partition such a robust sparse graph model into
the correct number of communities.

Real-World Cluster Analysis Benchmark Data Sets:
In this section, we benchmark the performance of SPARCODE on eight well-known data sets
from the UCIMachine Learning Repository. These are:

Fisher’s Iris Data Set (Fisheriris): The data set includes 150 observations from three species
of the Iris flower [Fis36].

Ionosphere Data Set: The data set includes 351 radar returns from the ionosphere in order
to define quality for further analysis [SWH89]. The subspace number is equal to two.

Parkinson Acoustic Data Set (Parkinson A.): The data set consists of replicated acoustic
features of Parkinson’s disease with 240 instances from two communities which are
”healthy” and ”patient” [NPC16].

Diabetic Retinopathy Debrecen Data Set (D. Retinopathy): The data set includes image-
based features of diabetic retinopathywith 1151 observations from two object communities
[AH14].

Connectionist Bench Data Set (Sonar): The data set includes 208 observations of K = 2
communities based on sonar returns collected from a metal cylinder and a cylindrically
shaped rock positioned on a sandy ocean floor [GS88].
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Data Set
K̂ for Different Community DetectionMethods

NGA Martelot NE SVD Louvain BC BNMFCombo MAP DenPeak SPARCODE K

Gait [SAZ19] - 3 1 - 3 5 5 3 5 17 5 5
Person Id. [TSM18] 9 11 1 - 8 8 8 5 6 3 4 4
Fisheriris [Fis36] 1 2 2 - 2 2 2 2 1 3 3 3
Ionosphere [SWH89] 109 106 1 1 101 10 99 6 2 124 2 2
Parkinson A. [NPC16] 1 1 55 1 1 2 1 1 1 2 2 2
D. Retinopathy [AH14] - 2 2 1 2 2 2 2 1 2 2 2
Sonar [GS88] 1 2 28 1 3 2 2 2 1 2 2 2
QSAR Bioconcentration [GCV16] - 3 1 - 3 7 3 3 2 80 3 3
Cardiotocography [ABG00] - 2 206 - 2 15 3 2 1 1 3 3,10
Divorce Predictors [YAI19] 3 3 1 1 3 7 1 2 1 1 2 2

Table 4.5: Performance of graph‐based approaches on clustering data sets. The results whose computation takes more than 12
hours and nontarget networks for SVD method are denoted as ”‐”.

QSAR Bioconcentration Classes Data Set (QSAR Bioconcentration): The data set consists of
the bioconcentration factor of 779 chemicals to determinemechanism of bioconcentration
[GCV16]. The data set can be partitioned into three communities.

Cardiotocography Data Set: The Cardiotocography data set consists of 2126 observations
of fetal cardiotocograms which can be partitioned into three communities in terms of fetal
state or ten communities based on morphologic pattern [ABG00].

Divorce Predictors Data Set: The data set consists of 170 observations from two object
communities using divorce predictors scale [YAI19].

Comparisons with Graph-based Approaches
The graphs for all clustering data sets are designed using Pearson’s linear correlation coefficients
as in Eq. (2.2), except for the Ionosphere and Cardiotocography data sets, where the graphs are
designed as the same procedure with Gait and Person Id. data sets.

The estimated community numbers, for all community detection algorithms whose
computation time is less than 12 hours, are summarized in Tab. 4.5. Again, the SVD is
only applicable for bipartite networks. SPARCODE correctly estimates the number of clusters for
all data sets and outperforms all its competitors. None of the competitor community detection
algorithms is able to correctly estimate the community number of the Person Id. data set correctly.
These overestimate it in most cases, which can be explained by the considerable number of
outliers.

In addition to the accuracy in terms of the estimated number of communities, the results
are also evaluated with respect to partitioning quality and computation time. To report the
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Figure 4.30: Empirical probability of detection and average normalized performance rank of each algorithm in terms of
modularity, conductance and computation time.

modularity, the conductance and computation time in the same scale as the probability of
detection, the performances of all algorithms are ranked and then averaged over all real data sets.
The performance measures of the SVD approach are evaluated on the bipartite graphs, only. All
results are summarized in Figure 4.30. As can be seen from the figure, SPARCODE achieves the
best performance reaching a probability of detection pdet = 0.94 while the strongest competitor
(BNMF) follows with pdet = 0.41.

Based on quality of partition, SPARCODE achieves the best performance with averaged
modularity and conductance rank score of 0.68; Martelot, MAP and BNMF follow closely
with 0.67, 0.67 and 0.66, respectively. Although SVD shows the best performance in terms of
conductance, it has theworst performancewith a considerable difference in terms of itsmodularity.
NE, DenPeak and Louvain methods are the best algorithms with respect to computation time
while SPARCODE is the seventh-fastest approachwith 0.96 averaged execution time performance
rank.

To summarize the performance of graph-based community detection approaches on real data
sets, the detailed performance measures that are reported in Figure 4.30 are further aggregated
by equally weighting all performance measures. The overall performance of the 11 competing
methods is summarized in Figure 4.31. As can be seen, SPARCODE achieves the highest overall
performance score of 0.82 whereas, Martelot is the best competitor with a score of 0.66. Combo,
MAP and Louvain follow with an overall performance score of 0.65, 0.64 and 0.62, respectively.
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Figure 4.31: Performance of different algorithms based on equal weights on performance metrics.

Data Set
K̂ for Different Community DetectionMethods

BCE dip-means K. dip-means x-means g-means DBSCAN SPARCODE K

Gait [SAZ19] 7 4 3 176 9 6 5 5
Person Id. [TSM18] 4 4 3 22 10 3 4 4
Fisheriris [Fis36] 3 2 2 31 3 2 3 3
Ionosphere [SWH89] 2 31 1 32 2 2 2 2
Parkinson A. [NPC16] 1 1 1 47 1 1 2 2
D. Retinopathy [AH14] 1 2 2 199 16 1 2 2
Sonar [GS88] 1 1 1 29 1 1 2 2
QSAR Bioconcentration [GCV16] 5 4 6 174 55 1 3 3
Cardiotocography [ABG00] 8 4 4 435 51 2 3 3,10
Divorce Predictors [YAI19] 1 2 2 21 3 1 2 2

Table 4.6: Performance of cluster‐based approaches on clustering data sets. The results whose computation take more than 12
hours and nontarget networks for SVD method denoted as ”‐”.

Comparisons with Cluster-based Approaches
In this section, the SPARCODE algorithm is compared with six well-known clustering methods
that estimate the number of communities K. The community detection results of different
approaches are summarized in Tab. 4.6. As can be seen, none of the competitor algorithms
performswell in the highly contaminatedGait data set. However, generally speaking, cluster-based
approaches show better performance compared to competitor graph-based approaches on Person
Id., Fisheriris and ionosphere data sets, except for x-means, which generally largely overestimates
the number of communities.

The overall community detection performance of all algorithms is summarized in Figure 4.32.
The SPARCODE method clearly outperforms existing cluster-based community detection
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Figure 4.32: Performance of different algorithms based on rank in terms of probability of detection.

approaches in terms of probability of detection and outperforms the best competitors (BCE and
dip-means), which have a performance score of 0.3, by a large margin.

4.4.1.1.6 Conclusion
We proposed SPARCODE, a community detection method that uses spectral partitioning based
on estimating a robust and sparse graph. The level of sparseness is controlled by maximizing
the modularity of the graph. SPARCODE includes a graph construction-based outlier detection
method to increase robustness. Overall, when compared to both cluster-based and graph-based
community detection algorithms on real and synthetic data sets, SPARCODE achieves the
highest community detection performance providing a high quality of partition at a reasonable
computation time compared to existing graph-based approaches. Judging from its applicability in
a large variety of problems, compatibility with different graph-basedmethods and success in highly
contaminated data sets, SPARCODE is a promising new algorithm for performing community
detection in a robust manner.
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4.4.1.2 Fast and Robust Sparsity-Aware Block Diagonal Representation

4.4.1.2.1 Introduction
A block diagonally structured affinity matrix represents clusters of feature vectors by non-
zero coefficients that are concentrated in blocks. Such a structure is an informative model
to describe hidden relationships and it has numerous applications, e.g., denoising [KY19,
DBE16], recognition [ZXS17], semi-supervised learning [QWZ21, LLZ15], subspace learning and
clustering/classification [XWW21, LWS20, DPC19, WHG15, LMZ12].

Commonly used existing BDR methods impose structure on the affinity matrix using
regularization with BD priors, e.g. based on a low-rank property [XTX15, LLY12, LY11, LLY10],
sparsity [FLW21, WZW17, EV13] or a known number of blocks K [TMZ22, LFL18, XGL17,
FLX14]. For example [FLX14], which is one of the current benchmark BDR methods, controls
the number of connected components in the affinity matrix by imposing a rank constraint on
the Laplacian matrix. An alternative popular approach [LFL18], proposes a K-block regularizer
that is defined by the sum of the K smallest eigenvalues of the Laplacian matrix to compute a
BD affinity matrix. A major challenge of these methods is the need to determine appropriate BD
priors which play a crucial role in achieving accurate BDR results. Due to its key role in BDR
methods, the determination of sparsity/low-rankness level has been intensively researched from
different viewpoints, e.g. similarity coefficients’ distribution [TMZ21], connectedness [NH11],
geometric analysis [ARV09] and supervised learning [MDD18, GCC15]. Recently, in [TMZ22],
an alternative unsupervised approach based on eigenvalues has been proposed to deduce the
sparsity level in a BD matrix. The eigenvalue analysis is, however, is restricted to the setting of
independent blocks.

A further significant challenge whenworking with real-world data is that heavy-tailed noise and
outliers [ZKO18, RL05], might obscure the eigenvalue structure in corrupted data sets which
results in a performance degradation for BDR approaches that rely on estimating eigenvalues
to determine connectedness. To illustrate the necessity for robustness, we can recall the graph
partitioning application that is shown in Figure 4.33 for a defined level of sparsity using the
well-known handwritten digit samples from the MNIST data base [HS98]. In the examplary
graph model, the red edges represent connections to outliers while the remaining edges are the
informative edges, where green, blue and yellow lines represent the within-cluster edges of digits 9,
4 and 3, respectively. The red ellipses indicate cluster assignments that are computed based on the
general graph partitioning principle in which the number of edges that cross the cut is minimized
[ARV08]. As can be seen, unconnected outlying digit samples (Type I outliers) are assigned into a
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Type I Outliers

Type II Outliers

Figure 4.33: Examplary graph partitioning digit samples from MNIST data base [HS98].

small clusterwhile a different type of outliers (Type II outliers) that create false positive connections
between multiple clusters cause a merging of characters four and nine into one large cluster.

In [TMZ23], we have proposed the Fast and Robust Sparsity-Aware Block Diagonal
Representation (FRS-BDR) method for robustly estimating an underlying BD structure, given
an outlier-corrupted affinity matrix. FRS-BDR method is built upon the definition of a vector
v that has been given in Section 3.2.4 to represent the BD affinity matrix as a piece-wise linear
function. Compared to existing popular BDR approaches, such as, [LFL18, XGL17, FLX14], the
optimization is efficiently performed in vector space instead of matrix space. Additionally and in
contrast to EBDR (for details, see Section 3.4.1) the method is robust against outliers. Our main
contributions are summarized as follows:

1. A comprehensive robustness analysis that quantifies the effects of outliers. In particular,
our theoretical analysis shows how the vectorv and the eigenvalues, which carry substantial
information about the BD structure, are influenced by outliers.

2. Our analysis enabled the development of a BDR algorithm that is (i) robust against
outliers, since it builds upon our robustness analysis and (ii) computationally efficient by
re-formulating the problem as a piece-wise linear function optimization problem instead
of a matrix-optimization problem. We show that our proposed method even provides
mathematically interpretable results in challenging settings where deriving eigenvalue
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information is no longer possible (i.e., in the extreme case when all blocks are connected
because of corruption by outliers).

In the following section, problem statement and main ideas of the proposed FRS-BDR
method are explained. FRS-BDR algorithm is detailed in Section 4.4.1.2.3. Then, a summary
of computational analysis of FRS-BDR is introduced in Section 4.4.1.2.4 and experimental
evaluations demonstrating the performance of FRS-BDR in comparison to popular BDR
approaches are shown in Section 4.4.1.2.5. Finally, conclusions are drawn in Section 4.4.1.2.6.

4.4.1.2.2 Problem Statement andMain Ideas
Problem Statement
Let a given data set of feature vectors X ∈ RM×N be represented as a weighted graph
G = {V,E,W}, i.e.,W = X⊤X and ∥xm∥ = 1,m = 1, . . . ,N. Further, letD and L ∈ RN×N

denote, respectively, the overall edge weight and the Laplacian matrices associated withW. Then,
the goal of this work is to robustly estimate a K block zero-diagonal symmetric affinity matrix
W ∈ RN×N using the available information about the vector v and an eigen-decomposition.
The number of blocks K is assumed to be unknown andX may be subject to heavy-tailed noise
and outliers which results in undesired outliers effects, such as, group similarity. Computational
efficiency is also of fundamental interest. Thus, in brief, the overall aim is to develop a fast and
sparsity aware BDRmethod that is robust against outliers and group similarity.

Main Ideas and Outline of FRS-BDRMethod
This section summarizes the main ideas of our proposed FRS-BDR method. The full details are
of each step are given in Section 4.4.1.2.3 and a comprehensive visual summary is provided in
Appendix B.2.1.

To provide a general understanding, a high-level flow diagram illustrating the key steps of FRS-
BDR is provided in Figure 4.34. As shown in the figure, the method consists of two general steps,
i.e., computing vector v (Step 1) and estimating vector v (Step 2). The computation step starts
with a givenType I outlier-corrupted andnon-sparse LaplacianmatrixL (Step 1.0: Initialization in
Figure 4.34). According to the explicitDefinition 4.1.1 ofType I outliers, themethod first removes
the similarity coefficients associated to Type I outliers, which are represented in red color, from L

(Step 1.1: Type I Outlier Removal in Figure 4.34). Then, the next step is to structure the resulting
matrix L̇ in a BD form L̈ based on a similarity-based BD ordering that we present in the sequel
(Step 1.2: Similarity-based Block Diagonal Ordering in Figure 4.34). The last part of Step 1 is, to
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˙̇v̇ ∈ RN−NI and τ̂ = [τ̂1, . . . , τ̂Nc
]⊤ ∈ ZNc

+

Step 2.1: Compute Candidate Block Sizes

v̂(r) ∈ RN−NI

Step 2.2.1: Estimate Target Similarity Coefficients

˙̇v̇
(r)
s2,1 and v̂

(r)
2 ∈ RNr2

Step 2.2.2: Estimate Undesired Similarity Coefficients

L ∈ RN×N

Step 1.0: Initialization

L̇ ∈ R(N−NI)×(N−NI)

Step 1.1: Type I Outlier Removal

L̈ ∈ R(N−NI)×(N−NI)

Step 1.2: Similarity-based Block Diagonal
Ordering

˙̇L̇ ∈ R(N−NI)×(N−NI)

Step 1.3: Increase Sparsity for
Excessive Group Similarity

d1 d2 d3 dI = −wI = 0 dI = −wI ̸∈ L̇ −w1 −w2 −w3

−w̃1,2 = −w̃2,1 −w̃1,3 = −w̃3,1 −w̃2,3 = −w̃3,2

Step 1:
Enhancing
BD structure

Step 2:
Estimating
vector v

Figure 4.34: High‐level flow diagram illustrating the key steps of FRS‐BDR using a generic example withK = 3 clusters.

obtain vector v in form of K discrete linear segments by computing an ordered sparse Laplacian
matrix

...
L (Step 1.3: Sparsity for Excessive Group Similarity in Figure 4.34). Then, the estimation

step starts with a changepoint detection that we propose to compute the possible block sizes (Step
2.1: Compute Candidate Block Sizes in Figure 4.34). For each possible block size vector, i.e.,
nr = [8, 10, 12]⊤ ∈ ZK

+ in this illustrating example, the method computes a target vector v(r) and
corresponding estimate v̂(r) as a function of the target similarity coefficients (Step 2.2.1: Estimate
Target Similarity Coefficients in Figure 4.34). Further, for every undesired similarity coefficient
around which the blocks are concentrated, the shifted vectors (see Corollary 7.1) are computed
separately and the undesired similarity coefficients are estimated (Step 2.2.2: Estimate Undesired
Similarity Coefficients in Figure 4.34). Finally, the estimate v̂ ∈ RN−NI is computed for the block
size vector which provides the best fit to the computed vector ...v.

4.4.1.2.3 FRS-BDRAlgorithm
Step 1 : Enhancing BD Structure
The key requirement for computing vector v based on Eq. (3.2) is recovering an approximately
BD structured Laplacian matrix. Assuming that W (and the associated L) are symmetric and
sparse matrices, they can be ordered in a BD form [CM69] based on which vector v can be
directly computed. However, in general, similarity measures may not produce sparse affinity
matrices. We therefore discuss the most challenging scenario, i.e., that W is subject to Type I
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Figure 4.35: Examplary plot of the sBDO algorithm.

outliers and all blocks exhibit similarity. Considering the Type I outliers’ effect on the target vector
v (see, Section 4.2.5), the proposed vector v computation starts with Type I outlier detection
(Section 4.4.1.2.3). Then, a new BD ordering based on the similarity coefficients is proposed
to generate a BD ordered Laplacian matrix (Section 4.4.1.2.3). Lastly, a sparse Laplacian matrix
design is detailed for the case of excessive group similarity (Section 4.4.1.2.3).

Step 1.1 : Type I Outlier Removal
Type I outliers are detected according to

xm ∈ OI if ∀wm,n = 0 for n = 1, . . . ,N and m ̸= n, (4.17)

whereOI ∈ RM×NI denotes the matrix of Type I outliers, xm ∈ RM is themth feature vector for
m = 1, . . . ,N, wm,n is them, nth similarity coefficient corresponding to xm (due to the symmetry
ofW, wm,n = wn,m).

Step 1.2 : Similarity-based BD Ordering (sBDO)
Let Ẋ ∈ RM×(N9NI), Ẇ, Ḋ and L̇ ∈ R(N9NI)×(N9NI) be the resulting matrices after Step 1.1. The
vector of the BD order, i.e., b̂ ∈ ZN9NI

+ is determined based on the following steps.
Step 1.2.1: Initialization: TheBDorder vector b̂(1) is comprised of the vertex index ofmaximum
overall edge weight (i.e., ḋmax).
Step 1.2.2: Adding the most similar neighbor to b̂(s): Let b̂(s) = [b̂1, . . . , b̂s−1]

⊤ ∈ Zs−1
+ , with

s = 2, ...,N−NI, denote the BD order vector at the sth stage. Assuming that the neighbors set is
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Algorithm 5: sBDO
Input: Ẇ, Ḋ ∈ R(N−NI)×(N−NI)

Initialization:
Find the vertex of maximum overall edge weight ḋmax
for s = 2, . . . , (N−NI) do
Adding the most similar neighbor to b̂(s):
if at least one neighbor exists then
Estimate b̂s using Eq. (4.18) and stack into b̂(s)

else
Find the vertex with maximum overall edge weight
among unselected vertices and stack b̂s into b̂(m)

end
end
Output: Estimated order vector b̂(s) ∈ Z(N−NI)

+

non-empty2, the most similar neighbor to b̂(s) at the sth stage is determined by

b̂s = argmax
m∈ZN9NI

+

{ s−1∑
n=1

ẇm,b̂n

}
, (4.18)

wherem ∈ ZN9NI
+ denotes a neighbor vertex.

An example of the sBDO algorithm is illustrated in Figure 4.35 and technically summarized in
Algorithm 5. As can be seen from Figure4.35, starting from vertex five, whose overall edge weight
is largest valued, the method selects the neighbors based on their edge weights that represent the
similarity to previously selected vertices. After selecting all neighbors, the method jumps to the
vertex that has the maximum overall edge weight among the remaining vertices and determines
the ordering of the associated neighbors.

Step 1.3: Increase Sparsity for Excessive Group Similarity
Let Ẅ, D̈ and L̈ ∈ R(N−NI)×(N−NI) be the matrices resulting from Step 1.2. A sparsity improved
Laplacianmatrix

...
L ∈ R(N9NI)×(N9NI) is designed3 by increasing sparsity as long as, at least, the two

smallest eigenvalues are close to zero4.

2If it is empty the method simply stacks the vertex index of maximum overall edge weight into b̂(s).
3For the examplary sparse Laplacian matrix design algorithms, see Appendix B.2.4.
4For the definition of close to zero, see Appendix B.2.2.
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Step 2: Estimating Vector v
After computing

...
L, the vector

...
v ∈ RN9NI is obtained using Eq. (3.2)5. Then, this step models ...v

as a K-piece linear function of similarity coefficients around which the blocks are assumed to be
concentrated (for details, see Corollary 7.1.), i.e.,

...
vi = vi + 1

i−1∑
j=1
j̸=i

Njw̃i,j, i = 1, . . . ,K, (4.19)

where
vi = [0,wi, . . . , (Ni − 1)wi]

⊤ ∈ RNi (4.20)

denotes the ith linear segment of the target vector vi, wi is the similarity coefficient around which
the block i is concentrated and w̃i,j is the undesired similarity coefficient between blocks i and
j around which they are concentrated, 1 ∈ RNi is the column vector of ones, Ni and Nj are,
respectively, the size of block i and j.

Step 2.1: Computing Candidate Block Sizes
LetNc ∈ Z+ denote the number of changepoints, let τττ = [τ1, τ2, . . . , τNc ]

⊤ ∈ ZNc
+ be the vector

containing corresponding locations in ...
v, and let τ0 = 0 and τNc+1 = N. Then, to estimate the

model for vector ...v based on Eq. (4.19), our first step is to detect the the changepoints in ...
v as in

[KFE12]

Nc+1∑
i=1

τi∑
m=τi−1+1

(
...vm − v̂m)2 + γNc, (4.21)

where γ denotes the penalty parameter6, ...vm and v̂m are, respectively, the mth point in the ith
linear segment of ...v and the corresponding least-squares linear fit. Then, for a candidate number of
blocks froma given vector, i.e.,Kcand ∈ [Kmin, . . . ,Kmax]

⊤ ∈ ZNK
+ , the associated block-sizematrix,

i.e.,
N(Kcand) = [n1,n2, . . . ,nζ]

⊤ ∈ Zζ×Kcand
+ , (4.22)

5The vector v can alternatively be computed using L̈ ∈ R(N9NI)×(N9NI) by following Steps 1.1 and 1.2 if, at least,
the two smallest eigenvalues of L̈ are close to zero.

6To determine γ, its value is increased gradually as long as the function finds a lower number of changepoints
than a predefined maximum number of changepoints Ncmax ∈ Z+ which is a reasonably small number satisfying
K− 1 ≤ Ncmax .
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Figure 4.36: Examplary plot of candidate block sizes.

is formed. The rows in Eq. (4.22), i.e., nr = [Nr1 ,Nr2 , . . . ,NrKcand ]
⊤ ∈ ZKcand

+ , r = 1, . . . , ζ denote
the candidate size vectors that are designed by combination of all possible size vectors with ζ =( Nc
Kcand−1

)
.7

The computation of candidate block sizes illustrated in Figure 4.36 for a candidate block
number Kcand = 3. After estimating the changepoints using Eq. (4.21), a possible block size
matrix, i.e. N(Kcand) ∈ Zζ×Kcand

+ , with ζ = 15 is computed for all possible block size combinations.

Step 2.2: EstimatingMatrix of Similarity Coefficients
Step 2.2.1: Estimate Target Similarity Coefficients
Suppose thatNri denotes the size of ith linear segment from a candidate size vector nr, as defined
in Eq. (4.22). Further, let v(r) ∈ R(N9NI) denote the target vector v associated with nr defined by

v(r)m =

uri∑
n=m

...
l m,n s.t.

ℓri ≤ m ≤ uri
i = 1, . . . ,Kcand

, (4.23)

where themth andm, nth components of v(r) and
...
L are denoted, respectively, by v(r)m and

...
l m,n,

ℓr1 = 1, ur1 = Nr1 , ℓri =
∑i−1

k=1Nrk + 1 and uri =
∑i

k=1 Nrk for i = 2, . . . ,Kcand.
7In practice, the candidate size vectors including the block sizes that are smaller than a predefined minimum

number of vertices in the blocksNmin can be removed fromN(Kcand).

92



After computing v(r) using Eq. (4.23), with Theorem 3, we model it as a K-piece linear
function of the target similarity coefficients. The model parameters are estimated in the
FRS-BDR algorithm by applying the algorithm from [YYZ19] that determines a plane-based
piece-wise linear fit. In more details, for every linear segment i = 1, . . . ,Kcand associated
with Kcand, the method first estimates the parameters of the linear fit. Then, it estimates the
target similarity coefficients wi, . . . ,wKcand based on the slope of piece-wise linear fit estimate. A
step-by-step detailed description of the plane-based piece-wise linear fit algorithm has been given
in Section 3.4.1.3.1.

Step 2.2.2: Estimate Undesired Similarity Coefficients
In this step, the shifted vectors of v(r) are computed as follows

...
v(r)
si,j = v

(r)
i +

...
v(r)
i,j ,

i = 2, . . . ,Kcand,

j = 1, . . . , i− 1
(4.24)

where
...
v(r)
i,j =

[ urj∑
n=ℓrj

...
l ℓri ,n, . . . ,−

urj∑
n=ℓrj

...
l uri ,n

]
. (4.25)

denotes the vector of increase associated with the undesired group similarity between block i and
j, and ...

v(r)
si,j is the associated shifted target vector. Then, combining the results from Eq. (4.19),

Eq. (4.23) and Eq. (4.24), the undesired similarity coefficients between different blocks can be
estimated as

ŵ(r)
i,j =

med(...v(r)
si,j − v̂

(r)
i )

Nrj

i = 2, . . . ,Kcand

j = 1, . . . , i− 1
, (4.26)

where med(·) denotes the median operator,Nrj is defined in Eq. (4.22), and ŵ
(r)
i,j is the undesired

similarity coefficient estimate between i and j.
To clarify Steps 2.2.1 and 2.2.2, an example with Kcand = K illustrating the computation of

vector ...v and a matrix Wsim ∈ RK×K is shown in Fig 4.37. As can be seen, the target similarity
coefficients,which are thediagonal elements ofWsim, i.e., diag(Wsim) = [w1,w2, . . . ,wK]

⊤ ∈ RK,
represent an estimate of the slopes of the Kcand = K linear segments in ...

v. Further, off-diagonal
elements of Wsim represent undesired similarity coefficients between different blocks and are
calculated by computing the undesired shifts that have been highlighted as shaded areas in Fig 4.37.
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Figure 4.37: Examplary illustration of
...
v andWsim withKcand = K, n = [10, 8, 12]⊤ ∈ RK,

diag(Wsim) = [0.6, 0.3, 0.9]⊤ ∈ RK, w̃1,2 = 0.2, w̃1,3 = 0.4, amd w̃2,3 = 0.1.

Step 2.3: Estimating vector ...v andWsim

From the computed estimates Ŵ
(r)
sim ∈ RKcand×Kcand and v̂(r) ∈ R(N9NI), the vector .̂..

v
(r)
i

is computed by plugging in the associated intermediate estimates for all r = 1, . . . , ζ and
Kcand = Kmin, . . . ,Kmax into Eq. (4.19) and determining the final estimate as

.̂..
v = argmax

nr∈N(Kcand)

∥...v − .̂..
v
(r)∥2 (4.27)

where ∀ŵ(r)
i ∈ diag(Ŵ(r)

sim), ŵ
(r)
i > ŵ(r)

i,j holds for i = 1, . . . ,Kcand, j = 1, . . . ,Kcand and i ̸= j.
The proposed FRS-BDR is summarized in Algorithm 6.

4.4.1.2.4 Computational Analysis of FRS-BDR
A comprehensive computational analysis is computed in Appendix B.2.3 by determining the
number of fladd, flmlt, fldiv and flam. (For a detailed information, see [Ste01, Ste98]). The
Landau’s big O symbol is used for the cases when the complexity is not specified as above
operations. Our analysis showed that the complexity of FRS-BDR strongly depends on the initial
structure of the affinity matrix and the number of blocks K. In addition to the numeric analysis,
the complexity is analyzed experimentally in the following sections.
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Algorithm 6: FRS-BDR
Input: X ∈ RM×N,Kmin,Kmax,Ncmax ,Nmin(opt.)
ComputeW ∈ RN×N i.e. W = X⊤X for ∀xm ∈ X, ∥xm∥=1
Step 1: Computing Vector v
Step 1.1: Type I Outlier Removal
Compute Ẇ, Ḋ and L̇ ∈ R(N−NI)×(N−NI) via Eq. (4.17)
Step 1.2: Similarity-based Block Diagonal Ordering
Perform Algorithm 5 to achieve b̂(s) ∈ Z(N−NI)

+

Obtain Ẅ, D̈ and L̈ ∈ R(N−NI)×(N−NI) using b̂(s)

Step 1.3 (opt.): Sparsity for Excessive Group Similarity
Design

...
L ∈ R(N−NI)×(N−NI) for the desired method,

i.e. Algorithm 3 or 4 in Appendix B.2.4
Compute ...v ∈ R(N−NI)×1 corresponds to

...
L using Eq. (3.2)

(or alternatively v̈ ∈ R(N−NI)×1 corresponds to L̈)
Step 2: Estimating Vector v
forKcand = Kmin, . . . ,Kmax do
Step 2.1: Computing Candidate Block Sizes
ComputeN(Kcand) ∈ Zζ×Kcand

+ using Eqs. (4.21)-(4.22)
Step 2.2: EstimatingWsim
for nr = n1, . . . ,nζ do
Step 2.2.1: Estimating Target Similarity Coefficients
Compute v(r) ∈ R(N−NI) using Eq. (4.23)
for i = 1, . . . ,Kcand do
Calculate ΣΣΣ(r)

i ∈ R2×2 and μμμ(r)i ∈ R2 for ΥΥΥ(r)
i

Find ϑ̂ϑϑ
(r)
i ∈ R2 and b̂(r)i ∈ R

Find v̂(r)
i ∈ RNri and compute ŵi

end
Form diag(Ŵ(r)

sim) = [ŵ(r)
1 , ŵ(r)

2 , . . . , ŵ(r)
Kcand

]⊤∈ RKcand

and v̂(r)= [(v̂
(r)
1 )⊤, (v̂

(r)
2 )⊤, . . . , (v̂

(r)
Kcand

)⊤]⊤∈ R(N−NI)

Step 2.2.2: Estimating Undesired Similarity Coefficients
for i = 2, . . . ,Kcand do
for j = 1, . . . , i− 1 do
Compute ...v(r)

si,j ∈ R(N−NI) using Eqs. (4.24)
Compute ŵ(r)

i,j using Eq. (4.26) and stack Ŵ
(r)
sim

end
end
Estimate ...v(r) using Eq. (4.19)
Update .̂..v based on Eq. (4.27)

end
end
Output: .̂..v, Ŵsim, n̂
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4.4.1.2.5 Experimental Evaluation
This section benchmarks the proposed FRS-BDR method in a broad range of real data
experiments including cluster enumeration and handwritten digit, object and face clustering.
Data Sets: The performance is analyzed using the well-known MNIST [HS98] and USPS
[Hul94] data sets for handwritten digit clustering, COIL20 [NNM95] for object clustering and
ORL [SH94], JAFFE [LAK98] and Yale [BHK97] for face clustering. For cluster enumeration,
the methods are benchmarked on the Breast Cancer Wisconsin (Breast Cancer) [WM89],
Chemical Composition of Ceramic (Ceramic) [HZZ16], Vertebral Column [RSB11],Fisheriris
[Fis36], Gait [SAZ19], O. Cancer [CFR04], Person Id. [TSM18] and Parkinson A. [NPC16] data
sets.
Baselines: For the task of subspace clustering, FRS-BDR is benchmarked against seven state-
of-the-art BDR approaches, i.e. BDSSC [FLX14], BDLRR [FLX14], BDR-B [LFL18], BDR-Z
[LFL18], IBDLR [XGL17], EBDR [TMZ22], LSR [LMZ12], two low-rank representation
methods LRR [LLY12], RKLRR [XTX15], a sparse representation method SSC [EV13] and the
initial affinity matrix that is defined byWN−1 = X⊤X. For cluster enumeration8, the method is
benchmarked against seven popular community detection methods including Louvain [BGL08],
Martelot [MH11], BNMF [PRE11], DenPeak [BYS17], Combo [SCB14], MAP [BEL14] and
SPARCODE [TMZ21].
Parameter Setting: In all experiments, the parameters are optimally tuned for the competitor
approaches, while FRS-BDR is computed with the default parameters that are detailed in
Appendix B.2.5.1.
Evaluation Metrics: The computation time (t) and average clustering accuracy p̄acc are used for
the subspace clustering performance analysis. In cluster enumeration, the empirical probability
of detection (pdet), modularity (mod) and conductance (cond) are used in addition to t.

Handwritten Digit Clustering
The effectiveness of FRS-BDR in handwritten digit clustering is shown based on the following
popular real-world data sets:
MNIST Data Set: The data base includes 60000 training and 10000 test images correspond to
10 digits. For different number of subjectsK = {2, 3, 5, 8, 10}, the data matrixX is generated by
using 100 randomly selected images from the test set for every subject where the images are used as
feature vectors and normalized. As in [LFL18],X of size 784 × 100K is produced for the images

8For the numerical cluster enumeration results, see Appendix B.2.5.2.8
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Figure 4.38: Numerical results for MNIST data set. The regularization parameters of the competing methods are tuned for
optimal performance in all settings while the proposed method determines the parameters using Algorithms 5 and 6. In the
regularization parameter performance analysis, for all competing methods that use two parameters, the second one is tuned
optimally while varying the first.

of size 28× 28.
USPS Data Set: 7291 training and 2007 test images of size 16 × 16 are contained in the data set.
The data matrixX is computed by following the same procedure, except for using 50 randomly
selected images from the test set for every subject. As a result, for the images of size 16 × 16, the
data matrix X of size 256 × 50K corresponding to K = {2, 3, 5, 8, 10} number of subjects, is
obtained.

In contrast to object and face applications that will be detailed in the following steps, the data
matrixX of high dimensional feature vectors is directly used in affinity matrix design. Then, SC
(For the details about SC, see Section 2.5.1.) is applied to the resulting affinitymatrices of different
methods.

An example of digit clustering results is shown in Figure 4.38 for the MNIST data base. (A
broad set of analysis including MNIST and USPS data bases is provided in Appendix B.2.5.2.)
Even though the performance of SSC [EV13], BDSSC [FLX14], BDLRR [FLX14][FLX14],
BDR-B [LFL18], BDR-Z [LFL18], IBDLR [XGL17], LSR [LMZ12], LRR [LLY12] and
RKLRR [XTX15] is reported for an optimal tuning of the parameters, which is not feasible
in practice, the FRS-BDR achieves the highest clustering accuracy results in almost all cases.
Further, the regularization parameter effect analysis in Figure 4.38 showed that BDR-B and
BDR-Z performances are sensitive to the choice of the first regularization parameter, even when
tuning the second one optimally. Based on the computation time analysis, the main drawback
of competitor approaches is that they are sensitive to the dimension of feature space whereas
FRS-BDR is an efficient algorithm for the data sets including high dimensional feature vectors.
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Figure 4.39: Numerical results for COIL20 data set. The regularization parameters of the competing methods are tuned for
optimal performance in all settings while the proposed method determines the parameters using Algorithms 5 and 6. In the
regularization parameter performance analysis, for all competing methods that use two parameters, the second one is tuned
optimally while varying the first.

Object Clustering
This section introduces a set of experiments that are performed on COIL20 [NNM95] data base
of 20 objects. In COIL20, each object has 72 images where images are taken by rotating the
object on a turntable for five degrees intervals. In our experiments, the processed COIL20 data
set in [CHH10] containing images of size 32 × 32 pixels is used. Then, the data set X of size
1024 × 400 is generated by selecting 20 images randomly for every object. The feature space is
reduced to 10 based on PCA performance analysis which is provided in Appendix B.2.5.2.3.

As in [LFL18], performance analysis of every application is conducted for an increasing value
of K, i.e., K = {2, 3, 5, 8, 10} using 100 randomly selected subject combinations. To obtain the
affinitymatrices for the competingmethods, the regularizationparameters aremanually tuned on a
grid of 50 values. Finally, SC [Lux07] is applied and the results in Figure 4.39, for increasing values
of blocks K, are obtained analogously to [LFL18] (see Appendix B.2.5.2.3 for all further details).
The average clustering accuracy p̄acc results show that FRS-BDR performs best while EBDR is an
efficient method for small values of K. In terms of t, the main competitors BDR-B and BDR-Z
show poor performance whereas FRS-BDR performs relatively good even for large values ofK.

BDR-B and BDR-Z methods show poor performance for small-valued regularization
parameters even though the second regularization parameter is optimally tuned. An important
point is that these approaches reach their best results lately in comparison to experiments on face
clustering data sets that will be explained in the following section.
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Numerical results for JAFFE data set

Figure 4.40: Numerical results for ORL and JAFFE data sets. The regularization parameters of the competing methods are
tuned for optimal performance in all settings while the proposed method determines the parameters using Algorithms 5 and 6.
In the regularization parameter performance analysis, for all competing methods that use two parameters, the second one is
tuned optimally while varying the first.

Face Clustering
In this section, the subspace clustering performances of different methods are benchmarked in
terms of their p̄acc and t by using the following application details:
ORL Data Set: The data set includes 10 images of 40 different subjects that are taken at different
times by varying the lighting, facial expressions and details. As in [XGL17], we resize all images to
32×32 to obtain a datamatrixX of size 1024×400 using normalized features. The feature space
dimension is reduced to nine using PCA in order to reduce the computation time (For the PCA
analysis of ORL data set, see Appendix B.2.5.2.4.).
JAFFEData Set: 213 images of seven facial expressions from 10 Japanese female models comprise
the JAFFE data set. As in [XGL17], the images are resized to 64 × 64 pixels and the data set X
of size 4096× 213 is computed using resized images as normalized feature vectors before applying
PCA to reduce the dimensionality to 14 features (For the PCA analysis of JAFFE data set, see
Appendix B.2.5.2.5.).
Yale Data Set: 165 grayscale images of 15 different individuals. For every subject, the data set
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Average Clustering Accuracy (p̄acc) for Different BDRMethods

Minimum-MaximumClustering Accuracy (paccmin − paccmax) for Different Regularization Parameters

Data Set WN−1 SSC BDSSC LRR BD-LRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

Breast Cancer[WM89], 88.2 51.0-74.7 50.3-88.2 54.3-90.3 88.0-90.0 73.5-88.2 62.4-90.0 52.9-90.2 62.6-91.7 60.3-90.0 85.2 90.1
Ceramic [HZZ16], 98.9 51.1-98.9 51.1-100 95.5-98.9 95.5-98.9 54.5-98.9 51.1-100 51.1-98.9 51.1-95.5 51.1-98.9 98.9 98.9
Vertebral Column [RSB11], 73.2 50.0-77.7 50.3-74.8 53.9-72.6 72.6-72.6 62.6-75.8 67.4-76.8 71.9-76.8 67.4-71.3 67.4-76.1 74.8 75.8
Fisheriris [Fis36], 78.0 34.7-82.7 34.0-83.3 38.7-80.7 80.0-98.0 78.0-82.7 34.0-96.7 65.3-96.7 34.0-80.0 34.7-84.0 98.0 96.7
Gait [SAZ19], 77.3 20.3-77.4 20.1-77.5 26.1-83.9 78.9-83.5 55.4-75.9 20.3-84.8 26.4-84.5 20.5-85.5 20.4-81.6 81.1 77.1
O. Cancer [CFR04], 61.7 51.4-73.6 50.9-71.3 52.3-76.4 54.2-76.4 51.9-66.2 53.7-75.9 51.9-74.1 55.6-88.4 55.6-75.5 77.8 77.3
Person Id. [TSM18], x 33.7-96.8 31.6-95.7 49.7-94.7 71.1-94.7 33.2-64.2 31.6-96.3 59.4-95.7 34.2-94.1 33.7-95.7 97.3 96.8
Parkinson A. [NPC16], 61.3 50.4-58.8 50.0-61.3 50.4-54.2 50.4-61.3 57.9-61.3 50.4-61.3 50.0-61.3 50.4-61.7 50.4-61.3 56.7 58.2

Average 76.9 42.8-80.1 42.3-81.5 52.6-81.4 73.8-84.4 58.4-76.6 46.4-85.2 53.6-84.8 47.0-83.5 46.7-82.9 83.7 83.9

Table 4.7: Subspace clustering performance of different BDR approaches on well‐known clustering data sets. The results are
summarized for the similarity measureW = X⊤X. ‘x’ denotes the failed results due to the complex‐valued eigenvectors.

contains 11 images that capture different facial expressions. The datamatrixX of size 1024×165 is
constructed as in theORLData Set (For thePCAanalysis of Yale data set, seeAppendixB.2.5.2.6.).

After determining the number of PCA features, the same procedure as in object clustering is
performed and the performance is reported for a different number of subjectsK = {2, 3, 5, 8, 10}
in Figure 4.40. (For a detailed performance analysis, see Appendix B.2.5.2.)

The average clustering accuracy p̄acc and computation time t for the ORL and JAFFE data sets
are provided in Figure 4.40. Consistent with the previous experiments, FRS-BDR shows the best
clustering accuracy performance among all approaches in almost all cases. In terms of t, FRS-BDR
shows a reasonably good performance until number of subjects reaches K = 8. A reduction for
large-valued K can be obtained by adjusting Ncmax . Extensive further numerical experiments are
reported in Appendices B.2.5.2.4, B.2.5.2.5 and B.2.5.2.6.

Subspace Clustering onWell-Known Clustering Data Sets
This section investigates the subspace clustering performance of different approaches in terms of
their average clustering accuracy using the following popular clustering data sets: Breast Cancer
[WM89], Ceramic [HZZ16], Vertebral Column [RSB11], Fisheriris [Fis36], Gait [SAZ19], O.
Cancer [CFR04], Person Id. [TSM18] and Parkinson A. [NPC16]. Starting from the initial
affinity matrix that is defined byWN−1 = X⊤X, the affinity matrices are estimated for different
approaches. For competing methods, the affinity matrix construction methods are optimally
tuned and FRS-BDR is computed with the default parameters. Then, SC as in is applied, as
detailed in Section 2.5.1.

The clustering accuracy performances of different block-diagonal representation approaches
are detailed in terms of their average clustering accuracy in Table 4.7. As can be seen from
Table 4.7, FRS-BDR provides similar performance to the maximum clustering accuracy results
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of its strongest competitors (BDR-B, BDR-Z, BD-LRR) while it outperforms all other BDR
approaches. Themethod is also computationally efficient in comparison tomost of the competitor
methods based on the additional experiments that are given in Appendix B.2.5.2.7.

4.4.1.2.6 Conclusion
A robust method to recover a BD affinity matrix in challenging has been presented. The proposed
Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method jointly
estimates cluster memberships and the number of blocks. It builds upon our presented theoretical
results that describe the effect of different fundamental outlier types in cluster analysis, allowing to
reformulate the problemas a robust piece-wise linear fitting problem. Comprehensive experiments
including a variety of real-world applications demonstrate the effectiveness of FRS-BDRcompared
to optimally tuned benchmark methods in terms of clustering accuracy, computation time and
cluster enumeration performance.

4.4.2 Robust Eigenvector EstimationMethods

This section incorporate robustness in the embedding space based on the two different embedding
strategies that are detailed in the following.

4.4.2.1 Robust Regularized Locality Preserving Indexing for Fiedler Vector
Estimation

4.4.2.1.1 Introduction
As discussed in Section 2.3.3, the Fiedler vector of a connected graph is the eigenvector associated
with the second smallest eigenvalue, the so called Fiedler value, of the graph Laplacian matrix.
The Fiedler vector and the Fiedler value provide important information for estimating [BM13,
ASD12, Fie73] and controlling [TD20, LB14, YFG10] the algebraic connectivity of a graph,
finding densely connected groups of vertices that are hidden in the graph structure [Sch07,
ST96], and representing the implicit relationships between variables in a low-dimensional space
[DS20, Hen07]. More generally, eigenvector decomposition is used in a variety of applications
to achieve tasks, such as dimension reduction [CHZ07, CHH05, HCL04, HN04, DDF90],
recognition [ZZL18, LT09, YTL06], clustering/classification [HRG18, OFK18, CC14, XG08,
GKR05, NJW01] and localization [SVB01]. Due to its central role in graph analysis, the
computation of the Fiedler vector has been a fundamental research area for decades [DS20,
CHZ07, CHH05, HCL04, HN04, DDF90].
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A popular method to embed data points into a low-dimensional space is Laplacian eigenmaps
(LE) [BN01] method for which the embedding is performed based on the eigen-decomposition
of Laplacian matrix. It can therefore also be used for Fiedler vector computation. The LE
method performs a nonlinear dimensionality reduction while preserving the local neighborhood
information in a certain sense, and it explicitly reveals the manifold structure [BN01]. An
alternative approach is that of locality preserving indexing (LPI) [HCL04], which transforms
the nonlinear dimensionality reduction in the Laplace Beltrami operator into a linear system
of equations. LPI requires a complete singular value decomposition (SVD), resulting in a
considerable computational complexity which is why computationally more attractive alternative
approaches have been proposed in [HRG18, CHZ07]. However, the performance of [CHZ07]
strongly depends on the penalty parameter selection. Further, in real-world scenarios, outliers and
heavy-tailed noise may obscure the graph structure that represents the clean data. Consequently,
the computed Fiedler vectors are corrupted, and embeddings based on these vectors no longer
provide useful information about the majority of the data set, as they are dominated by outliers.
Therefore, robust Fiedler vector estimation methods are needed. One popular strategy is to
mitigate the effects of outliers in the representation space via a restructuring of the affinity matrix
based on a prior information, e.g., the number of clusters [LNC18, FLX14] and the level of sparsity
[ZCS19, AGR19, LNC18, ZZL18, FLX14] that plays a crucial role in the structure of eigenvectors.
However, a major challenge is to determine this prior information, especially in the presence of
outliers and heavy-tailed noise that may obscure the underlying structure. Alternatively, outliers
can be suppressed in the projection space, such as in [TMZ21, YCL20, ZCS19, CNW15, PYT15].
However, most of these approaches, again, require prior knowledge, e.g., the label information
of a data set [YCL20, CNW15] or data dependent parameter tuning to determine the descriptive
features [ZCS19]. Moreover, the robust projection operation in [PYT15], uses the ℓ1 norm that
creates a different eigenbasis and requires prior information about the data, i.e. representative
samples. The robust locality preserving feature mapping (RLPFM) approach in [TMZ21]
preserves the ℓ2 normandbuilds uponM-estimation to suppress theoutliers. However, it performs
M-estimation of the eigenvectors by iteratively reweighting the residuals of LE-based prediction
which results in a large computation cost.

To address these issues, we proposed a new Robust Regularized Locality Preserving Indexing
(RRLPI) method for Fiedler vector estimation in [TMZ22]. Our key idea was to provide
robustness in the embedding space by transforming the Fiedler vector estimation problem into
a linear system of equations that reveals the hidden group structure in a given graph without
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Figure 4.41: Examplary image segmentation result comparing the popular LE [BN01] and the proposed RRLPI methods for
Fiedler vector estimation.

assuming any prior knowledge. Motivated by the importance of the sparsity level in the Fiedler
vector structure, we began by distinguishing fundamental outlier types and investigated how their
occurence depends on the determined sparsity level. This analysis of the effects of outliers on the
eigen-decomposition enabled us to understand how to best integrate robustness into the Fiedler
vector computation. Based on our analysis, we showed that the overall edge weight attached to a
vertex is a valuable information to identify an outlier. Therefore, an error model was formulated
based on the typical overall edge weight of a graph. Unlike other embedding approaches whose
performance strongly depends on correctly setting parameters with the help of prior knowledge,
e.g., [YCL20, ZCS19, CNW15, CHZ07], our penalty parameter determination was formulated
as part of the optimization (similar to [TMZ21]) based on Δ-separated sets [ARV09] which are
defined based on geometric analysis of well-spread ℓ22 representations. However, in contrast to
RLPFM [TMZ21], the proposedRRLPI robustly estimates the Fiedler vector based on the typical
overall edge weight of the graph, which incorporates the weighting operation into a single step and
makes the proposed method computationally efficient in comparison to [TMZ21] that has been
discussed in Section 4.4.2.2.

An image segmentation application illustrating the need for robust Fiedler vector estimation is
provided in Figure 4.41. Starting from an original image including birds and background (sky),
the aim clearly is to assign birds and the background into different segments. To this end, the
image is represented as graph and the Fiedler vectors are computed using RRLPI (top) and LE
(bottom). The resulting Fiedler vectors are then clustered into two groups. As can be seen, the LE
based Fiedler vector computation results in assigning outlying entries of the Fiedler vector as one
small cluster whilemerging birds and background in a second big cluster. By contrast, the robustly
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estimated Fiedler vector using the proposed RRLPI method provides the correct structure in the
Fiedler vector estimate to enable the desired segmentation into birds and background. Robustness
is obtained by assigning weights to all data-points based on the typical overall edge weight in the
associated graph. Consistent with the ideas ofM-estimation in robust statistics [ZKO18, ZKC12],
a large degree of outlyingness of a data-point corresponds to a small weight.

This section is organized as follows. First, the basic concepts and Fiedler vector estimation using
LPI are briefly discussed. Further, the ideas underlying the proposed algorithm and the problem
formulation are given. Then, the proposed RRLPI method is detailed. After introducing the
theoretical analysis, penalty parameter selection, computational complexity analysis and possible
applications, conclusions are drawn. An implementation of RRLPI is available at:
https://github.com/A-Tastan/RRLPI

4.4.2.1.2 LPI for Computing the Fiedler Vector
Suppose that a data set X = [x1, . . . ,xn] ∈ Rm×n with m denoting the data dimension and
n being the number of data-points, can be represented as a graph G = {V,E,W}, where V
denotes the vertices, E represents the edges, and W ∈ RN×N is the symmetric affinity matrix
that is computed using a similarity measure, e.g. cosine similarity as defined in Eq. (2.1).
Let L ∈ RN×N denote the nonnegative definite Laplacian matrix with associated eigenvalues
0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λN−1 sorted in ascending order as defined in Section 2.3.2. Then, it
follows that the Fiedler vector yF ∈ Rn is the eigenvector associated with the second smallest
eigenvalue λ1 of the eigen-problem Eq. (2.5) or in a generalized eigenvalue problem form Eq. (2.6).
Here, the Laplacian matrix L is defined analogously to the Laplace Beltrami operator on the
manifold byL = D−W, whereD ∈ RN×N is a diagonalweightmatrixwith overall edgeweights
dm,m =

∑
n wm,n on the diagonal and ym ∈ RN is the eigenvector associated with λm.

The LPI method determines linear approximations to the eigenfunctions of the Laplace
Beltrami operator [HCL04, HN04] by representing the Fiedler vector as the response of a linear
regression with input variablesX, i.e., yF = X⊤βββF. Hence, the LPI finds a transformation vector
βββF ∈ RM that is the eigenvector associated with the second smallest eigenvalue of the generalized
eigen-problem

XLX⊤βββm = λmXDX⊤βββm, m = 0, . . . ,N− 1 (4.28)

or, equivalently, it is associated with the second largest eigenvalue of the generalized eigen-problem

XWX⊤βββn = λnXDX⊤βββn, (4.29)
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which has the same eigenvalue λm as in Eq. (2.6) for λn with n = N− (m+ 1). In the following
theorem, the linkbetween thewell-knownFiedler vector computation andLPI [HCL04] is shown.

Theorem 8. Let yF be the Fiedler vector associated with the second largest eigenvalue λF such that
F = N− 2 of the eigen-problem

WyF = λFDyF. (4.30)

IfX⊤βββF = yF, then βββF is the eigenvector of the eigen-problem in Eq. (4.29) with the same eigenvalue
λm such that m = 1.

Proof. ReplacingX⊤βββF by the Fiedler vector yF on the left side of Eq. (4.29) yields

XWX⊤βββF =XWyF = XλFDyF = λFXDyF = λFXDX⊤βββF s.t. F = N− 2

and shows that for F = n = N− 2, βββF is the eigenvector of the eigen-problem of Eq. (4.29) which
concludes the proof.

Therefore, building upon [CHZ07], the projective functions of LPI can be determined in two
consecutive steps for Fiedler vector estimation. First, the Fiedler vector yF associated with the
second smallest eigenvalue of Eq. (2.6) must be computed. Then, for the Fiedler vector yF, the
LPI method estimates a transformation vector βββF ∈ RM that satisfies yF = X⊤βββF by solving the
following least squares problem

β̂ββF = argmin
βββ

N∑
m=1

(βββ⊤F xm − ym,F)
2, (4.31)

where ym,F is themth embedding point in yF and β̂ββF is the estimated transformation vector.

4.4.2.1.3 Motivation and Problem Statement
The previous section discussed the applicability of LPI for Fiedler vector computation. In
particular, LPI may discover the hidden nonlinear structure by finding linear approximations to
the nonlinear LE (for details, see [HCL04] and [HN04]). However, when using the least-squares
objective function, outliers and heavy-tailed noisemay have a large impact on the estimation of the
transformation vector βββF. This leads to errors in the computed Fiedler vector and, consequently,
an information loss about the representation of the underlying graph structure using such a
corrupted Fiedler vector computation. This section analyzes the effects of outliers and noise on
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the eigen-decomposition of the Laplacian matrix. The analysis provides the theoretical basis and
an understanding of the ideas underlying the proposed robust Fiedler vector estimation approach.

Outlier Effects on the Fiedler Vector
The effect of outliers on the eigen-decomposition has been analyzed in terms of two fundamental
types of outliers and group similarity in Section 4.2. This section extends our theory by analysing
outliers’ effect on the Fiedler vector.

Based on the Type I outlier effect analysis in Section 4.2.4.2, if the affinity matrix has distinct
blocks and the Type I outliers are disconnected, the Fiedler vector can be easily determined after
removing these outliers. However, in real-world scenarios the true blocks are generally not distinct
and/or outliers do have a few non-zero similarities which result in non-zero eigenvalues [CC15,
ZP04]. Since the number of blocksK and the number of outliersNI are unknown, directly using
eigenvalues for outlier detection may be impossible in practice.

The following preposition provides a numerical understanding of Type I outliers’ effect on the
Fiedler vector.

Preposition 4.4.1. For a definite nonnegative K block zero-diagonal symmetric affinity matrix
W ∈ RN×N and the associated Laplacian L ∈ RN×N, let the eigenvectors have a norm such that
∥ym∥22 = 1 holds, where ym denotes the eigenvector associated with the mth eigenvalue ofL. Further,
let ỹF be the Fiedler vector associated with the eigenvalue that corresponds to an additive Type I
outlier and let ỹoI,F denote the embedding result of a Type I outlier in ỹF. Then, it follows that the
Euclidean distance between embeddings of different blocks decreases to zero when the absolute value
of the embedding result of the outlier increases to one, i.e. when |̃yoI,F| → 1.

Proof. See Appendix A.3.0.1.

Motivated by the eigenvectors’ crucial role in cluster analysis, the results of Preposition 4.4.1
can be extended to multiple eigenvectors. If a distance-based clustering approach, such as SC is
applied on the eigenvectors that are the indicator vectors ofNI outliers, all non-outlying points are
mapped to the same cluster as a result of Preposition 4.4.1, as |̃yoI,F| → 1. This explains why SC
breaks down in the presence of Type I outliers. Only if the number of outliers is known or can
be deduced from the data set (e.g. because they perfectly match Definition 4.1.1), ignoring the
indicator vectors of outliers can overcome this problem. However, in practice, Definition 4.1.1
may only hold approximately, and data pointsmay vary in the degree of their outlyingness, making
a binary detection challenging or inappropriate. In the following sections, wewill therefore present
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Figure 4.42: Fiedler vector computation for an idealK = 2 blocks affinity matrix.

a robustM-estimation-based approach to suppress the impact of outliers, when such simple outlier
detection and removal strategies do not apply.

Next, it is important to analyze the effect of Type II outliers on the eigenvectors to understand
their particular effect on the Fiedler vector. Hence, the following preposition examines the extreme
case of Type II outliers from a general perspective in terms of their effects on the eigenvectors.

Preposition 4.4.2. For a K block zero-diagonal symmetric nonnegative affinity matrix
W ∈ RN×N, let wi ∈ {w1,w2, . . . ,wK} denote a constant around which the correlation coefficients
of the ith block are assumed to be concentrated with negligibly small variations. Further, let w̃u denote
a constant around which the correlations between blocks are concentrated. Let W̃ define an affinity
matrix, which is equal toW, except that we impose w̃u > 0, such that the vertices associated with ith
and jth block become connected. Then, it follows that the connections between vertices corresponding to
different blocks result in embedding all data-points onto the same location on the eigenvector ỹ0 that
is associated with the smallest eigenvalue λ̃0 of the Laplacian matrix L̃ ∈ RN×N corresponding to
W̃.

Proof. See Appendix A.3.0.2.

Even though Preposition 4.4.2 shows the loss of group structure in the eigenvector associated
with the smallest eigenvalue, in real applications, this eigenvectormight be the Fiedler vector when
the data includes Type I outliers with negligibly small similarity coefficients.

To illustrate the different outlier effects, examples of computed Fiedler vectors are shown for
ideal and corrupted affinity matrices in Figure 4.42 and Figure 4.43, respectively. In the ideal case,
the vertices of different clusters do not have edges between each other while vertices of the same
cluster are connected with strong edges. If such an ideally clustered graph is embedded on the
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Cluster I
Type I

outliers
Type II
outliers Cluster II

Figure 4.43: Fiedler vector computation for a corruptedK = 2 blocks affinity matrix. The corruptions of the affinity
matrix by Type I and Type II outliers are highlighted by coloring the corresponding affected elements in light red and dark red,
respectively. In the Fiedler vector, outliers are positioned as shown in the right illustration.

real line using the Fiedler vector, the vertices of the same cluster are concentrated while they are
far away from the vertices of a different cluster, see Figure 4.42. Therefore, the embedding results
of different clusters are easily separable, which is crucial for subsequent graph partitioning. On
the other hand, the corrupted graph in Figure 4.43 includes two typical outlier effects. Based on
the theoretical analysis, Type I outliers are embedded far from the clusters while Type II outliers
that correlate with more than one cluster are embedded between different clusters making their
separation difficult. In such scenarios, the outliers result in a performance degradation because
of the computed Fiedler vector that would lead to losing the group structure information of the
graph.

Outlyingness Measure: Overall EdgeWeights
The overall edgeweight is an informativemeasure for the determination of outliers which has been
shown in Section 4.2.2 based on the real data examples. However, since the number of outliers
is unknown in real-world scenarios a binary outlier detection based on overall edge weights may
result in an information loss. Therefore, in themethod that we proposed in [TMZ22], robustness
is introduced by suppressing outliers’ negative impact on the Fiedler vector rather than detecting
and eliminating them. In this way, we allow for some uncertainty in our decision, giving moderate
but non-zero weight to the points that we are not sure about.
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Problem Statement
Given a data set of data-pointsX = [x1, . . . ,xN] ∈ RM×N, the aim of this work is to estimate the
Fiedler vector yF ∈ RN such that it embeds each data-point on a real line, providing robustness at
a reasonable computation cost. In the following section, the main ideas of the proposed robust
Fiedler vector estimator are explained including an unsupervised penalty parameter selection
procedure, an analysis of the computational cost, and possible applications of practical interest.

4.4.2.1.4 Robust Fiedler Vector Estimation
Let data matrixX be subject to heavy tailed noise and outliers that obscure the underlying group
structure in the graph G = {V,E,W} that represents X. In Section 4.2.2, it was shown that
the overall edge weight attached to a vertex is a valuable characteristic of an outlier because it
significantly differs from the typical overall edge weight. Thus, the overall edge weight of attached
to vertexm is modeled as

dm = dtyp + εm. (4.32)

Here, dm =
∑N

n wm,n and εm, respectively, denote the overall edge weight and the error term
for the mth vertex, dtyp is the typical overall edge weight of the graph G. In practice, a robust
estimator, such as the median is used, i.e. d̂typ = med(d) for a vector of overall edge weights
d = [d1, . . . , dN]. For Fiedler vector estimation, an error vector εεε ∈ RN is constructed using
the error terms associated with each overall edge weight in d. Then, the transformation vector βββF
associatedwithyF is computed using penalized ridge regressionM-estimation [ROK12] by solving
the following zero gradient equation

−
N∑

m=1

ψ
(εm
σ̂εεε

)(x⊤
m

σ̂εεε

)
+ γβββF = 0, (4.33)

where γ denotes the penalty parameter, σ̂εεε is a robust scale estimate of εεε and ψ is a bounded and
continuous odd function called the score-function. A popular M-estimator is defined by Huber’s
function

ψ
(εm
σ̂εεε

)
=

 εm
σ̂εεε , for

∣∣ εm
σ̂εεε

∣∣ ≤ cHub

cHub · sign
( εm
σ̂εεε

)
, for

∣∣ εm
σ̂εεε

∣∣ > cHub

. (4.34)

where cHub, commonly set to a default value of cHub = 1.345 for 95% asymptotic relative efficiency
(ARE), is the tuning parameter that trades off robustness against outliers and ARE under a
Gaussian distribution model for ε (see [ZKO18] for a detailed discussion). A frequently used
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robust scale estimate is the normalized median absolute deviation [ZKO18] that is defined by

σ̂εεε = madn(εεε) = 1.4826 ·med|εεε−med(εεε)|. (4.35)

The motivation for adopting M-estimation for Fiedler vector estimation is that a bounded score
function, such as Huber’s, ensures that vertices with atypical edge weights are down-weighted in
Eq. (4.33). RRLPI, therefore, softly suppresses the negative impact of outliers on the Fiedler vector
estimate based on Huber’s function. This becomes intuitively clear when considering Huber’s
weight function ωm = ω

(
εm
σ̂ εεε

)
:

ω
(εm
σ̂εεε

)
=

1, for
∣∣ εm
σ̂εεε

∣∣ ≤ cHub

cHub/
∣∣ εm
σ̂

∣∣, for
∣∣ εm
σ̂εεε

∣∣ > cHub,
(4.36)

that gives constant weight up to cHub and then increasingly down-weights outliers by smoothly
descending towards zero. Under some conditions, e.g. when outliers are extremely large valued, a
different weighting function instead of Huber’s may be used to completely down-weight extreme
outliers. For example, in robust statistics, Tukey’s weight function

ω
(εm
σ̂εεε

)
=


(
1−

(∣∣ εm
σ̂εεε

∣∣/cTuk)2)2, for
∣∣ εm
σ̂εεε

∣∣ ≤ cTuk

0, for
∣∣ εm
σ̂εεε

∣∣ > cTuk
, (4.37)

is a popular choice, which gives zero-weight to extreme outliers. However, such a function leads
to non-convex optimization problems, which is why, in many cases, Huber’s weights are preferred
(see [ZKO18] and [HR09] for a detailed discussion).

To provide an intuitive understanding, an examplary plot is provided in Figure 4.44 that
compares RRLPI with LE. Consistent with the outlier effect analysis that has been detailed in
Section 4.4.2.1.3, the data-points which are mapped far away from any other cluster in the Fiedler
vectoryF areType I outlierswhile the embeddings betweendifferent clusters are outliers ofType II.
As can be seen, these outlying embeddings result in a performance degradation for clustering
algorithms that are based upon a non-robust computation of yF. An important property of these
outliers is that their occurrence depends on the determined level of sparsity. In more details, a
non-sparse graph model results in over-connected vertices (Type II) whereas increasing sparsity
redundantly results in less-connected or disconnected vertices (Type I). A robust sparsity level
determination is therefore essential. Since the number of outliers is unknown, an outlier detection
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Figure 4.44: Examplary plot of the Fiedler vector computation based on LE and RRLPI methods. The weighting operation in
RRLPI on Type I and Type II outliers results in two clusters of concentrated mappings that include the outliers. In this way,
the true structure of the non‐outlying data becomes visible, even in the presence of outliers. By contrast, for LE, the outliers
deteriorate the underlying two‐cluster structure. Further, the weights provide a robust measure of outlyingness, which may be
used to detect and analyze outliers, which is of high interest in some applications.

based on the available graph structuremay result inmisdetection or losing information. Therefore,
instead of outlier detection, RRLPI down-weights the deviating embedding points based on their
overall edge weights to achieve a robust Fiedler vector estimate inwhich the embeddings associated
with the same cluster are concentratedwhile being separated fromembeddings of different clusters.

Theoretical Analysis
The RLPI [CHZ07] method represents the Fiedler vector yF as the response of a linear regression
with input variablesX, i.e. yF = X⊤βββF. Then, it determines the transformation vector βββF that
minimizes a penalized residual sum of squares problem

∑N
m=1(βββ⊤F xm − ym,F)

2 + γ∥βββF∥2. In
RRLPI, this approach is generalized by defining βββF as the solution to Eq. (4.33) whose matrix
form leads to

β̂ββF = (XΩΩΩX⊤ + γσ2εεε I)−1XΩΩΩyF, (4.38)

whereΩΩΩ ∈ RN×N is diagonal matrix of weights defined by Eq. (4.36).
As discussed before, the LPI method uses a linearization of the embedding operation for the

Fiedler vector computation. To understand the relationship between LPI and RRLPI, we first
clarify the relation between RLPI and RRLPI.

Theorem 9. RRLPI is a robustly weighted RLPI [CHZ07], and for ΩΩΩ = I, it gives identical
solutions to RLPI based Fiedler vector computation.

Proof. See Appendix A.4.0.1.
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From Theorem 9, it follows that for γ > 0 and/or ΩΩΩ ̸= I, the estimated tranformation vector
β̂ββF is not the eigenvector of the eigen-problem in Eq. (4.29) which means that it is not associated
with the Fiedler value. However, the following theorem shows in which cases βββF gives exactly the
eigenvector of the eigen-problem in Eq. (4.29).

Theorem 10. Suppose yF is the Fiedler vector associated with the second largest eigenvalue of the
eigen-problem in Eq. (4.29). Further, letΩΩΩ ∈ RN×N andΨΨΨ ∈ RM×M be two weighting matrices
such thatU⊤ΨΨΨU = I andV⊤ΩΩΩV = I. If yF is in the space spanned by row vectors of the weighted
datamatrixX∗, forX∗ = XΩΩΩ, the corresponding transformation vector β̂ββF estimated with RRLPI
is the eigenvector of the eigen-problem in Eq. (4.29) as γ decreases to zero.

Proof. See Appendix A.4.0.2.

Based on Theorem 10, the estimated transformation vector β̂ββF is the solution of Eq. (4.29) for
γ → 0, and U⊤ΨΨΨU = I, V⊤ΩΩΩV = I. To understand the relationship between RRLPI and
LPI, the results of this theorem are extended for all transformation vectors β̂ββm ∈ [β̂ββ0, . . . , β̂ββN−1] for
the case that the data spacem is greater than the number of data-points n and the data-points are
linearly independent, i.e. rank(X) = N.

Corollary 10.1. If the data-points are linearly independent, i.e. rank(X) = N, all transformation
vectors are solutions of Eq. (4.29) for γ → 0, and U⊤ΨΨΨU = I, V⊤ΩΩΩV = I which means that
RRLPI is identical to LPI.

Proof. See Appendix A.4.0.3.

Δ-Separated Sets for Penalty Parameter Selection
The geometric structure of well-spread ℓ22-representations shows that the two sets s and t are well
separated if every pair of points sm ∈ s and tn ∈ t aremapped at least Δ = φ(1/log−2/3N) apart in
ℓ22 distance [ARV09]. Inspired by well-spread ℓ22-representations, we propose a penalty parameter
selection algorithmbyprojecting graphvertices onto the real lineusingRRLPI-basedFiedler vector
estimation, such that every pair of two sets sm ∈ s and tn ∈ t is at least Δ = φ(1/log−2/3N) apart
in ℓ22 distance for the estimated penalty paramater.

Let γr ∈ γγγ be the rth candidate penalty parameter in Eq. (4.38) from a given vector of candidate
penalty parameters γγγ = [γmin, . . . , γmax] ∈ RNγ . Further, suppose that for each candidate penalty
parameter γr, there exists an associated Fiedler vector estimate ŷ(γr)

F that projects the graph vertices
onto the real line. The geometric structure of well-spread ℓ22-representations allows for designing
the sets s and t by projecting the points on a random line such that, for a suitable constant κ, the
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κ = 0

s t

∆

Figure 4.45: Example of Δ‐separated sets s and t

points that are located on the left and right hand sides of κ are the initial candidates for the sets s
and t, respectively [ARV09].

It has been shown (see, e.g. [ST07]) that it is possible to split a candidate Fiedler vector ŷ(γr)
F

into the two subsets s(γr) and t(γr) for κ = 0. Another possible option for κ is the median of
embeddings such that κ = med(ŷ(γr)

F ). From the definition of the Δ-separated sets, the projection
subsets s(γr) and t(γr) associatedwith γr take values between zero and one. Therefore, after selecting
the members of the two sets s(γr) ∈ RNs and t(γr) ∈ RNt associated with γr, the final design of the
sets s(γr) and t(γr) is performed using the rescaled estimated Fiedler vector ȳ(γr) as

s(γr) =
{
ȳ(γr)n,F : ŷ(γr)n,F > κ

}
t(γr) =

{
ȳ(γr)n,F : ŷ(γr)n,F ≤ κ

}
.

(4.39)

Here, ŷ(γr)n,F denotes the nth element of the estimated Fiedler vector ŷ(γr)
F and ȳ(γr)n,F is the nth element

of the rescaled estimated Fiedler vector ȳ(γr)
F . If the rescaled Fiedler vector ȳ(γr)

F is not sufficiently
sparse, it contains pairs of points ȳ(γr)m,F ∈ s and ȳ(γr)n,F ∈ t whose squared Euclidean distance is
less than Δ. Thus, for a set of pairs of projections ȳ(γr)m,F ∈ s and ȳ(γr)n,F ∈ t, a vector of discarded
projections p(γr)

disc ∈ RN(γr)
disc is designed as

p
(γr)
disc =

{
ȳ(γr)m,F, ȳ

(γr)
n,F : ∥ȳ(γr)m,F − ȳ(γr)n,F ∥22 ≤ Δ

}
, (4.40)

as long as the two sets s(γr) and t(γr) have a reasonable numberNmin of projections. The proposed
strategy to estimate penalty parameter γ is, therefore, to minimize the number of discarded points
i.e.,

γ̂ = argmin
γr=γmin,...,γmax

{N(γr)
disc}, (4.41)
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whereN(γr)
disc denotes the number of discarded projections for candidate penalty parameter γr, and γ̂

is the estimated penalty parameter. In practice, theremight not exist Δ-separated sets s(γr) and t(γr)

for any candidate penalty parameter such that γr ∈ {γmin, . . . , γmax}. For example, the sets might
not be Δ-separated, although N(γr)

disc has reached its maximum value. Additionally, the initial sets
may not satisfyNs < Nmin orNt < Nmin. In such cases, the penalty parameter can alternatively
be estimated bymaximizing the squared Euclidean distance between the closely valued projections
from the two sets s(γr) and t(γr),

γ̂ = argmax
γr=γmin,...,γmax

{∥ȳ(γr)min,F − ȳ(γr)max,F∥22}, (4.42)

where ȳ(γr)min,F ∈ s and ȳ(γr)max,F ∈ t are the minimum and the maximum valued projections from the
sets s(γr) and t(γr), respectively.

In terms of robustness, approaches based on Δ-separated sets in Eq. (4.41) are advantageous
compared to directly using Eq. (4.42). In particular, Eq. (4.42)maymaximize the distance between
Type I outliers and true samples while the necessity of a reasonable numberNmin of projections in
different setsmakes theΔ-separated sets robust againstType I outliers. Moreover, the Fiedler vector
estimate ŷ(γr)

F may contain Type II outliers which are embedded between true samples of sets s(γr)

and t(γr). In such cases, usage of Eq. (4.42)may result in losing a good penalty parameter due to the
Type II outliers that obscure the real distance between sets s(γr) and t(γr). In contrast, Δ-separated
sets discard these Type II outliers up to a certain point and provide a robust measure of separation
between the sets.

The main steps of the proposed Fiedler vector estimation are summarized in Algorithm 7.
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Algorithm 7:Robust Fiedler vector estimation
Input: A data matrixX ∈ RM×N and an associated affinity matrixW ∈ RN×N,Nmin
for γr = γmin, . . . , γmax do
Initialization:
Evaluate the Fiedler vector yF ∈ RN via Eq. (2.6)
Compute βββF ∈ RM for yF = X⊤βββF
RRLPI
Update the error vector εεε ∈ RN using Eq. (4.32)
Compute σ̂εεε via Eq. (4.35)
Calculate the weights ωm = ω( εmσ̂εεε ), ΩΩΩ = diag(ωωω)

Solve Eq. (4.38) and estimate β̂ββ
(γr)
F

Estimate the Fiedler vector for ŷ(γr)
F = X⊤β̂ββ

(γr)
F

Δ-separated sets
Generate sets s(γr) and t(γr) via Eq. (4.39)
Calculate ∥ȳ(γr)min,F − ȳ(γr)max,F∥22 s.t. ȳ

(γr)
min,F ∈ s and ȳ(γr)max,F ∈ t and collect in a vector z ∈ RNγ

whileNs ≥ Nmin and Nt ≥ Nmin do
Create pdisc ∈ RN(γr)

disc using Eq. (4.40)
UpdateN(γr)

disc
if s(γr) and t(γr) are Δ-separated then
break

end
end
CollectN(γr)

disc into a vector h ∈ RNγ

end
if at least one pair of Δ-separated sets exist then
Estimate γ̂ using Eq. (4.41)

else
Estimate γ̂ using Eq. (4.42)

end
Estimate transformation vector β̂ββ

γ̂
F in Eq. (4.38) for γ̂

Estimate the Fiedler vector for ŷ(γ̂)
F = X⊤β̂ββ

(γ̂)
F

Output: A robust estimate of the Fiedler vector ŷ(γ̂)
F
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Computational Complexity
As computational complexity is essential for the scalability of graph embedding techniques, the
computational complexity of the proposed approach is analyzed in terms of its main operations.
The computational complexity of operations is detailed using the term flam [Ste98], which is
a compound operation that includes one addition and one multiplication. For the cases when
the complexity is not specified as flam, the Landau’s big O symbol is used. The computational
complexity of the proposed approach is given as follows:
Graph Construction: The pairwise cosine similarity which takes 1

2N
2M+ 2NM as in [CHZ07]

can be used for contructing graphG.
Initialization: For large eigen-problems, e.g. MATLAB© uses a Krylov Schur decomposition
[Ste02]. The algorithm includes two main phases that are known as expansion and contraction.
WhenN is larger thanNLan, whereNLan denotes the number of Lanczos basis vectors (preferably
chosen asNLan ≥ 2Neig forNeig eigenvectors), the computational complexity of the algorithm can
mainly be attributed to expansion and contraction phases. The expansion phase requires between
N(N2

Lan −N2
eig) flam and 2N(N2

Lan −N2
eig) flam. The contraction phase requiresNNLanNeig flam

[Ste01].
Robust Regularized Locality Preserving Indexing (RRLPI): The proposed projection
algorithm requires an estimate of scale that uses repetitive medians. The complexity of repetitive
medians is O(N) [RB90]. Further, for a densely connected matrix, the complexity is mainly
attributed to the Cholesky decomposition which is of complexity O(N3) or, more specifically,
1
6N

3 flam [Ste98]. This complexity can be reduced to O(N) using [Cou08] if the matrix is rank
deficient. If the matrix is sparse, the computation cost of decomposition can be reduced to
t(2NNfea + 3N + 5M) flam using a least squares algorithm such as [PS82] where Nfea denotes
the average number of nonzero features and t is the number of iterations.
Δ-Separated Sets: To split the projection into two sets as s and t, the vector y must be sorted
which is of complexity O(NlogN) and there are computationally efficient alternatives such as
[Han20] for which the complexity is reduced to O(N

√
logN). To compute Δ-separated sets, a

maximum ofN projections can be subtracted which means that this operation maximally takesN
flam.

Summing up the terms with respect to flam yields minimally

t(2NNfea + 3N+ 5M) +
1
2
N2M+N(2M+N2

Lan −N2
eig +NLanNeig + 1)

flam. Hence, the complexity is of order O(N2). Based on the information that both O(N)
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and O(NlogN) are considerably smaller than O(N2), the minimum computational cost can be
summarized as O(N2) for each candidate penalty parameter. Overall, the algorithm is, at least, of
complexityO(NγN2) for a numberNγ of candidate penalty parameters.

Example Applications
Eigenvector decomposition has a large variety of applications, such as, dimension reduction
[CHZ07, CHH05, HCL04, HN04, DDF90], recognition [ZZL18, LT09, YTL06] and
localization [SVB01]. Considering images as high-dimensional data sets, it is not surprising
that eigen-decomposition is a fundamental research area also in image segmentation, e.g.
[CHH05, HCL04, HN04, DDF90]. A frequently encountered problem is that the image is
subject to noise, which may result in embedding noisy pixels far from the neighboring group of
pixels in the embedding space and, consequently, losing the underlying structure. This problem
may also occur in cluster enumeration approaches that attempt to find densely connected groups
of embeddings in the projection space, which necessitates the application of a robust embedding
technique. In the following, the example of robust graph-based cluster enumeration is discussed.
Cluster Enumeration: Assume that for each candidate number of clusters
Kcand ∈ {Kmin, . . . ,Kmax} there is a clustering algorithm, e.g. [XG08, NJW01], that partitions
ŷ(γ̂) into Kcand number of clusters and provides an estimated label vector ĉKcand . After estimating
label vectors for each candidate number of clusters Kcand, the cluster number K can be estimated
by comparing quality of partitions using modularity as [CNM04]

K̂ = argmax
K̂min,...,K̂max

{modK̂cand
}, (4.43)

where modK̂cand
denotes the modularity score for a candidate number of clusters K̂cand that is

computed using Eq. (2.7).

4.4.2.1.5 Experimental Evaluation
This section contains the numerical experimental evaluation of the proposedRRLPImethod on a
broad range of simulated and real-world data sets with applications to robust cluster enumeration
and image segmentation. In the following, a detailed information about experimental setting
is provided. A MATLAB implementation of RRLPI is available at: https://github.com/

A-Tastan/RRLPI

BenchmarkMethods: The effects ofType I andType II outliers on theFiedler vector computation
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are studied for the LE [BN01], LPI [HCL04], RLPI [CHZ07], RLPFM [TMZ21] and RRLPI
embedding-based approaches by designing synthetic data Monte Carlo experiments. Then, in
addition to the above mentioned embedding approaches, the proposed RRLPI is benchmarked
against three state-of-the-art graph-based cluster enumeration approaches, i.e., Martelot [MH11],
Combo [SCB14] and SPARCODE [TMZ21] and two state-of-the art spectral partitioning
approaches, i.e., fast large-scale spectral clustering via explicit feature mapping (FastEFM)
[HRG18] and LSC [CC14] in terms of image segmentation capabilities.
Parameter Settings: Some of the competitors are parameter free approaches, i.e. LE [BN01], LPI
[HCL04], Martelot [MH11], Combo [SCB14], SPARCODE [TMZ21] and LSC [CC14]. For
the FastEFM approach [HRG18], the Gaussian scale parameter is the mean distance among all
data points as the authors suggested. In terms of accuracy, the authors suggested to increase the
desired dimension of explicit features. Therefore, the desired dimension isD = 500 as suggested
by the authors. Further, to analyze the performance of proposed penalty parameter selection and
to provide fair comparisons, the RLPI [CHZ07] and RLPFM [TMZ21] approaches are all run
using the proposed penalty parameter selection algorithm. The remaining parameters of RLPI,
RLPFM and RRLPI are defined using the default setting: γmin = 10−8, γmax = 1000, Kmin = 1,
Kmax = 10 andNmin =

N
Kmax

.
Affinity Matrix Construction: To analyze the robustness of RRLPI, cosine similarity is used as
the affinity matrix construction method in all experiments, unless otherwise specified.
Performance Measures: The average partition accuracy p̄acc is measured by evaluating

p̄acc =
1

NNE

NE∑
m=1

N∑
n=1

1{̂cn=cn}, (4.44)

where

1{̂cn=cn} =

1, if ĉn = cn
0, otherwise

, (4.45)

N is the number of observations, NE is the total number of experiments, and ĉn and cn are the
estimated and ground truth labels for the nth observation, respectively.

The empirical probability of detection pdet, as defined in Eq. (4.15), is used to assess cluster
enumeration performance.

The contour matching score Fscore for boundaries and the Jaccard index J are used for the
numerical performance analysis in the case of image segmentation [CLP13]. The Fscore quantifies
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Figure 4.46: Examplary plot of the first three features of the uncorrupted synthetic data set.

whether a boundary has a match on the ground truth boundary as follows

Fscore = 2
P · R
R+ P

, (4.46)

where P and R denote precision and recall values, respectively. The Jaccard index evaluates
similarity between estimated and ground truth segmentations according to

J(Îseg, Iseg) =
TP

TP+ FP+ FN
, (4.47)

where Îseg and Iseg denote estimated and ground truth segmentations for image I and TP, FP, and
FN are true positives, false positives and false negatives, respectively.

Outlier Effects and Robustness
To visualize outlier effects on the eigen-decomposition, a synthetic data set is generated forK = 3
easily separable clusters, see Figure 4.46. TheM-dimensional data-points of each cluster ci, with
i = 1, . . . ,K, and M = 6 are generated as xm,i = μμμi + ϑir, where xm,i is the mth data-point
associated with the ith cluster, μμμi is the ith cluster centroid, ϑi is the ith scaling constant, and r is a
vector of independently and identically distributed random variables from a uniform distribution
on the interval [−0.5, 0.5]. All details and parameter values to generate the data are provided in
Appendix B.3.1.

Representative examples of the computed eigenvectors are shown for LE and for the proposed
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Figure 4.47: Computed eigenvectors for the uncorrupted data set.

Figure 4.48: Examplary plot of the first three features of the synthetic data set after corruption with Type I and Type II outliers
(red crosses). See Section 4.4.2.1.3, for a discussion.

RRLPI in Figure 4.47. In the absence of outliers, both algorithms provide embeddings where
the embedding points that are associated with the same cluster are concentrated, and the different
clusters are separated. To study robustness, the data set is contaminatedwith two outlier types, i.e.,
outliers that do not correlate with any cluster (Type I) and outliers correlate with more than one
cluster (Type II); see Sec. 4.4.2.1.3 for a definition and a discussion. An example showing the first
three features of the contaminated data set is shown in Figure 4.48, where both Type I and Type II
outliers are highlighted as red crosses.

The Type I and Type II outliers are, respectively, generated as x̃(I)
m = xm,i + ϑoIr and
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Ñ

Figure 4.49: Computed eigenvectors for the corrupted data set.
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Figure 4.50: Average partition accuracy as a function of ϑoI andNout for each outlier type

x̃(II)
m = μμμII + ϑoIIr where x̃(n)

m , n = I, II denotes the type of the outlier, ϑon , n = I, II is a scaling
constant associated with the outlier type and μμμII is a vector associated with the location of Type II
outliers. A detailed explanation including all parameter values, is provided in the Appendix B.3.1.
Examples of the eigenvector computations based on the corrupted data set are shown for LE and
RRLPI in Figure 4.49, respectively. As can be seen, for the LE method, Type I outliers in the data
produce outliers in the embedding results that obscure the underlying structure ofK = 3 clusters.
In contrast, the proposed RRLPI provides an embedding that is less influenced by the outliers.

Figure 4.50 reports the average partition accuracy as a function of the constant ϑoI associated
with Type I outliers and the number of outliersNout for each outlier type, respectively. The value
of ϑoII is kept constant to generate points that lie between clusters two and three. The robust
methods show best performance while the performance of LE quickly decreases in the presence of
outliers.
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Figure 4.51: Computation time performance analysis. The results are reported in seconds.

Computation Time
The computation time (t) is reported as a function of increasing number of data points in the
synthetic data set of K = 3 clusters. The experiments are performed based on three different
scenarios. First, computation time is analyzed for an uncorrupted data set that has been explained
in the previous section. Then, the data set is contaminated with two outlier types (Type I and
II) where 10% of the data set are outliers for every type. The graphical models of these two data
sets are generated based on the cosine similarity measure. Finally, to analyze the effect of sparsity,
a sparse graph model of an uncorrupted data set is computed by using nearest neighbor graphs
where the number of neighbors is set according to the cluster sizes. In all experiments, the penalty
parameter is set to one and t is averaged over 100Monte Carlo runs.

The performance of RRLPI is benchmarked against its main competitors RLPI and RLPFM
in Figure 4.51. Even though robustness results in an increased computation cost, the single-step
weighting procedure of RRLPI is considerably more efficient than the iterative weighting in
RLPFM. The LPI method [HCL04] is excluded in the computation time analysis due to its
different operational procedure. However, our own run-time analysis confirmed the theoretical
analysis that RRLPI has quadratic complexity with respect to n. This means that the proposed
method is computationally more efficient than LPI which has cubic complexity in unsupervised
settings as it has been stated in [CHZ07].

Cluster Enumeration
In this section, the cluster enumeration performance of different approaches is benchmarked in
terms of their empirical probability of detectionusing the following data sets: Gait [SAZ19], Breast
Cancer [WM89], Fisheriris [Fis36], Person Id. [TSM18], Sonar [GS88], Ionosphere [SWH89],
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K̂ for Different Cluster EnumerationMethods

Data Set Martelot Combo SPARCODE RLPFM LE LPI RLPI RRLPI K Similarity

Gait [SAZ19], 4 6 5 4 4 4 4 5 5 enet
Breast Cancer [WM89], 1 2 2 2 4 2 2 2 2 cos
Fisheriris [Fis36], 2 3 2 3 5 3 3 3 3 enet
Person Id. [TSM18], 6 7 4 5 10 4 4 4 4 enet
Sonar [GS88], 2 2 2 2 6 2 2 2 2 cos
Ionosphere [SWH89], 3 3 4 2 7 3 2 2 2 cos
D. Retinopathy [AH14], 2 2 2 2 2 2 2 2 2 cos
Gesture Phase S. [WPM14], 2 3 3 5 10 2 6 5 5 cos

Table 4.8: Performance of different cluster enumeration approaches on well‐known clustering data sets. The results
summarized for similarity measures cosine (cos) and elastic net (enet) using a penalty parameter of pen = 0.5.
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Figure 4.52: Numerical results for cluster enumeration based on RRLPI.

D. Retinopathy [AH14] and Gesture Phase Segmentation (Gesture Phase S.) [WPM14].
If none of the cluster enumeration approaches estimates the cluster number correctly with the

default cosine similarity, the elastic net similaritymeasure as in [ZKO18], is usedwith ten candidate
penalty parameters ρ on an equidistant grid ranging from 0.1 to one. Results are reported for
ρ = 0.5, which gave the best average overall detection performance for all methods. Tukey’s
distance function [ZKO18] where the threshold defined as TTukey = 3 is used as an initialization
for K-medoids partitioning in the proposed algorithm. For a detailed discussion about different
similarity measures and partitioning results, see Appendix B.3.3. The estimated cluster numbers
are reported for the different cluster enumeration approaches in Tab. 4.8. As can be seen from the
table, the gait and gesture phase data sets include a considerable number of outliers that result in
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I FastEFM LSC RLPFM LE LPI RLPI RRLPI Iseg

Figure 4.53: Image segmentation results for the original images.

misdetection of the cluster number for almost all competitors. The proposed method is the only
one that consistently estimates the correct cluster numbers for all data sets.

The empirical probability of detection with respect to different penalty parameters is detailed
in Figure 4.52a. Then, the performance is summarized in Figure 4.52b by averaging the results
over all penalty parameters. The results for cluster enumeration demonstrate that the proposed
RRLPI shows the best probability of detection performance for all candidate penalty parameters
with an average score of 79%, whereas the best competitors (RLPFM and RLPI) have scores of
73% and 63%, respectively.

Image Segmentation
ADE20K [ZZP17], is a large-scale dataset that includes high quality pixel-level annotations of
25210 images (20210, 2000, and 3000 for the training, validation, and test sets, respectively.).
In our experiments, 10 images from the ADE20K data set containing different objects, where
each object has a different color, have been selected for color-based image segmentation. The
selected and corresponding annotated images are denoted as III and IIIseg, respectively. The images
are down-sampled, where the dimension of data setX isM = 3 andN ∼= 15000 using RGB color
codes associated to down-sampled image pixels as features. To analyze robustness, the images are
corrupted by adding multiplicative noise using the equation ĨII = III + ξ × III, where ĨII denotes the
corrupted image and ξ is uniformly distributed random noise with zero mean and variance σ(ξ).

The down-sampled images are segmented for a pre-defined number of segments K using the
default setting which performs K-means partitioning for the data sets that have more than N =

3000 samples. In Figure 4.53, examples of the original image III and associated segmented images
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I Îseg for LE Îseg for RRLPI Annotated image Iseg

Figure 4.54: Example segmentations for LE and RRLPI methods. The embeddings that are mapped far away from the group of
pixels are pointed out using arrows.

Ĩ FastEFM LSC RLPFM LE LPI RLPI RRLPI Iseg

Figure 4.55: Image segmentation results for the corrupted images. (σ(ξ) = 10−3)

using the computedFiedler vectors for sevendifferent embedding approaches are shownalongwith
the ground truth segmented image IIIseg. The uncorrupted images IIImay also contain outlying pixels
and/or noisy pixels. The effect of outliers is that a small number of pixels aremapped far away from
the group of pixels and, thus, the remaining group of pixels assigned to a single large segment based
on the distance-based partitioning methods.

A typical example of a segmentation result illustrating the outlier effects is provided in
Figure 4.54. As can be seen, the described outlier effect is observed even for the embeddings of the
uncorrupted (original) image when using LE. To exemplify the robust Fiedler vector estimation,
the segmentation result of RRLPI is also shown. The segmentation result demonstrates that the
proposed robust Fiedler vector estimation suppress outlier effects on the eigen-decomposition and
provides segmentation results that are more consistent with the annotated image IIIseg. Further,
in Figure 4.55, examples of segmented images are presented for the corrupted images where
σ(ξ) = 10−3. The results show that the outlier effect on eigen-decomposition causes a breakdown
of the FastEFM, LSC, and LE approaches. For further examples and detailed numerical results, see
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Figure 4.56: Numerical results for the image segmentation.

Appendix B.3.4.
The experiments are evaluated quantitatively using F̄score, J̄ and p̄acc, and the results are

summarized in Figure 4.56. All performance measures are evaluated by comparing each estimated
segmented image ÎIIsegwith the annotated image IIIseg. TheLE andFastEFMshowpoor performance,
even for the original images. Although LSC shows a reasonably good performance for the original
images, its performance reduces drastically in the outlier-corrupted case in terms of F̄score and J̄. The
LPI,RLPFMandRRLPI are the top threemethods in all performancemeasures andRLPI follows
them with a reasonably good performance, which indicates that the proposed penalty parameter
selection algorithm is a promising approach, even when using non-robust methods.

4.4.2.1.6 Conclusion
Based on the derived theoretical results in Section 4.2, we proposed RRLPI, a method to robustly
estimate the Fiedler vector that down-weights embeddings, for which the overall edge weight
deviates from the typical overall edge weight of a given graph. The objective function to estimate
the Fiedler vector is penalized using the proposed unsupervised penalty parameter selection
algorithm that builds upon Δ-separated sets. The performance of RRLPI is benchmarked for
different applications on a variety of real-world data sets. The numerical results for cluster analysis
and image segmentation showed that the RRLPI is a promising approach for Fiedler vector
estimation in situations where robustly determining the group structure in a data set is essential.
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4.4.2.2 Robust Spectral Clustering: A Locality Preserving Feature Mapping
Based onM-estimation

4.4.2.2.1 Introduction
Dimension reduction and feature extraction are fundamental in many clustering algorithms that
have been intensively researched for decades [HRG18, CHZ07, CHH05, BN01]. As discussed
in Section 2.5, SC is a simple and effective tool that relies on the eigenfunctions of the Laplace-
Beltrami operator on amanifold to discover the intrinsic structure hidden in the data. It has various
applications such as in face recognition and image segmentation [WQD14].

A popular way of estimating eigenvectors of a Laplacian is the method of LE [BN01], which
is a manifold learning technique motivated by the correspondence between the graph Laplacian
and the Laplace-Beltrami operator on a manifold. The term LE refers to a nonlinear method that
embeds high-dimensional feature vectors into a low-dimensional vector space while preserving
certain local properties. LPI is motivated by determining the optimal linear approximations to
the eigenfunctions of the Laplace Beltrami operator in an attempt at discovering the inherent
nonlinear structure. The computational complexity of LPI canmainly be attributed to computing
a complete SVD and it has been reduced in [HRG18, CHZ07], making such approaches attractive
in practice. However, in real-world scenarios the data may be corrupted by outliers and noise
[ZKO18], leading to a performance degradation. Existing robust algorithms for SC have been
proposed to minimize the effect of outliers in representation space, e.g. [LNC18] or in the
projection operation [PYT15]. The robust projection operation as in [PYT15], uses the ℓ1

norm that creates a different eigenbasis and it requires prior information about the data, such as,
representative samples. To thebest of our knowledge, anunsupervised robust projection algorithm
that uses the ℓ2 norm as in the eigen-decomposition of the original SC has not been proposed in
the literature.

To integrate robustness in SC, in [TMZ21], we proposed a robust locality preserving feature
mapping (RLPFM) and an unsupervised penalty parameter selection algorithm using the geometric
structure of well-spread embeddings. Building upon regularized locality preserving indexing
(RLPI), which is a computationally efficient extension of the LPI framework that regularizes the
eigenvectors, we developed a robust M-estimation approach to feature embedding to mitigate the
effect of outliers on the determination of the group structure. The penalty parameter, which is a
key factor for the performance of RLPFM, was selected, such that the estimated Fiedler vector is
Δ-separated with minimum information loss.
The following sections are organized as follows. Section 4.4.2.2.2 briefly revisits LPI while
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Section 4.4.2.2.3 contains the motivation and problem formulation. Then, the developed robust
SC method is detailed in Section 4.4.2.2.4. The performance of the proposed method in
comparison to popular embedding and SC approaches is demonstrated in Section 4.4.2.2.5 and,
finally, conclusions are drawn in Section 4.4.2.2.6.

4.4.2.2.2 LPI for Spectral Clustering
Suppose that a data matrixX = [x1,x2, . . . ,xN] ∈ RM×N withM denoting the dimension and
N the number of feature vectors, can be represented as a graphG = {V,E,W}, whereV denotes
the vertices, E represents the edges, and W ∈ RN×N is the nonnegative definite affinity matrix
that is computed from a similarity measure, e.g. cosine similarity as defined in Eq. (2.1). SC
[NJW01] maps the original M dimensional feature vectors onto a smaller K dimensional vector
space by finding the eigenvectors associated with the K smallest eigenvalues of the eigen-problem
in Eq. (2.6).

According to the Theorem 8, for an eigenvector y ∈ RN with y = X⊤βββ, the LPI method finds
a transformation vector βββ ∈ RM that is the eigenvector associated with the smallest eigenvalue
of the generalized eigen-problem in Eq. (4.29). This fundamental property of LPI, gives identical
solutions to SC if the data matrixX is a full rank square matrix. Thus, building upon [CHZ07],
the LPI basis functions can be determined in two consecutive steps for SC. First, theK eigenvectors
y1, . . . ,yK associated with the K smallest eigenvalues λ1 < · · · < λK in Eq. (2.6) is computed.
Then, for each eigenvector yi ∈ RN, where i = 1, . . . ,K, LPI estimates a transformation vector
βββi ∈ RM that satisfies yi = X⊤βββi by solving the following least squares problem

β̂ββi = argmin
βββi

N∑
m

(βββ⊤i xm − ym,i)
2, (4.48)

where ym,i is the mth mapping point in the ith eigenvector yi and β̂ββi is the estimated ith
transformation vector.

4.4.2.2.3 Motivation and Problem Formulation
Motivation
To motivate the use of robust methods, this section provides an illustrative discussion of possible
outlier effects on SC. Figure 4.57a shows an example, where the data that consists of N = 30
feature vectors can be separated into K = 3 disjoint clusters by the popular LE method [BN01],
which analyzes the eigenvectors corresponding to the three smallest eigenvalues. The ellipsoids
around the yellow, blue, and green feature vectors highlight the discovered clusters. Figure 4.57b
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ỹ1
ỹ2

ỹ
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Figure 4.57: The eigenvectors associated withK = 3 smallest eigenvalues for a data matrix.

uses the same dataset, except that six blue and green points have been replaced by outliers that
are marked as red crosses. In the context of clustering, outliers are, generally speaking, defined as
data points that do not follow the cluster structure that is inherent to the large majority of the
data. Consistent with the definitions in Section 4.1, we can distinguish two different types of
outliers: On the one hand, an outlier may be a point that does not have any similarity with any
of the clusters (TypeI Outlier). On the other hand, an outlier may also be defined as a point that
has considerable similarity with multiple clusters (Type II Outlier). In both cases, as illustrated
in Figure 4.57b, the outliers obscure the cluster structure inherent to the eigenvectors. In this
example, the popular LE method is not able to correctly split the data into the yellow, blue and
green clusters. Instead, it opens up a cluster for the outliers that are not associated with any of
the clusters, and it fuses the yellow and blue data points into a single cluster. Robust SCmethods
should be designed to be less sensitive to outliers. M-estimation is a widely used robust alternative
to least-squares estimation when the data is subject to heavy-tailed noise and outliers [ZKO18].
Building upon the concepts of robust statistics [ZKO18], we propose anM-estimation approach,
that down-weights outlying data points in the objective function, as will be detailed in the next
section.

Problem Formulation
Given a dataset of feature vectors X ∈ RM×N, the goal of this method is to embed each feature
vector into a K dimensional space where K denotes the specified number of clusters. Robustness
implies that the method is not heavily affected by a few outliers in the data set.
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4.4.2.2.4 Robust Spectral Clustering
This section is dedicated to robust SC that use penalizedM-estimation for RLPFM. In the sequel,
M-estimation for Locality Preserving Feature Mapping and a computational complexity analysis
are provided.

M-estimation for Locality Preserving FeatureMapping
Assume that the datasetX is corrupted by outliers and noise. Themappings in dimension-reduced
space can then be written as

ym,i = βββ⊤i xm + εm,i, (4.49)

where ym,i ∈ R denotes the mapping point for themth feature vector xm and ith transformation
vector βββi, and εm,i ∈ R represents noise and additive outliers. For an embedding operation from
theM dimensional space to theK dimensional space, the error vector εεε ∈ RN×1 is constructed by
using embedding errors of all feature vectors as

εm =
K∑
i

εm,i, , (4.50)

where εi ∈ εεε denotes the embedding error of themth feature vector. Similar to RRLPI [TMZ22]
(for details, see Section 4.4.2.1), RLPFM softly suppresses the negative impact of outliers on
the eigenvectors estimate based on Huber’s function and performs Δ-separated sets for penalty
parameter determination. However, there is an important difference in how the outliers are
down-weighted. While RRLPI [TMZ22] compute the error vector εεε ∈ RN×1 based on the
overall edge weights and incorporates the weighting operation into a single step for Fiedler vector
estimation, RLPFMperformsM-estimation of themultiple eigenvectors by iteratively reweighting
the residuals.

After computing the error vector using Eq. (4.50), the RLPFM method adapts the remaining
steps in Section 4.4.2.1.4 to multiple eigenvectors. Therefore, a summary of the RLPFMmethod
including all steps is given in Algorithm 8.

Computational Complexity
The computational cost of operations is measured in flam [Ste98], and if the computational
complexity is not specified using flam, the well-known Landau notation is used. The RLPFM
requires N(N2

Lan − K2) to 2N(N2
Lan − K2) flam for the expansion and NNLanK flam for the

contraction phases for the initialization of eigenvectors, whereNLan is the number of Lanczos basis

130



Algorithm 8:Robust Spectral Clustering
Input: A dataX and affinity matrixW,K,Nmin
Eigenvector Estimation using RLPFM
for γr = γmin, . . . , γmax do

Initialization:
Evaluate the eigenvectors y1, . . . ,yK as in Eq. (2.6)
Get βββ1, . . . ,βββK for yK = X⊤βββK
RLPFM
Compute the error vector εεε ∈ RN using Eq. (4.50)
Compute σ̂εεε via Eq. (4.35)
Calculate ωm = ω( εmσ̂εεε ), ΩΩΩ = diag(ωωω), via Eq. (4.36)

Solve Eq. (4.38) and estimate β̂ββ
(γr)
1 , . . . , β̂ββ

(γr)
K

Estimate ŷ(γr)
1 , . . . , ŷ

(γr)
K for ŷ(γr)

K = X⊤β̂ββ
(γr)
K

Δ-separated sets
Generate sets s(γr) and t(γr) via Eq. (4.39)
whileNs > Nmin and Nt > Nmin do

Create pdisc ∈ RN(γr)
disc using Eq. (4.40) and updateN(γr)

disc
if s(γr) and t(γr) are Δ-separated then

break
end

end
CollectN(γr)

disc into a vector h ∈ RNγ

end
Minimize theN(γr)

disc and estimate γ̂ using Eq. (4.41)
Estimate β̂ββ

γ̂
1 , . . . , β̂ββ

γ̂
K for γ̂

Estimate ŷ(γ̂)
1 , . . . , ŷ

(γ̂)
K where ŷ(γ̂)

K = X⊤β̂ββ
(γ̂)
K

Partitioning
Get ĉK by applying theK-means on ŷ(γ̂)

1 , . . . , ŷ
(γ̂)
K

Output: An estimated label vector ĉK forK clusters
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Dataset SC LPI RLPI FastEFM LSC RLPFM

Fisheriris [Fis36] 66.0 98.0 98.0 96.6 92.9 98.0
Breast Cancer [WM89] 62.9 88.2 87.4 72.1 85.4 87.0
Ionosphere [SWH89] 64.4 51.9 71.2 68.4 71.5 70.4
Parkinson A. [NPC16] 50.4 53.2 60.4 61.0 52.1 60.0
Sonar [GS88] 54.3 55.3 56.3 54.6 51.1 60.6

Table 4.9: K‐means partitioning performance for real‐world datasets. The average probability of detection shown in%.

vectors and K is the number of eigenvectors. The weighting operation of M-estimation requires
repetitive medians that is of complexity O(N). For a sparse matrix, the least squares algorithm,
such as in [PS82] requires t(2NNfea + 3N + 5M) where t is the number of iterations andNfea is
the average number of nonzero features. However, if thematrix is dense, Cholesky decomposition
requires O(N3) and in particular 1

6N
3 flam [Ste98]. Lastly, the Δ-seperated sets step requires

O(NlogN) time for sorting and a maximum of N flam for discarding for each candidate γ. In
summary, for a sparse matrix the RLPFM step requires from

Nγt(2NNfea + 3N+ 5M) +N(N2
Lan − K2 +NLanK+Nγ)

to

Nγt(2NNfea + 3N+ 5M) +N(2N2
Lan − 2K2 +NLanK+Nγ)

flam in addition to O(NγN), O(NγNlogN) for repetitive medians and sorting where Nγ is the
number of candidate penalty parameters.

4.4.2.2.5 Experimental Results
In this section, the proposed RLPFM is compared with five state-of-the-art methods including
embedding approaches LPI [CHH05] andRLPI [CHZ07] and SC approaches [BN01], FastEFM
[HRG18], large scale spectral clusteringwith landmark-based sparse representation (LSC) [CC14].
The numerical experiments are performed with real-world databases Fisheriris [Fis36], Breast
Cancer [WM89], Ionosphere [SWH89], ParkinsonA. [NPC16], and Sonar [GS88] from theUCI
machine learning repository. The parameter Nmin for Δ-separated sets is defined as Nmin = N

10

where different values ofNmin do not have a huge impact as long asNmin is a reasonably small value.
To analyze performance numerically, average clustering accuracy p̄acc is calculated by averaging
clustering results for NE = 100 repetitions and RLPI is performed with the proposed penalty
parameter selection method to provide a fair comparison.

132



SC

SC corrupted

RLPI

RLPI corrupted

RLPFM

RLPFM corrupted

Figure 4.58: Examples of estimated feature spaces for corrupted and non‐corrupted versions of the Fisheriris data set.

The clustering accuracy results are summarized for six different methods on five real-world
datasets using K-means partitioning in Tab. 4.9. As can be seen, the SC method shows poor
performance in terms of average clustering accuracy of 59.6% whereas almost all other clustering
approaches have an average accuracy greater than 70%. The proposed RLPFM method
outperforms all its competitors with 75.2% and RLPI follows it by a narrow margin reaching
74.7% which indicates that the proposed penalty parameter selection algorithm is a promising
approach that can be used in other regularized feature mapping algorithms. We also implemented
a simple plug-in robustification that replacesK-means byK-medoids, however, it did not improve
the partitioning results, and is therefore not reported in detail.

Robustness
To evaluate robustness against outliers, we contaminated the Fisheriris dataset as follows. The
outliers were generated as x̃m = xm + ϑcr, where r denotes a vector of uniformly distributed
random numbers in the interval U(0, 1), ϑc is a constant, xm and x̃m are the original and
corruptedmth feature vector for a randomly selectedm, respectively. The examples of estimated
eigenvectors for K = 3 clusters are shown in Figure 4.58 for the original and corrupted cases.
For the corrupted case, the examples shown for ϑc = 5 and the number of outliers in per cluster
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Figure 4.59: p̄acc for increasing ϑc andNout values.

Nout = 15. The results of SC shows that, even the original Fisheriris dataset results in an outlier in
the SC mappings that causes the method to break down. Figure 4.58 shows that both the RLPI
and the proposed RLPFMproduce similar and accurate mapping results for the original data. For
corrupted data, RLPFM and RLPI approximately preserve the cluster structure, and RLPFM
reduces the effect of outliers by mapping them closer to the cluster centers.

The clustering accuracy is detailed according to different ϑc andNout values in Figure 4.59. Even
though most of the algorithms have a clustering accuracy of more than 90% in the beginning, the
performance of the competitors drops significantly after ϑc = 3. The proposed method is also
more robust for an increasing number of outliers while its main competitor RLPI follows it by
approximately margin of 10%.

4.4.2.2.6 Conclusion
Weproposed an unsupervisedRLPFM including a penalty parameter selection approach for SC in
[TMZ21]. The eigenvectors of the Laplacianmatrix were reweighted and penalized by optimizing
the penalty parameter, such that, the corresponding Fiedler vector is Δ-separated with minimum
information loss. The method was benchmarked on different real-world datasets and it showed
promising performance compared to five popular competitors, especially in terms of robustness
against outliers and noise.
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4.4.3 Outlier Detection based on Vertex Degree and Application to Gait
Analysis

4.4.3.1 Introduction

As walking is the most practiced physical activity, it is not surprising that gait analysis has been the
subject of intense scientific research. Doppler radar provides an efficient and privacy preserving
way of analyzing human gait signatures that is independent of effects of clothing [LG02], or
lighting condition [Ote05]. Doppler radar is widely used for the detection of falls and activity
[AZA16, SHR14, WSR14], the identification of a person [Ote05], and for distinguishing human
gait signatures from animal ones [ZPW07]. In addition to safety and security applications, the
examination gait provides an ability to define gait abnormalities which plays a crucial role in
medical diagnosis [HGM14]. Previous works on classification of gait abnormalities, e.g. [SAZ19,
PWA15, WBH15] mainly focused on supervised learning algorithms. Obtaining labelled data
requires a detailed examination of the available data which is inefficient, or even infeasible in real-
world settings with large data sets containing considerable amounts of outliers. Similarity graphs
are a powerful tool for unsupervised clustering [LSW16, CYY09] as they allow for representing
clusters as communities. Yet, in graph model-based clustering, outlying entries have a negative
impact on the connectivity of a graph, which severely affects clustering performance and makes
community detection [TMZ21, SSS19, TMZ18] challenging.

Popular outlier detection methods proposed in the literature use distance or angle as a metric
for outlyingness, e.g. [KSZ08, RL05, BS03]. Such methods are not well-suited for radar-based
human gait data because outliers show a grouping effect and outliers of one cluster may overlap
with typical data points of another cluster. As an illustration, a scatter plot of three important
features of radar-based human gait data is shown in Figure 4.60. As it can be seen in the figure,
the clusters corresponding to the ’Cane’ and ’Limping two’ clusters are grouped into two clusters
due to outliers, and outliers of ’Cane’ cluster overlap with the true samples of the normal walk
cluster. Moreover, the outliers of ’Limping two’ have a considerable sample size. The example
shows that detection of outliers is challenging. Therefore, in such scenarios, an outlier detection
procedure requires a different perspective on outlyingness beyond conventional outlier detection
metrics such as distance or angle.

In [TMZ20], ourmain contributionwas to propose a new graph-based clustering algorithm and
to apply it to label human gait signatures in a robust and unsupervisedmanner. To this end, we first
extracted a set of features and represented themas aweighted graph. Then, we identified outliers by
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Figure 4.60: Scatter plot for three important features of radar‐based human gait data belonging to five object communities.

robustly learning the typical degree of a vertex based on a dictionary that was formed from feature
vectors that lie close to robustly estimated cluster centroids. This required estimating the number
of clusters, which was done based on evaluating the modularity index after rejecting some vertices
with very atypical degrees in a preprocessing step. The method outperformed existing robust and
SCmethods on a real-world data set (24GHz radar system, 800 observations fromfive gait clusters
of ten subjects).

The following sections are organized as follows. Section 4.4.3.2 comprises the problem
formulation. The proposed cluster enumeration and the outlier detection methods are detailed
in Section 4.4.3.3. Section 4.4.3.4 demonstrates the clustering performance for human gait radar
data in comparison to four competing clustering algorithms. Finally, conclusions are drawn in
Section 4.4.3.5.

4.4.3.2 Problem Formulation

Given a data set consisting ofM-dimensional feature vectorsX ∈ RM×N, the aim of this method
is to find a label vector cK ∈ RN that partitions X into K independent and mutually exclusive
clusters. The true number of clusters K is unknown and K ∈ {Kmin, . . . ,Kmax}, where Kmin and
Kmax are, respectively, the prespecified minimum and maximum cluster number of clusters. Let
G = {V,E,W}, again, define a weighted graph, with V denoting the vertices, E represents the
edges andW ∈ RN×N being the affinity matrix. As discussed earlier in Section 2.5, SC [CYY09]
is a popular unsupervised learning technique that allows for decomposing a data set into clusters
based on the spectrum of the affinity matrix. However, as illustrated in Figure 4.60, radar-based
human gait signatures include a considerable amount of outliers that may show a grouping effect,
and outliers of one cluster may overlap with the data points of any other cluster. Hence, outliers
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(a) Full dictionary (b) Designed dictionary

Figure 4.61: Normalized histogram of degrees for graph of radar‐based gait signatures.

obscure the underlying data structure and cause a performance degradation in SC algorithms. In
the following section, we therefore propose a graph-based SC approach that is robust against such
outliers.

4.4.3.3 Proposed Algorithm

Themain ideas of our algorithm are summarized as follows: we use sparse subspace representation
to identify some of the outliers based on their atypical number of nonzero coefficients. Then, we
estimate the number of clusters using modularity of graph partitioning (as defined in Eq. (2.7)).
Next, robustly estimated centroids are used to identify a subset of feature vectors that are associated
to the clusters with high confidence. Based on these, we build a dictionary and obtain sparse
coefficient vectors. Repeating this procedure with many subsets allows for robustly learning the
typical degree of a vertex. After learning the number of clusters and the typical degree, outliers can
be rejected and a SC algorithm can be used to assign labels to the feature vectors. These steps are
detailed in the following sections. A summary of the proposed method is given in Algorithm 9.

4.4.3.3.1 Cluster Enumeration
The algorithm is based on constructing a pairwise similarity graphwhich transforms the clustering
into a graph partition problem [CYY09,WYG08]. Extensive data analysis on human gait Doppler
radar data showed that outliers obscure the graph construction and severly influence the number
estimated connections of the vertices. Figure 4.61 shows the normalized histograms for the
degrees of a graph that is constructed on micro-Doppler radar data set of 800 observations with
five different gait clusters of ten subjects (for details, see Sec. 4.4.3.4). Figure 4.61a illustrates
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the empirical distribution of the degrees of the graph when dictionary learning is realized over
all feature vectors in the data matrix X. As can be seen in the figure, it is difficult to identify a
typical degree over all vertices of the graph even though this data set contains an equal number
of observations for each cluster, which implies a typical degree of 160. Clearly, the outliers,
which have a low degree shift the largest mode to the left, create an additional mode at around
50. Figure 4.61b shows the empirical distribution of the degrees of the graph when the dictionary
learning is applied Nt times over a selected subset of Ns = 40 samples that have been identified
as typical for each cluster. Now, the empirical degree distribution is strongly focused around the
true value, i.e., the graph structure has been correctly identified. However, the identification of
these typical samples for each cluster requires a prior knowledge about the number of clusters.
Considering the above observations, the estimation of the number of clusters is performed based
on robustly estimated typical degrees for a full dictionary matrix by using the data matrixX as a
dictionary matrix. More precisely, we design an improved graph model using initially estimated
feature vectors from X that have typical degrees. The estimation of initial typical degrees is
comprehensively explained in the following step.

Preprocessing
Based on the intuition that sparse outlying entries and noise have fewer non-zero correlation
coefficients in coefficient vector ααα [EV13], the outcome of this preprocessing step is a matrix X̌(0)

which consists of the initially estimated outlier-free columns of X. To find these vectors, the
empirical distribution of the number of nonzero coefficients for each coefficient vector ααα must
be determined. Assume that Â(0) = [α̂αα1, α̂αα2, . . . , α̂ααN] ∈ RN×N is the estimated initial coefficient
matrix over all coefficient vectors of X ∈ RM×N, where α̂ααm represents mth coefficient vector of
X. The initial coefficient matrix Â(0) can be obtained solving the sparse subspace representation
problem [EV13] if the solution is sparse enough [Don06]

Â(0) = argmin ∥A(0)∥1 s.t.X = XA(0), diag(A(0)) = 0, (4.51)

where diag(A(0)) ∈ RN is the vector of diagonal elements of A(0). The initial degrees vector
d(0) ∈ RN is formed by stacking the number of nonzero elements for each α̂αα. Based on d(0), we
analyze the empirical distribution of the degrees. In particular, the normalized median absolute
deviation of the degrees vector can be computed as [ZKO18]

madn(d(0)) = 1.4826 ·med|d(0) −med(d(0))|, (4.52)
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where med(d(0)) represents the median of the initial degrees vector d(0). Then, the initially
estimated outlying samples are detected via the 2σ̂ rejection rule as the feature vectors that differ in
their degree by more than two times the robustly estimated standard deviation. The preprocessed
matrix X̌(0) is designed using the remaining Ň(0) number of feature vectors fromX.

Graph Construction
Let Ǧ(0) = {V̌(0), Ě(0),W̌(0)} denote theweighted graph representation for the initially estimated
outlier-free matrix X̌(0). The weight matrix W̌(0) ∈ RŇ(0)×Ň(0) can be formed based on the
estimated set of coefficient vectors from Â(0), using Pearson’s linear correlation coefficients, as

w(0)
m,n =

(α̂αα(0)m − μ̂m)
⊤(α̂αα(0)n − μ̂n)

σ̂mσ̂n
(4.53)

with associated sample means μ̂m, μ̂n, and sample standard deviations σ̂m, σ̂n, respectively, for
m, n = 1, . . . , Ň(0).

Graph Partition andModularity
Assuming that for each candidate number of clusters Kcand ∈ {Kmin, . . . ,Kmax} there is a graph
partitioning algorithm, such as [Hes04], that partitions X̌(0) into Kcand clusters and provides
the estimated label vector ĉc, the cluster number K can be estimated by comparing quality of
partitions as in Eq. (4.43). Herein, the only difference is averaging modularity score of candidate
cluster number overNt runs of a graph partitioning algorithm,whereNt is a reasonably large value.

Graph Construction-based Outlier Detection
Let M̂ ∈ RM×K̂

M̂ = [μ̂μμ1, μ̂μμ2, . . . , μ̂μμK̂], μ̂μμi ∈ RM, (4.54)

where μ̂μμi represents the robustly estimated centroid vector for the ith cluster based on a K̂-medoids
partitioning ofX ∈ RM×N. The dictionary matrixH ∈ RM×Ntest is formed by picking columns
fromX, such that,

H = [x1,1, ...,x1,Ns , ...,xK̂,1, ...,xK̂,Ns
],xi,n ∈ RM, (4.55)

where xi,n represents the feature vector from the ith cluster that has the nth Euclidean distance
to the cluster centroid estimate μ̂μμi,Ns is a reasonably small value of the number of typical feature
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vectors for each cluster whereNtest ≪ N andNtest = NsK̂. ConsideringNtest test sample vectors
from data matrix X, the coefficient matrix Â ∈ RNtest×Ntest can be obtained solving the sparse
representation problem

α̂αα(t) = argmin ∥ααα(t)∥1 s.t. x(t)
test = Hααα(t) (4.56)

where α̂αα(t) represents the estimated coefficient vector,x(t)
test ∈ RM is a randomly selected sample test

vector from data matrixX for the tth dictionary learning iteration, andH is designed dictionary
matrix. To recover the degree information of each sample test vector in data matrix X, the
dictionary learning that is defined in Eq. (4.56) must be performed t = {1, . . . ,Nt} times, where
Nt is a reasonably large number. The full degree vector can be obtained by stacking each degree
vector d(t) ∈ RNtest into degree vector vec(D) ∈ RNtestNt for each dictionary learning iteration
routine. The following step is to analyze the empirical distribution of all degrees. A 2σ̂ outlier
rejection can be computed based on madn(vec(D)).

The proposed framework for the unsupervised graph-based robust clustering is summarized in
Algorithm 9.

4.4.3.4 Experimental Results

Experimental Radar Data
The experimental data, as in [SAZ19], has been collected in an office environment at Technische
Universität Darmstadt using a 24 GHz radar system. The recordings include 16 observations for
ten subjects and five different object clusters that consist of normal walk (NW), limping with one
leg (L1), limping with two legs (L2), walking with a cane (CW) and walking with a cane out of
synchronization (CWoos). The data was recorded when the subject was walking towards and away
from the radar. The observation number for each direction is equal to eight and the duration of
data measurement is six seconds. In total, 800 observations for five different gait clusters of ten
subjects have been used in our experiments.

Feature Extraction
The human gait features include physical features as defined in [SAZ19], and additional features
that are extracted from the spectrogram and its envelope. In total, 89 gait features are used for
clustering of gait signatures.
Physical Features [SAZ19]: The physical features of five gait classes were obtained by using the
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Algorithm 9:Unsupervised Graph-based Clustering
Input: A normalized data setX ∈ RM×N,i.e. ∥xm∥2 = 1, form = 1, . . . ,N
Step 1: Cluster Enumeration
Step 1.1: Preprocessing
Create Â(0) = [α̂αα1, α̂αα2, . . . , α̂ααN] using Eq. (4.51)
Obtain d(0) ∈ RN for a set of α̂αα vectors
Compute madn(d(0)) of d(0) via Eq. (4.52)
Reject initially estimated outliers based on 2σ̂ rule
Reconstruct Â(0) for initially estimated outlier-free samples as Â(0) ∈ RŇ(0)×Ň(0)

Step 1.2: Graph Construction
Construct graph for W̌(0) ∈ RŇ(0)×Ň(0) via Eq. (4.53)
Step 1.3: Graph Partition and Modularity
for t = 1, . . . ,Nt do

forKcand = Kmin, . . . ,Kmax do
Apply a graph partitioning such as [Hes04]
Evaluate modKcand of partition via Eq. (2.7)

end
end
Compute average of modularity scores for eachKcand

Obtain K̂ as in Eq. (4.43)
Step 2: Outlier Detection
Get set of μ̂μμ for K̂ clusters by usingK-medoids
Get matrix M̂ ∈ RM×K̂ via Eq. (4.54)
FormH ∈ RM×Ntest via Eq. (4.55)
for t = 1, . . . ,Nt do

Estimate α̂αα(t) ∈ RNtest of each test vector x(t)
test via Eq. (4.56)

Create Â(t) = [α̂αα(t)1 , α̂αα(t)2 , . . . , α̂αα(t)Ntest
] ∈ RNtest×Ntest

Obtain d(t) ∈ RNtest for a set of α̂αα vectors and stack in vec(D) ∈ RNtestt

end
Obtain full degree vector vec(D) ∈ RNtestNt

Compute madn(vec(D))
for n = 1, . . . , Ň(0) do

Reject outliers based on the 2σ̂ rejection rule
Stack estimated outlier-free vectors into matrix X̌ ∈ RM×Ň

end
Step 3: Spectral Clustering
Obtain W̌ ∈ RŇ×Ň via Eq. (4.51), Eq. (4.53)
Apply the SC algorithm as in [NJW01] replacing theK-means byK-medoids
Output: A vector ĉK̂ for K̂
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(c) Limping with one leg (L1)
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Figure 4.62: Example of (a), (c) spectrograms and (b), (d) corresponding micro‐Doppler envelopes for two object clusters.

sum-of-harmonics model and the spectrogram of human gait signatures. The physical features
include the fundamental frequency f0, micro-Doppler frequency fmD, the maximum Doppler
frequency shift fDmax and the gait harmonic frequency ratio β.
Additional Features: As in sparse representation of images, the features are taken as samples
from the spectrogram and its envelope. In the context of human gait signatures, features must be
carefully designed based on data analysis.

Considering different Doppler radar representations, see examples shown in Figure 4.62, our
aim is to find descriptive features of object clusters. The maximum Doppler frequency shift and
its neighbouring samples, obtained from the spectrogram, provides a representative feature for
the L2 cluster. Moreover, samples from the maximum peak of the spectrogram envelope are used
to distinguish the L2 cluster. To demonstrate rhythm of strides, samples from consecutive peaks
are extracted which are represented with arrows in Figure 4.62b and 4.62d. Furthermore, the
duration of time samples between peaks which are higher than 80% of the average of peaks that
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Cluster Enumeration of Radar-based Human Gait Signatures

Method K̂ K

Gaussian EM [TMZ18] 9 5
tDistribution-based EM [TMZ21] 10 5
Louvain [BGL08] 4 5
First Neighbor Relations [SSS19] 8 5
Proposed Unsupervised Graph-based Robust Clustering 5 5

Table 4.10: Cluster enumeration results of different parameter‐free clustering algorithms for five object clusters.

is shown with a red dotted line in Figure 4.62b and Figure 4.62d, is taken to capture stride time
and rhythm characteristics simultaneously. Stride time and rhythm are distinctive features for the
CWoos and the L1 clusters, respectively. Finally, the Doppler shift samples between maximum
and minimum points of an envelope are extracted to show peaks without micro-Doppler effect.
All time-frequency representations are examined in a window that includes the samples from 0.3
to 5.7s.

Human Gait Data Clustering and Labelling
In this section, clustering results of five different parameter-free clustering algorithms are shown
which provide a proof-of-concept that graph-based robust clustering is a useful tool for radar based
gait analysis. The cluster enumeration results of the proposed unsupervised graph-based robust
clustering algorithm are compared with state-of-the-art parameter-free clustering methods that
include both statistical and graph-based approaches. In particular, we compare to the Gaussian
expectation maximization (EM) [TMZ18], t distribution-based EM algorithm [TMZ21], graph
modularity scoring with gain [BGL08] and first neighbor relations [SSS19]. The proposed outlier
detection approach is compared with three different outlier detection methods that use angle
[KSZ08], distance [BS03] and correlations between the variables [RB18]. In order to compare the
success of partitioning the data set, the unsupervised clustering results of the proposed method
are compared with four different clustering algorithms for which the number of clusters K was
correctly provided.

For the EM algorithms, the dimension of the data is reduced to 10 by using PCA because the
performance was poor on the original 89 dimensional data set. The estimated number of clusters
for five different parameter-free cluster enumerationmethods are summarized in Tab. 4.10. As can
be seen, the three competitor cluster enumerationmethods take outliers as groups andoverestimate
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Gaussian EM [TMZ18]
True / Predicted NW L1 L2 CW CWoos

NW 93.8 2.3 - 3.9 -
L1 - 99.4 - 0.6 -
L2 1.2 1.8 58.7 38.3 -
CW 21.5 15.3 - 63.2 -
CWoos 1.9 0.6 - - 97.5

tDistribution-based EM [TMZ21]
True / Predicted NW L1 L2 CW CWoos

NW 91.6 - 0.6 6.6 1.2
L1 - 95.6 - 4.3 0.1
L2 1.2 - 58.7 38.9 1.2
CW 21.3 - 0.6 78.1 -
CWoos - - - 8.7 91.3

Louvain [BGL08]
True / Predicted NW L1 L2 CW CWoos

NW 79.1 0.6 - 6.6 13.7
L1 3.1 91.9 - 1.9 3.1
L2 - 0.6 79 6.6 13.8
CW 20.6 3.1 - 75 1.3
CWoos 1.2 - - 1.3 97.5

ℓ1-Graph [CYY09]
True / Predicted NW L1 L2 CW CWoos

NW 89.5 - 4.6 5.9 -
L1 0.8 95.3 1.4 2.3 0.2
L2 6.1 0.8 91 1.9 0.2
CW 17.9 2.6 4.5 71.0 4.0
CWoos - - - 4.6 95.4

ℓ1-Graph [CYY09] with Outlier Detection [RB18]
True / Predicted NW L1 L2 CW CWoos

NW 41.8 9.1 9.1 6.4 33.6
L1 11.3 46.4 7.6 5.1 29.6
L2 11.8 8.4 42.4 6.2 31.2
CW 7.8 9.3 8.2 41.7 33
CWoos 9.7 9.4 8 30.6 42.3

Proposed Unsupervised Graph-based Robust Clustering
True / Predicted NW L1 L2 CW CWoos

NW 96.7 - 1.3 2 -
L1 - 98.3 1.6 0.1 -
L2 3.7 0.3 94.8 0.2 1.0
CW 12.2 - 3.1 81.2 3.5
CWoos - - - 6.6 93.4

Table 4.11: Confusion matrices of different gait clustering algorithms for five object clusters. Numbers are shown in % and best
performance results are indicated in bold font.

the true cluster number. On the other hand, Louvain assumes overlapping outliers with another
true cluster as a big community and underestimates the number of clusters.

The proposed outlier detection method has been implemented with the following parameters.
The matrix of centroids M̂ is created for estimated K̂ = 5 object clusters that includeN = 800

144



observations. Ns = 40 samples for each centroid are used to form dictionary matrixH. In total,
the dictionary matrix H includes 200 observations for K̂ = 5 object clusters. The remaining
data matrixX is used for creating the test sample matrixXtest with equal number of observations
by random selection. The extraction of the degrees has been performed Nt = 300 times, so as
to achieve degrees of all test vectors in data matrixX. For the ℓ1-Graph clustering, the estimated
outlier-free data set X̌ is equal and randomly separated as dictionary matrix Ȟ and the test matrix
X̌test. Tukey’s distance function [ZKO18] where the threshold is defined as TTukey = 4.68 for
95 percent asympotic relative efficiency (ARE) is used for initialization with K-medoids in the
proposed algorithm.

The average correct clustering results of four competitor clusteringmethods for a given number
of clusters K = 5 and the clustering result of the proposed method for the estimated number
of clusters K̂ = 5 are shown in Tab. 4.11. All results presented in this section were obtained
using 300 runs. We can see that clustering with the t distribution-based EM algorithm shows
better performance than the conventional Gaussian EM one although both clustering algorithms
are not able to cope with the two group behaviour of L2. The results show that the application
of Louvain solves this problem. However, the average correct clustering result of Louvain based
clustering indicates that there is not a noticeable difference in average clustering rate compared to
the t-distributionbasedEMalgorithm in average clustering rate of humangaitmicroDoppler radar
data. Furthermore, the application of ℓ1-Graph solves the two group behaviour of L2 and gives
reasonably good clustering results. Nevertheless, as it can be seen in the table, the correct clustering
rate for CW is limited to 71% and also there is a trade-off between NW and CW. Combining
classical outlier detectionmethods [RB18, KSZ08, BS03] with the ℓ1-Graphmethod decreased the
clustering performance because outliers could not be correctly identified. Results for combining
[RB18] with the ℓ1-Graph method are reported in Tab. 4.11.

Considering the results of the proposed method, the outlier detection algorithm increases the
correct clustering rate of ℓ1-graph by approximately 7%, 3%, 4% and 10% for NW, L1, L2 and CW
clusters, respectively, while the correct clustering rate of the CWoos cluster drops by 2%. This can
be explained by the trade-off between correct clustering rates of the CWoos and other groups. The
CWoos cluster has a completely different group behavior and it results in less nonzero coefficients
compared to the other groups. Thus, the clipping based on the overall group behavior causes a
small drop in this cluster. On average, the proposed outlier detection approach increases the overall
correct clustering rate of ℓ1-Graph by 4.5%. Overall, the proposed method clusters the gait data in
an unsupervised manner and achieves a correct clustering rate of 92.8%. In comparison to state-
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of-the-art parameter-free clustering algorithms, it estimates the cluster number correctly as K̂ = 5
and provides robustness with a meaningful partition of the data.

4.4.3.5 Conclusions

In [TMZ20], we proposed an unsupervised graph-based robust clustering algorithm to cluster
highly contaminated radar data efficiently. The method shows applicability of sparse regression
and graph models on clustering of human gait signatures, providing robustness to noise and
sparse outlying entries. The clustering results of human gait signatures showed that the proposed
method outperforms existing parameter-free clustering approaches both in the sense of cluster
enumeration and partition. Overall, the unsupervised graph-based robust clustering approach
shows promising performance on clustering of micro-Doppler radar-based human gait signatures.
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Learn from yesterday, live for today and hope for
tomorrow. The important thing is not to stop questioning.

—Albert Einstein

5
Conclusion and Outlook

5.1 Summary and Conclusion

This dissertation contributes to robust graph clustering by developing fast, robust and parameter-
free graph clustering methods. Considering the effect of outliers on sparse graph construction,
the main goal has been designing graph clustering algorithms that jointly address robustness and
sparsity.

Since there does not exist a single definition of an optimal graph model for clustering, the first
part of the thesis comprised the definition of a sparse graph model and its applicability to sparsity-
aware graph clustering. In particular, firstly, the sparse graph model including edges for only
intra-cluster associations has been defined by using the advantageous nature of block diagonally
structured affinity matrices. Then, motivated by the various applications of eigenvalues and the
eigenvectors, a spectral analysis has been conducted based on the eigen-decomposition of the
Laplacian matrix associated with the sparse graph. To reduce the computational cost of Laplacian
matrix analysis, a vector representing the blocks as a piece-wise linear function of similarity
coefficients has been defined. The adaptiveness of obtained spectral properties to sparsity-aware
clustering has been shown by formulating graph construction problems as an approximations to
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spectral properties of sparse graphs. To demonstrate this argument, two different sparsity-aware
BDRmethods built upon, respectively, the eigenvalues and the eigenvectors associated with sparse
graph have been proposed.

To understand how to best incorporate robustness in sparsity-aware graph clustering,
fundamental outlier types have beendefined and their effects on spectral properties of sparse graphs
have been analyzed. In particular, outliers’ effects on sparse graphs have been extensively studied in
terms of the affinitymatrix, overall edgeweights, eigenvalues, eigenvectors and, finally, in terms of a
proposed simplifiedLaplacianmatrix analysis. Based on the obtained results regarding the outliers’
effect on affinitymatrix, the SPARCODEmethod that shrinks the undesired similarity coefficients
associated with outliers to zero has been proposed. Next, FRS-BDR approach building upon
outliers’ effects on the eigenvalues and the simplifiedLaplacianmatrix analysis have beenpresented.
Different from these affinity matrix construction solutions, RRLPI and RLPFM algorithms that
are robust against outliers’ effects on the eigenvectors have been introduced. Lastly, motivated by
the outliers’ effects on the overall edge weights, an outlier detection method using node degree as
an outlyingness measure has been proposed and applied to gait analysis.

Real-world applicability of proposed robust graph-clustering methods has been shown for
different aspects. For example, the obtained promising results on person identification based
on gait signatures, face and handwritten digit recognition has demonstrated the applicability of
robust-graph clustering in biometrics. Medical diagnosis is another important application of
robust graphclusteringwhichhas beendetailed for varying experiments on, i.e.,Gait, ParkinsonA.,
DiabeticRetinopathy, Cardiotocography data sets. In addition to thesewell-established data bases,
the efficiency of robust graph clustering in image segmentation encourages further applications,
e.g., autonomous vehicles, analysing satellite images, medical imaging.

5.2 Future ResearchDirections

This section presents some possible extensions of the theoretical analysis and proposed robust
graph clustering algorithms that have been detailed in Chapters 3 and 4.

5.2.1 Assumptions on Sparse GraphModel

InSection3.1,wehave assumed that eachblock is concentrated around a similarity constant. Then,
this assumption has been relaxed in Section 3.2.3 based on the eigenvectors of the BD nonnegative
definite Laplacianmatrixwhose similarity coefficients in blocks are randomvariables. Even though
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this relaxationmakes the sparse graphmodelmore realistic, achieving this strictlyBD structuremay
be challenging in real-world scenarios.

SBM is a random graph model that is widely used for clustering [Abb17]. In simple words,
every vertex is associated with a cluster and there are undirected edges between vertices based on
probabilities that are function of vertices’ group memberships [KN11]. Based on this, the sparse
graph model that has been defined in Section 3.1, can be considered as a weighted SBM in which
the vertices of the same cluster are connected by an edgewith probability onewhile that of different
clusters are unconnected with zero probability. This also means that approximations to the sparse
graph model can be made in a statistical sense and the assumptions on sparse graph can be relaxed
by giving a further degree of freedom [AWF92].

5.2.2 Fundamental Outlier Types in RandomGraphs

The earliest theoretical models of a network have been studied in the 1950s and 1960 by Paul
Erdős and Alfred Rényi and they generalized to models of web graphs, social networks, biological
networks [ZR15, New03]. Motivated by this, the analysis of fundamental outlier types in random
graphs is an interesting research direction to design robust graph clustering algorithms that are
well-suited to the modelling of real-world networks.

Again referring to SBM [Abb17], which is one of the most commonly used random graph
models for clustering, the fundamental outlier types can be determined based on the probability
of sharing an edge for the vertices of same cluster. More precisely, the degree of a vertex is an
informative measure of outlyingness when the probability of edge existence for the vertices of
the same cluster become comparable, or ideally constant such as in the so-called planted partition
model. Therefore, the determination of fundamental outlier types can be adapted to random
graphs by systematically analyzing and understanding the underlying edge existence probabilities.

5.2.3 Robust Graph-based Clustering for Large Graphs

In real-world scenarios, graphs consist of large numbers of vertices, thing e.g. of the Facebook
social network. As it has been highlighted in Section 3.2.4 for large graphs with considerable
number of vertices, analysing N × Nmatrices is challenging or even unapplicable. In particular,
the eigen-decomposition of Laplacian matrix requires noticeable computation time which makes
spectral methods unapplicable, especially, for the densely connected large graph structures. In
such cases, alternative solutions, such as, transforming the analysis into a vector space as in
Section 3.2.4 become crucial. However, the vector v definition in Section 3.2.4 considers densely
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connected clusters which may not always apply to real-world graphs. Additionally, BD ordering
and approximating vectorv formany different candidate block sizes as in Sections 3.4.1 and 4.4.1.2
may result in a large computation time for large graphs. Therefore, the adaptation of simplified
Laplacian matrix analysis to large graphs is still an open problem and extracting informative
subgraphs, such as in [KKV15] is an alternative way for analysing large networks.

5.2.4 Time-Series Analysis Applications based on Visibility Graphs

An alternative way of analyzing time series is visibility graphs which maps time series into a
network according to the visibility criterion that has been detailed in [LLB08]. In recent years,
the analysis of time series based on visibility graphs has attracted great interest, e.g., [KM22,
SGY15] and, in particular, horizontal visibility graphs are popular tools due to their geometrically
simpler and analytically solvable fashion in comparison to the former algorithm in [LLB08]. In
horizontal visibility graphs, every vertex represents a datum in the time series and the vertices
are connected if their corresponding data heights are larger than all of the data heights that are
located between them. According to this simple procedure, a time series can be transformed into
an undirected graph and graph clustering can be performed, for example, to capture periodic
(or cyclic) time sequences. In terms of periodicity, the size of clusters may provide information
about the outlyingness. For instance, when a noisy peak occurs in time series it might obscure
the neighboring data heights and lead to a deterioration in the visibility graph structure and thus,
graph clustering may produce inbalanced clusters. Therefore, analysing visibility graphs in noisy
scenarios and developing robust graph clustering methods that are applicable to visibility graphs is
of interest for future work.
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A
Proofs and Additional Theoretical

Information

Appendix A is organized as follows. In Section A.1, the theorems by reference to spectral analysis
of sparse graph model are proved based on the generalized and standard eigen-decompositions,
respectively. Similarly, the theorems regarding the outlier effects on sparse graphs are proved in
Section A.2. The outliers’ effects on the Fiedler vector is the subject of Section A.3. Lastly,
the theorems that analyzes the RRLPI method are detailed in Section A.3 and the auxiliary
information that is used for theoretical analysis is given in Section A.5.
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A.1 Spectral Analysis of the Sparse GraphModel

A.1.1 Generalized Eigen-decomposition based Analysis

A.1.1.1 Proof of Theorem 1

Let W ∈ RN×N be a zero-diagonal K block affinity matrix with corresponding Laplacian L ∈
RN×N, i.e.,

W =


0 w1 ... w1 ...
w1 0 ... w1 ...

… … … …

w1 w1 ... 0
…
0 wK ... wK

... wK 0 ... wK

… … … …

... wK wK ... 0

 L =


d1 9w1 ... 9w1 ...
9w1 d1 ... 9w1 ...

… … … …

9w1 9w1 ... d1 …
dk 9wK ... 9wK

... 9wK dk ... 9wK

… … … …

... 9wK 9wK ... dk


where di = (Ni − 1)wi, i = 1, . . . ,K and L = D−W. To compute the eigenvalues
in Eq. (2.6), det(L− λD) = 0 is considered which can equivalently be written using the
determinant properties of block matrices (for details, see Section 2 in [Sil00]), as follows

det(L− λD) =
K∏
i=1

det(Li − λ(i)Di) = 0,

where Li ∈ RNi×Ni ,Di ∈ RNi×Ni and λ(i), i = 1, . . . ,K, denote L,D and λ associated with the
ith block, respectively. Further,Li − λ(i)Di, i = 1, . . . ,K can alternatively be written as

[ ci −wi ... −wi
−wi ci ... −wi

… … …
−wi −wi ... ci

]
︸ ︷︷ ︸

Li−λ(i)Di

=

[ci+wi 0 ... 0
0 ci+wi ... 0

… … …
0 0 ... ci+wi

]
︸ ︷︷ ︸

H

+

√wi√wi

…√wi


︸︷︷︸

u

[
−√wi−

√wi···−
√wi

]
︸ ︷︷ ︸

v⊤

with ci = (Ni − 1)wi − λ(i)(Ni − 1)wi. For an invertible matrixH ∈ RNi×Ni such thatH† =

(ci + wi)
−1I, the matrix determinant lemma (for details, see Lemma 1.1 in [DZ07]) computes the

determinant as det(H+ uv⊤) = (1+ v⊤H†u)det(H) where u ∈ RNi and v ∈ RNi are two
column vectors. Thus, it holds that

det(Li − λ(i)Di) =

(
1+ (−

√
wi111)⊤

( √wi

ci + wi
111
))(

ci + wi
)Ni

,
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where 111 ∈ ZNi denotes a column vector of ones. Substituting 111⊤111 = Ni in det(Li − λ(i)Di) = 0
leads to (

1− Niwi

Niwi − λ(i)(Ni − 1)wi

)(
Niwi − λ(i)(Ni − 1)wi

)Ni
= 0(

−λ(i)(Ni − 1)wi

Niwi − λ(i)(Ni − 1)wi

)(
Niwi − λ(i)(Ni − 1)wi

)Ni
= 0(

− λ(i)(Ni − 1)wi
)(
Niwi − λ(i)(Ni − 1)wi

)Ni−1
= 0

For wi > 0 andNi > 1, the eigenvalues are given by

λ(i)0 = 0 and λ(i)1,...,Ni−1 =
Ni

Ni − 1
, i = 1, . . . ,K.

A.1.1.2 Proof of Theorem 2

Based on the information that the K smallest eigenvalues of the Laplacian matrix associated
with the BD affinity matrix are zero-valued [Lux07], the associated orthonormal set
of eigenvectors yields for the both eigen-decompositions in Eqs. (2.5) and (2.6), i.e.,

y0 = [

N1︷ ︸︸ ︷
±
√
1/N1, . . . ,±

√
1/N1,

N2︷ ︸︸ ︷
0 , . . . , 0 , . . . ,

NK︷ ︸︸ ︷
0 , . . . , 0 ]⊤

y1 = [ 0 , . . . , 0 ,±
√
1/N2, . . . ,±

√
1/N2, . . . , 0 , . . . , 0 ]⊤

...

yK−1 = [ 0 , . . . , 0 , 0 , . . . , 0 , . . . ,±
√

1/NK, . . . ,±
√
1/NK]

⊤

where yk ∈ RN is the eigenvector associated with the kth zero-valued eigenvalue. The Euclidean
distance between any embedding vector pairs ei and ej associated to distinct blocks k and l is equal
to ∥ei − ej∥2 =

√
1/Nk + 1/Nl for k ̸= l and i ̸= j.
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A.1.1.3 Proof of Theorem 3

By definition, the vector v is computed by summing up the rows of the upper triangular part of
L, i.e.,

v = [0,w1, . . . , d1, 0,w2, . . . , d2, . . . , 0,wk, . . . , dk],

where di = (Ni− 1)wi, i = 1, . . . ,K. Since each block includesNi ∈ {N1,N2, . . . ,NK} number
of nodes the vectors containing lower and upper limits can be defined as follows

ℓℓℓ =

[
1,N1 + 1, . . . ,

K−1∑
i=1

Ni + 1
]
, u =

[
N1,N1 +N2, . . . ,

K∑
i=1

Ni

]
.

Substituting eachmwithm = 1, . . . ,N in the function f(m) yields the vector:

v = [0,w1, . . . , (N1 − 1)w1, . . . , 0,wK, . . . , (NK − 1)wK],

which concludes the proof that two vectors are identical.

A.1.2 Standard Eigen-decomposition based Analysis

Theorem. 1.S.LetW ∈ RN×N be a sparse affinity matrix in Definition 3.1.1 andD ∈ RN×N is
the associatedmatrix of overall edge weights. Assuming thatL ∈ RN×N denotes the associated sparse
Laplacian matrix, its eigenvalues will be of the following form based on Eq. (2.5)

λλλ = sort
(

0, . . . , 0︸ ︷︷ ︸
K

,N1w1, . . . ,N1w1︸ ︷︷ ︸
N1−1

, . . . ,NKwK, . . . ,NKwK︸ ︷︷ ︸
NK−1

)
,

where λλλ ∈ RN denotes the vector of target eigenvalues and sort(·) is sorting operation in ascending
order.

Let W ∈ RN×N be a zero-diagonal K block affinity matrix with corresponding Laplacian
L ∈ RN×N as in Section A.1.1.1. To compute the eigenvalues in Eq. (2.5), det(L− λI) = 0 is
considered which can equivalently be written using the determinant properties of block matrices
(for details, see Section 2 in [Sil00]), as follows

det(L− λI) =
K∏
i=1

det(Li − λ(i)I) = 0,

154



(a) G = {V,E,W}

−w1=−0.6
d1=5.4

−w2=−0.3
d2=2.1

−w3=−0.9
d3=9.9

N1=10

N2=8

N3=12

(b)L ∈ RN×N

5 10 15 20 25 30

0

2

4

6

8

10

12

(c) λλλ ∈ RN

Figure A.1: Examplary illustration of Theorem 1.S. (n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3).

where Li ∈ RNi×Ni and λ(i), i = 1, . . . ,K, denote L and λ associated with the ith block,
respectively. Further,Li − λ(i)I, i = 1, . . . ,K can alternatively be written as

[ ci −wi ... −wi
−wi ci ... −wi

… … …
−wi −wi ... ci

]
︸ ︷︷ ︸

Li−λ(i)I

=

[ci+wi 0 ... 0
0 ci+wi ... 0

… … …
0 0 ... ci+wi

]
︸ ︷︷ ︸

H

+

√wi√wi

…√wi


︸︷︷︸

u

[
−√wi−

√wi···−
√wi

]
︸ ︷︷ ︸

v⊤

with ci = (Ni − 1)wi − λ(i). For an invertible matrixH ∈ RNi×Ni such thatH† = (ci + wi)
−1I,

the matrix determinant lemma (for details, see Lemma 1.1 in [DZ07]) computes the determinant
as det(H+ uv⊤) = (1+ v⊤H†u)det(H)where u ∈ RNi and v ∈ RNi are two column vectors.
Thus, it holds that

det(Li − λ(i)Di) =

(
1+ (−

√
wi111)⊤

( √wi

ci + wi
111
))(

ci + wi
)Ni

.

Substituting 111⊤111 = Ni in det(Li − λ(i)I) = 0 leads to(
1− Niwi

Niwi − λ(i)

)(
Niwi − λ(i)

)Ni
= 0(

−λ(i)

Niwi − λ(i)

)(
Niwi − λ(i)

)Ni
= 0

−λ(i)
(
Niwi − λ(i)

)Ni−1
= 0

For wi > 0 andNi > 1, the eigenvalues are given by

λ(i)0 = 0 and λ(i)1,...,Ni−1 = Niwi, i = 1, . . . ,K.
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A.2 Outlier Effects on Sparse GraphModel

A.2.1 Generalized Eigen-decomposition based Analysis

A.2.1.1 Proof of Theorem 4

Let L̃ ∈ R(N+1)×(N+1) denote the Laplacian matrix associated with
a block zero-diagonal symmetric affinity matrix for K blocks with
an additional Type II outlier that is correlated with all blocks, i.e.,

L̃ =



d̃II −w̃II,1 −w̃II,1 ... −w̃II,1 −w̃II,2 −w̃II,2 ... −w̃II,2 ... −w̃II,K −w̃II,K ... −w̃II,K

−w̃II,1 d̃1 −w1 ... −w1

−w̃II,1 −w1 d̃1 ... −w1

...
...

... . . .
−w̃II,1 −w1 −w1 ... d̃1
−w̃II,2 d̃2 −w2 ... −w2

−w̃II,2 −w2 d̃2 ... −w2

...
...

... . . .
−w̃II,2 −w2 −w2 ... d̃2
... . . . ...

...
−w̃II,K d̃K −wK ... −wK

−w̃II,K −wK d̃K ... −wK

...
...

... . . .
−w̃II,K ... −wK −wK ... d̃K


where d̃II =

∑K
j=1 Njw̃II,j and d̃j = (Nj − 1)wj + w̃II,j such that j = 1, . . . ,K. To compute

the eigenvalues of the Laplacian matrix L̃, det(L̃ − λ̃D̃) = 0 is considered. To simplify this
determinant, (for details, see Lemma 1.1 in [DZ07]) can be generalized as follows 1

det(H+UV⊤) = det(H)det(I+V⊤H†U) ,

where H ∈ R(N+1)×(N+1) denotes an invertible matrix, I is the identity matrix and U,V ∈
R(N+1)×(N+1). Then, for det(L̃− λ̃D̃) = det(H+UV⊤) = 0, it follows that

1For a detailed information, see Section A.5.1.
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where zII =
∑K

j=1Njw̃II,j − λ̃
∑K

j=1Njw̃II,j and zj = Njwj + w̃II,j −
λ̃
(
(Nj − 1)wj + w̃II,j

)
for j = 1, . . . ,K. Using the determinant

properties of block matrices (for details, see Section 2 in [Sil00]), it holds that

0 =

∣∣∣∣∣∣∣∣
1 −N1w̃II,1z−1

1 −N2w̃II,2z−1
2 ... −NKw̃II,Kz−1

K
−w̃II,1z−1

II −N1w1z−1
1 +1 0 ... 0

−w̃II,2z−1
II 0 −N2w2z−1

2 +1 ... 0
...

...
−w̃II,Kz−1

II 0 ... −NKwKz−1
K +1

∣∣∣∣∣∣∣∣ det(H).

To simplify the determinant of the first matrix, it transformed into a
lower diagonal matrix by applying the following Gaussian elimination steps

N1w̃II,1z−1
1

−N1w1z−1
1 + 1

R2 + R1 → R1

N2w̃II,2z−1
2

−N2w2z−1
2 + 1

R3 + R1 → R1

...

NKw̃II,Kz−1
K

−NKwKz−1
K + 1

RK+1 + R1 → R1

where RK denotes Kth row. Then, the simplified determinant of the first matrix yields

0 =cII
( K∏

i=1

(−Niwiz−1
i + 1)

)
zIIzN1

1 zN2
2 . . . zNK

K

where

cII =

(
1−

K∑
i=1

(NKw̃2
II,iz−1

i z−1
II

−Niwiz−1
i + 1

))
.

For zII =
∑K

j=1Njw̃II,j − λ̃
∑K

j=1Njw̃II,j and zj = Njwj + w̃II,j −
λ̃
(
(Nj − 1)wj + w̃II,j

)
such that j = 1, . . . ,K the determinant yields
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0 =

( K∏
i=1

(−Niwiz−1
i + 1)

)
zII
( K∏

j=1

zNj
j

)
z−1
II

(
zII −

K∑
k=1

Nkw̃2
II,kz

−1
k

−Nkwkz−1
k + 1

)

0 =
K∏
i=1

(w̃II,i − λ̃d̃i)
K∏
j=1

(Njwj + w̃II,j − λ̃d̃j)Nj−1

(
− λ̃d̃II +

K∑
k=1

Nkw̃II,k −
K∑
l=1

Nlw̃2
II,l

w̃II,l − λ̃d̃l

)

0 =
K∏
i=1

(w̃II,i − λ̃d̃i)
K∏
j=1

(Njwj + w̃II,j − λ̃d̃j)Nj−1

(
− λ̃d̃II +

K∑
k=1

(
Nkw̃II,k −

Nkw̃2
II,k

w̃II,k − λ̃d̃k

))

0 =
K∏
i=1

(w̃II,i − λ̃d̃i)
K∏
j=1

(Njwj + w̃II,j − λ̃d̃j)Nj−1

(
− λ̃d̃II −

K∑
k=1

Nkw̃II,kλ̃d̃k
w̃II,k − λ̃d̃k

)

0 =λ̃
K∏
i=1

(w̃II,i − λ̃d̃i)
K∏
j=1

(Njwj + w̃II,j − λ̃d̃j)Nj−1

(
− d̃II −

K∑
k=1

Nkw̃II,kd̃k
w̃II,k − λ̃d̃k

)

Now, theN+ 1− K number of eigenvalues can be written as

N1 − 1 elements of λ̃λλ are equal to
N1w1 + w̃II,1

d̃1
,

N2 − 1 elements of λ̃λλ are equal to
N2w2 + w̃II,2

d̃2
,

...

NK − 1 elements of λ̃λλ are equal to
NKwK + w̃II,K

d̃K
,

the smallest element of λ̃λλ is equal to zero,

and the remainingK eigenvalues are the roots of

K∏
j=1

(w̃II,j − λ̃d̃j)
(
−

K∑
j=1

Njw̃II,jd̃j
w̃II,j − λ̃d̃j

− d̃II

)
= 0,

where d̃II =
K∑
j=1

Njw̃II,j and d̃j = (Nj − 1)wj + w̃II,j.
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A.2.1.2 Proof of Theorem 5

Let L̃ ∈ RN×N denote the Laplacian matrix associated with K block zero diagonal affinity matrix
in which ith block has similarity with remainingK− 1 number of blocks. For simplicity, let i = 1,

i.e., L̃ =



d̃1 −w1 ... −w1 −w̃1,2 ... −w̃1,2 ... −w̃1,K ... −w̃1,K

−w1 d̃1 ... −w1 −w̃1,2 −w̃1,2 ... −w̃1,K ... −w̃1,K

...
... . . . ... . . . ... . . .

−w1 −w1 ... d̃1 −w̃1,2 ... −w̃1,2 ... −w̃1,K ... −w̃1,K

−w̃1,2 ... −w̃1,2 d̃2 −w2 ... −w2

−w̃1,2 −w̃1,2 −w2 d̃2 ... −w2

... . . . ...
...

... . . .
−w̃1,2 ... −w̃1,2 −w2 −w2 ... d̃2
...

...
...

... . . . ...
...

−w̃1,K ... −w̃1,K d̃K −wK ... −wK

−w̃1,K −w̃1,K ... −wK d̃K ... −wK

...
...

...
... . . .

−w̃1,K −w̃1,K ... −wK −wK ... d̃K


where d̃1 = (N1 − 1)w1 +

∑K
j=2 Njw̃1,j and d̃j = (Nj − 1)wj + N1w̃1,j, j =

2, . . . ,K. To estimate the eigenvalues of the Laplacian matrix L̃, det(L̃ − λ̃D̃) =

0 is considered which can equivalently be written in matrix form as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d̃1−λ̃d̃1 −w1 ... −w1 −w̃1,2 ... −w̃1,2 ... −w̃1,K ... −w̃1,K

−w1 d̃1−λ̃d̃1 ... −w1 −w̃1,2 −w̃1,2 ... −w̃1,K ... −w̃1,K

...
... . . . ... . . . ... . . .

−w1 −w1 ... d̃1−λ̃d̃1 −w̃1,2 ... −w̃1,2 ... −w̃1,K ... −w̃1,K

−w̃1,2 ... −w̃1,2 d̃2−λ̃d̃2 −w2 ... −w2

−w̃1,2 −w̃1,2 −w2 d̃2−λ̃d̃2 ... −w2

... . . . ...
...

... . . .
−w̃1,2 ... −w̃1,2 −w2 −w2 ... d̃2−λ̃d̃2
...

...
...

... . . . ...
...

−w̃1,K ... −w̃1,K d̃K−λ̃d̃K −wK ... −wK

−w̃1,K −w̃1,K ... −wK d̃K−λ̃d̃K ... −wK

...
...

...
... . . .

−w̃1,K −w̃1,K ... −wK −wK ... d̃K−λ̃d̃K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

To simplify this determinant, the matrix determinant lemma (for details, see Lemma 1.1 in
[DZ07]) can be generalized as follows2

det(H+UV⊤) = det(H)det(I+V⊤H†U)

where H ∈ R(N+1)×(N+1) denotes an invertible matrix, I is the identity matrix and U,V ∈
R(N+1)×(N+1). Then, for det(L̃− λ̃D̃) = det(H+UV⊤) = 0, it follows that

2For a detailed information, see Section A.5.1.
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where z1 = N1w1 +
∑K

j=2Njw̃1,j − λ̃
(
(N1 − 1)w1 +

∑K
j=2 Njw̃1,j

)
and zj =

Njwj + N1w̃1,j − λ̃
(
(Nj − 1)wj + N1w̃1,j

)
with j = 2, . . . ,K. Using determinant

properties of block matrices (for details, see Section 2 in [Sil00]), it holds that

0 = det(H)

∣∣∣∣∣∣∣∣
−N1w1z−1

1 +1 −N2w̃1,2z−1
2 −N3w̃1,3z−1

3 ... −NKw̃1,Kz−1
K

−N1w̃1,2z−1
1 −N2w2z−1

2 +1 0 ... 0
−N1w̃1,3z−1

1 0 −N3w3z−1
3 +1 ... 0

...
...

−N1w̃1,Kz−1
1 0 ... −NKwKz−1

K +1

∣∣∣∣∣∣∣∣.
To simplify the determinant of the second matrix, it transformed into a lower diagonal matrix by
applying the following Gaussian elimination steps

N2w̃1,2z−1
2

−N2w2z−1
2 + 1

R2 + R1 → R1

N3w̃1,3z−1
3

−N3w3z−1
3 + 1

R3 + R1 → R1

...

NKw̃1,Kz−1
K

−NKwKz−1
K + 1

RK + R1 → R1

whereRK denotes theKth row. Then, the simplified determinant yields

0 = det(H)

∣∣∣∣∣∣∣∣
c1 0 0 ... 0

−N1w̃1,2z−1
1 −N2w2z−1

2 +1 0 ... 0
−N1w̃1,3z−1

1 0 −N3w3z−1
3 +1 ... 0

...
...

−N1w̃1,Kz−1
1 0 ... −NKwKz−1

K +1

∣∣∣∣∣∣∣∣
where c1 is equal to

c1 = −N1w1z−1
1 + 1−

K∑
i=2

Niw̃1,iz−1
i N1w̃1,iz−1

1

−Niwiz−1
i + 1

.

For z1 = N1w1+
∑K

j=2 Njw̃1,j− λ̃
(
(N1− 1)w1+

∑K
j=2Njw̃1,j

)
and zj = Njwj+N1w̃1,j− λ̃

(
(Nj−

1)wj +N1w̃1,j
)
with j = 2, . . . ,K, the determinant det(L̃− λ̃D̃) = 0 yields
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0 =
K∏
i=1

zNi
i

K∏
j=2

(−Njwjz−1
j + 1)c1

0 =zN1
1

K∏
i=2

zNi−1
i

K∏
j=2

(−Njwj + zj)c1

0 =zN1
1

K∏
i=2

zNi−1
i

K∏
j=2

(−Njwj + zj)z−1
1

(
−N1w1 + z1 −

K∑
k=2

N1Nkw̃2
1,kz

−1
k

−Nkwkz−1
k + 1

)

0 =
K∏
i=1

zNi−1
i

K∏
j=2

(−Njwj + zj)

(
−N1w1 + z1 −

K∑
k=2

N1Nkw̃2
1,k

zk −Nkwk

)

0 =
(
N1w1 +

K∑
i=2

Niw̃1,i − λ̃d̃1
)N1−1 K∏

j=2

(
Njwj +N1w̃1,j − λ̃d̃j

)Nj−1 K∏
k=2

(N1w̃1,k − λ̃d̃k)(
K∑
l=2

Nlw̃1,l − λ̃d̃1 −
K∑
p=1

N1Npw̃2
1,p

N1w̃1,p − λ̃d̃p

)

0 =
(
N1w1 +

K∑
i=2

Niw̃1,i − λ̃d̃1
)N1−1 K∏

j=2

(
Njwj +N1w̃1,j − λ̃d̃j

)Nj−1 K∏
k=2

(N1w̃1,k − λ̃d̃k)(
− λ̃d̃1 −

K∑
l=2

(
Nlw̃1,l −

N1Nlw̃2
1,l

N1w̃1,l − λ̃d̃l

))

0 =
(
N1w1 +

K∑
i=2

Niw̃1,i − λ̃d̃1
)N1−1 K∏

j=2

(
Njwj +N1w̃1,j − λ̃d̃j

)Nj−1 K∏
k=2

(N1w̃1,k − λ̃d̃k)(
− λ̃d̃1 −

K∑
l=2

λ̃d̃lNlw̃1,l

N1w̃1,l − λ̃d̃l

)

0 =λ̃
(
N1w1 +

K∑
i=2

Niw̃1,i − λ̃d̃1
)N1−1 K∏

j=2

(
Njwj +N1w̃1,j − λ̃d̃j

)Nj−1 K∏
k=2

(N1w̃1,k − λ̃d̃k)(
− d̃1 −

K∑
l=2

d̃lNlw̃1,l

N1w̃1,l − λ̃d̃l

)
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Based on this,N+ 1− K number of eigenvalues are

Ni − 1 elements of λ̃λλ are equal to

Niwi +
K∑

j=1,
j̸=i

Njw̃i,j

d̃i
,

Nj − 1 elements of λ̃λλ are equal to
Njwj +Niw̃i,j

d̃j
,

...

NK − 1 elements of λ̃λλ are equal to
NKwK +Niw̃i,K

d̃K
,

the smallest element of λ̃λλ is equal to zero,

and the remainingK− 1 eigenvalues in λ̃λλ are the roots of

K∏
j=1
j̸=i

(Niw̃i,j − λ̃d̃j)
(
−

K∑
j=1
j ̸=i

d̃jNjw̃i,j

Niw̃i,j − λ̃d̃j
− d̃i

)
= 0,

where d̃j = (Nj − 1)wj+Niw̃i,j, d̃i = (Ni − 1)wi+
K∑
j=1
j̸=i

Njw̃i,j.

A.2.1.3 Proof of Preposition 4.2.1

Let L̃ ∈ R(N+1)×(N+1) denote the Laplacian matrix associated with a block zero-diagonal
symmetric affinity matrix of K blocks with an additional Type II outlier that is correlated with
blocks i and j. For simplicity, i = 1 and j = 2. Further, let ỹ0 ∈ RN+1 denote the eigenvector
associated with zero-valued eigenvalues. Since Type II outlier do not affect the remaining K − 2
blocks, the eigenvectors associated with zero valued eigenvalues of these blocks can be written as
follows:

ỹ0↔W3 = [

N1︷ ︸︸ ︷
0 , 0 , . . . , 0 ,

oII︷︸︸︷
0 ,

N2︷ ︸︸ ︷
0 , 0 , . . . , 0 ,

N3︷ ︸︸ ︷1√
N3

,
1√
N3

, . . . ,
1√
N3

, . . . ,

NK︷ ︸︸ ︷
0 , 0 , . . . , 0 ]⊤

...

ỹ0↔WK = [

N1︷ ︸︸ ︷
0 , 0 , . . . , 0 ,

oII︷︸︸︷
0 ,

N2︷ ︸︸ ︷
0 , 0 , . . . , 0 ,

N3︷ ︸︸ ︷
0 , 0 , . . . , 0, . . . ,

NK︷ ︸︸ ︷1√
NK

,
1√
NK

, . . . ,
1√
NK

]⊤

where ỹ0↔Wk denotes the eigenvector associated with the zero-valued eigenvalue of blockWk for
k = 1, . . . ,K. Further, the eigenvector associated with zero-valued eigenvalue of the large block
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can be written as

ỹ0↔W12 =

[ N1 + N2 + 1︷ ︸︸ ︷1√
N1 +N2 + 1

,
1√

N1 +N2 + 1
, . . . ,

1√
N1 +N2 + 1

,

N3︷ ︸︸ ︷
0 , 0 , . . . , 0 . . . ,

NK︷ ︸︸ ︷
0 , 0 , . . . , 0

]⊤

Up to now, the eigenvectors associated with K − 1 number of eigenvalues are shown.
Now, the next step is to examine the eigenvector associated with non-zero eigenvalue
which can be written for the preserved distances between embeddings as follows:

ỹ1 =

[ N1︷ ︸︸ ︷√
N2

N1(N1 +N2)
, . . . ,

√
N2

N1(N1 +N2)
,

oII︷︸︸︷
0 ,

N2︷ ︸︸ ︷
−

√
N1

N2(N1 +N2)
, . . . ,−

√
N1

N2(N1 +N2)
, . . . ,

NK︷ ︸︸ ︷
0 , . . . , 0

]⊤
.

Based on this, the embedding vector associated with the Type II outlier yields

ẽII =

[ K− 2︷ ︸︸ ︷
0, . . . , 0,

1√
N1 +N2 + 1

, 0

]
,

which concludes the proof that ẽII is centered between embeddings of blocks i and j if the distance
between every pair of embedding vectors correspond to true samples are preserved.

A.2.1.4 Proof of Preposition 4.2.2

Suppose that the distances between embeddings of true samples are preserved. Then, the squared
Euclidean distances from the origin can be written for orthonormal set of eigenvectors associated
withK smallest eigenvalues as follows:

N1∥ẽ1∥2 + ∥ẽII∥2 +N2∥ẽ2∥+ · · ·+NK∥ẽK∥2 = K

If the embedding vectors in Theorem 2 are substituted in this equation, clearly, the embedding
vector of Type II outlier is a vector of zeros.
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A.2.1.5 Proof of Preposition 4.2.3

Assuming that the column vectors of the matrices Y and Ỹ take values in a range {ymin, ymax},
without loss of generality, the matrices can be rewritten by defining the scaled eigenvectors of
Lym = λmym as

Y =


s(0) s(y1,1)
s(0) s(y1,1)
s(y3,0) s(0)
s(y3,0) s(0)

 Ỹ =


s(ỹ1,0) s(ỹ1,1)
s(ỹ1,0) s(ỹ1,1)
s(ỹ1,0) s(−ỹ1,1)
s(ỹ1,0) s(−ỹ1,1)

 ,

where s(yn,m) and s(ỹn,m) denote the scaled nth embedding result in the mth eigenvector
associated with Laplacian matrices L and L̃, respectively. The scaling function is given
by s(yn,m) = ymin +

yn,m−min(ym)

max(ym)−min(ym)
(ymax − ymin) where min(ym) and max(ym) denoting the

minimum and the maximum valued embedding points in the eigenvector ym, respectively. To
cluster the row vectors of the matrix Y, the squared Euclidean distances within the blocks and
between different blocks are evaluated as

∥e1 − e2∥22 =∥e3 − e4∥22 = 0

∥e1 − e3∥22 =
(
s(0)− s(y3,0)

)2
+
(
s(y1,1)− s(0)

)2
=2
(
ymax − ymin

)2
,

where ∥em − en∥22 denotes the squared Euclidean distance between the
mth and the nth feature vector with ∥em − en∥22 = ∥en − em∥22 and
∥e1 − e3∥22 = ∥e1 − e4∥22 = ∥e2 − e3∥22 = ∥e2 − e4∥22.

Then, the distances within the blocks and between different blocks are evaluated for
L̃ỹm = λ̃mỹm as

∥ẽ1 − ẽ2∥22 =∥ẽ3 − ẽ4∥22 = 0

∥ẽ1 − ẽ3∥22 =
(
s(ỹ1,0)− s(ỹ1,0)

)2
+
(
s(ỹ1,1)− s(−ỹ1,1)

)2
=
(
ymax − ymin

)2
.

The next step is to examine the matricesY and Ỹ for the scaled eigenvectors of Lym = λmDym,
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as

Y =


s(0) s(y1,1)
s(0) s(y1,1)
s(y3,0) s(0)
s(y3,0) s(0)

 Ỹ =


s(ỹ1,0) s(ỹ1,1)
s(ỹ1,0) s(ỹ1,1)
s(ỹ1,0) s(ỹ3,1)
s(ỹ1,0) s(ỹ3,1)

 .

As the eigenvectors of Lym = λmDym are equivalent to Lym = λmym for the Laplacian
matrix L, the distances associated with Y are also equal. Further, based on the knowledge that
ỹ1,1 = −w2+2w̃u

w1+2w̃u
ỹ3,1, the scaled embedding points yield s(ỹ1,1) = ymin and s(ỹ3,1) = ymax.3 Thus, the

distances are computed for Ỹ as

∥ẽ1 − ẽ2∥22 =∥ẽ3 − ẽ4∥22 = 0

∥ẽ1 − ẽ3∥22 =
(
s(ỹ1,0)− s(ỹ1,0)

)2
+
(
s(ỹ1,1)− s(−ỹ3,1)

)2
=
(
ymax − ymin

)2
.

This concludes the proof that the distance between the row vectors of the Y associated with
different blocks is greater than that of Ỹ.

A.2.1.6 Proof of Theorem 6

To analyze different positions of Type II outlier, the outlier is shifted along
the diagonal of the corrupted Laplacian matrix L̃ ∈ R(N+1)×(N+1) as follows

L̃(mII=1) =



d̃II −w̃II,1 −w̃II,1 ... −w̃II,1 −w̃II,2 −w̃II,2 ... −w̃II,2 ... −w̃II,K −w̃II,K ... −w̃II,K

−w̃II,1 d̃1 −w1 ... −w1 ...

−w̃II,1 −w1 d̃1 ... −w1 ...

...
...

... . . . ...
−w̃II,1 −w1 −w1 ... d̃1 ...

−w̃II,2
...

...
... d̃2 −w2 ... −w2 ...

−w̃II,2 −w2 d̃2 ... −w2 ...

...
...

... . . .
−w̃II,2 −w2 −w2 ... d̃2 ...

...
...

...
... . . . ...

...
−w̃II,K d̃K −wK ... −wK

−w̃II,K ... −wK d̃K ... −wK

...
...

... . . .
−w̃II,K ... −wK −wK ... d̃K



3For a detailed discussion, see Appendix C.1 in [TMZ22].
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...

L̃(mII=ℓ2−1) =



d̃1 −w1 ... −w1 −w̃II,1 ...

−w1 d̃1 ... −w1 −w̃II,1 ...

...
... . . . ...

...
−w1 −w1 ... d̃1 −w̃II,1 ...

−w̃II,1 −w̃II,1 ... −w̃II,1 d̃II −w̃II,2 −w̃II,2 ... −w̃II,2 ... −w̃II,K −w̃II,K ... −w̃II,K

...
...

... −w̃II,2 d̃2 −w2 ... −w2 ...

−w̃II,2 −w2 d̃2 ... −w2 ...

...
...

... . . .
−w̃II,2 −w2 −w2 ... d̃2 ...

...
...

...
... . . . ...

...
−w̃II,K d̃K −wK ... −wK

−w̃II,K ... −wK d̃K ... −wK

...
...

... . . .
−w̃II,K ... −wK −wK ... d̃K


...

L̃(mII=N+1) =



d̃1 −w1 ... −w1 ... −w̃II,1

−w1 d̃1 ... −w1 ... −w̃II,1

...
... . . . ...

...
−w1 −w1 ... d̃1 ... −w̃II,1

...
...

... d̃2 −w2 ... −w2 ... −w̃II,2

−w2 d̃2 ... −w2 ... −w̃II,2

...
... . . . ...

−w2 −w2 ... d̃2 ... −w̃II,2

...
...

... . . . ...
...

d̃K −wK ... −wK −w̃II,K

... −wK d̃K ... −wK −w̃II,K

...
... . . . ...

... −wK −wK ... d̃K −w̃II,K

−w̃II,1 −w̃II,1 ... −w̃II,1 −w̃II,2 −w̃II,2 ... −w̃II,2 ... −w̃II,K −w̃II,K ... −w̃II,K d̃II



Then, for each position of the outlier 0 < mII ≤ N+ 1,mII ∈ Z+, the vector ṽ is computed as

ṽ(mII=1) =[ 0︸︷︷︸
ṽII∈R

, w̃II,1, w̃II,1 + w1, . . . , w̃II,1 + (N1 − 1)w1︸ ︷︷ ︸
ṽ1∈RN1

, . . . , w̃II,K, w̃II,K + wK, . . . , w̃II,K + (NK − 1)wK︸ ︷︷ ︸
ṽK∈RNK

]

...

ṽ(mII=ℓ2−1) =[0,w1, . . . , (N1 − 1)w1︸ ︷︷ ︸
ṽ1∈RN1

,N1w̃II,1︸ ︷︷ ︸
ṽII∈R

, . . . , w̃II,K, w̃II,K + wK, . . . , w̃II,K + (NK − 1)wK︸ ︷︷ ︸
ṽK∈RNK

]

...

ṽ(mII=N+1) =[0,w1, . . . , (N1 − 1)w1︸ ︷︷ ︸
ṽ1∈RN1

, . . . , 0,wK, . . . , (NK − 1)wK︸ ︷︷ ︸
ṽK∈RNK

,
K∑
j=1

Njw̃II,j︸ ︷︷ ︸
ṽII∈R

]
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As it can be seen, the components of the corrupted vector ṽ ∈ RN+1, whose indexes are valued
between the outlier index and the largest index of the jth block, i.e., mII < m ≤ uj, increase by
w̃II,j. Further, the component associated with the outlier is given by

ṽII =



0 if 0 < mII < ℓ1

(mII − ℓ1)w̃II,1 if ℓ1 < mII < ℓ2
...

K−1∑
j=1

Njw̃II,j + (mII − ℓK)w̃II,K if ℓK < mII ≤ N+ 1

,

where ℓj denotes the lowest index of the jth block for j = 1, . . . ,K.

A.2.1.7 Proof of Theorem 7

To analyze different positions of block i that has similarity with the remaining K − 1 blocks,
the block i is shifted along the diagonal of corrupted Laplacian matrix L̃ ∈ RN×N as follows

L̃i=1 =



d̃1 −w1 ... −w1 −w̃1,2 −w̃1,2 ... −w̃1,2 ... −w̃1,K −w̃1,K ... −w̃1,K

−w1 d̃1 ... −w1 −w̃1,2 −w̃1,2 ... −w̃1,2 ... −w̃1,K −w̃1,K ... −w̃1,K

...
... . . . ...

...
... . . . ...

...
... . . . ...

−w1 −w1 ... d̃1 −w̃1,2 −w̃1,2 ... −w̃1,2 ... −w̃1,K −w̃1,K ... −w̃1,K

−w̃1,2 −w̃1,2 ... −w̃1,2 d̃2 −w2 ... −w2 ...

−w̃1,2 −w̃1,2 ... −w̃1,2 −w2 d̃2 ... −w2 ...

...
... . . . ...

...
... . . .

−w̃1,2 −w̃1,2 ... −w̃1,2 −w2 −w2 ... d̃2 ...

...
...

...
...

... . . . ...
...

−w̃1,K −w̃1,K ... −w̃1,K d̃K −wK ... −wK

−w̃1,K −w̃1,K ... −w̃1,K ... −wK d̃K ... −wK

...
... . . . ...

...
... . . .

−w̃1,K −w̃1,K ... −w̃1,K ... −wK −wK ... d̃K


...

L̃i=K =



d̃1 −w1 ... −w1 ... ... −w̃1,K −w̃1,K ... −w̃1,K

−w1 d̃1 ... −w1 ... ... −w̃1,K −w̃1,K ... −w̃1,K

...
... . . . ...

...
... . . . ...

−w1 −w1 ... d̃1 ... ... −w̃1,K −w̃1,K ... −w̃1,K

...
...

... d̃2 −w2 ... −w2 ... −w̃2,K −w̃2,K ... −w̃2,K

−w2 d̃2 ... −w2 ... −w̃2,K −w̃2,K ... −w̃2,K

...
... . . . ...

... . . . ...
−w2 −w2 ... d̃2 ... −w̃2,K −w̃2,K ... −w̃2,K

...
...

...
...

... . . . ...
...

−w̃1,K −w̃1,K ... −w̃1,K −w̃2,K −w̃2,K ... −w̃2,K ... d̃K −wK ... −wK

−w̃1,K −w̃1,K ... −w̃1,K −w̃2,K −w̃2,K ... −w̃2,K ... −wK d̃K ... −wK

...
... . . . ...

...
... . . . ...

...
... . . .

−w̃1,K −w̃1,K ... −w̃1,K −w̃2,K −w̃2,K ... −w̃2,K ... −wK −wK ... d̃K



.
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Then, for each position of the block i such that i = 1, . . . ,K, the vector ṽ ∈ RN is computed as

ṽ(i=1) =[0,w1, . . . , (N1 − 1)w1︸ ︷︷ ︸
ṽ1∈RN1

, . . . ,N1w̃1,K,wK +N1w̃1,K, . . . , (NK − 1)wK +N1w̃1,K︸ ︷︷ ︸
ṽK∈RNK

]

...

ṽ(i=K) =[0,w1, . . . , (N1 − 1)w1︸ ︷︷ ︸
ṽ1∈RN1

, . . . ,
K−1∑
j=1

Njw̃K,j,wK +
K−1∑
j=1

Njw̃K,j, . . . , (NK − 1)wK +
K−1∑
j=1

Njw̃K,j︸ ︷︷ ︸
ṽK∈RNK

].

Herein, the components associated with the blocks j > i are increase by Niw̃i,j while the
components associated with block j ≤ i will remain the same on the contrary. Further, if
2 ≤ i ≤ K the components associated with the block i increase by

∑i−1
j=1 Njw̃i,j and remain the

same otherwise.
In more details, starting from the i + 1th block undesired similarity blocks are located only on

the lower triangular side. Therefore, summing the upper triangular part of the Laplacian matrix
results in an increase by Niw̃i,j in these blocks. Additionally, for the ith block i − 1 number of
undesired similarity blocks are located on the lower triangular side which results in an increase by
i−1∑
j=1

Njw̃i,j.

A.2.1.8 Proof of Corollary 7.1

Let L̃ ∈ RN×N a corrupted Laplacian matrix, that is identical to L ∈ RN×N except that each
block i = 1, . . . ,K has non-zero similarity coefficients with the remaining K − 1 blocks, i.e.,

L̃ =



d̃1 −w1 ... −w1 −w̃1,2 −w̃1,2 ... −w̃1,2 ... −w̃1,K −w̃1,K ... −w̃1,K

−w1 d̃1 ... −w1 −w̃1,2 −w̃1,2 ... −w̃1,2 ... −w̃1,K −w̃1,K ... −w̃1,K

...
... . . . ...

...
... . . . ...

...
... . . . ...

−w1 −w1 ... d̃1 −w̃1,2 −w̃1,2 ... −w̃1,2 ... −w̃1,K −w̃1,K ... −w̃1,K

−w̃1,2 −w̃1,2 ... −w̃1,2 d̃2 −w2 ... −w2 ... −w̃2,K −w̃2,K ... −w̃2,K

−w̃1,2 −w̃1,2 ... −w̃1,2 −w2 d̃2 ... −w2 ... −w̃2,K −w̃2,K ... −w̃2,K

...
... . . . ...

...
... . . . ...

... . . . ...
−w̃1,2 −w̃1,2 ... −w̃1,2 −w2 −w2 ... d̃2 ... −w̃2,K −w̃2,K ... −w̃2,K

...
...

...
...

... . . . ...
...

−w̃1,K −w̃1,K ... −w̃1,K −w̃2,K −w̃2,K ... −w̃2,K ... d̃K −wK ... −wK

−w̃1,K −w̃1,K ... −w̃1,K −w̃2,K −w̃2,K ... −w̃2,K ... −wK d̃K ... −wK

...
... . . . ...

...
... . . . ...

...
... . . .

−w̃1,K −w̃1,K ... −w̃1,K −w̃2,K −w̃2,K ... −w̃2,K ... −wK −wK ... d̃K



.

Here w̃i,j denotes the non-zero value aroundwhich the similarity coefficients between blocks i and j
are concentrated. In contrast toL, these non-zero coefficients of L̃ lead to undesired edges between
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vertices associated with different blocks. Then, the vector ṽ associated with L̃ reads

ṽ = [0,w1, . . . , (N1 − 1)w1︸ ︷︷ ︸
ṽ1∈RN1

, . . . ,
K−1∑
i=1

Niw̃i,K,wK +
K−1∑
i=1

Niw̃i,K, . . . , (NK − 1)wK +
K−1∑
i=1

Niw̃i,K︸ ︷︷ ︸
ṽK∈RNK

] ,

which concludes the proof that the vector ṽ is piece-wise linear function in the following form

ṽm =



(m− ℓ1)w1 if ℓ1 ≤ m ≤ u1

(u1 − ℓ1 + 1)w̃1,2 + (m− ℓ2)w2 if ℓ2 ≤ m ≤ u2
...

K−1∑
i=1

(ui − ℓi + 1)w̃i,K + (m− ℓK)wK if ℓK ≤ m ≤ uK

where ℓ1 = 1, u1 = N1, ℓi =
i−1∑
k=1

Nk + 1 and ui =
i∑

k=1
Nk for i = 2, . . . ,K.

A.2.2 Standard Eigen-decomposition based Analysis

A.2.2.1 Type II Outliers’ Effect on Eigenvalues

This section analyzes Type II outliers’ effect on eigenvalues based on the standard eigen-
decomposition in Eq. (2.5).

Theorem. 4.S. Let W̃ ∈ R(N+1)×(N+1) define a symmetric affinity matrix, that is equal to W,
except for an additional Type II outlier that shares similarity coefficients with K blocks where w̃II,K >

0 denotes the similarity coefficient between the outlier oII and the Kth block. Then, for the associated
corrupted Laplacian matrix L̃ ∈ R(N+1)×(N+1) with eigenvalues λ̃λλ ∈ RN+1,it holds that

N1 − 1 elements of λ̃λλ are equal to N1w1 + w̃II,1

N2 − 1 elements of λ̃λλ are equal to N2w2 + w̃II,2
...
NK − 1 elements of λ̃λλ are equal to NKwK + w̃II,K

the smallest element of λ̃λλ is equal to zero

and the remaining K eigenvalues are the roots of

K∏
j=1

(w̃II,j − λ̃)

(
−

K∑
j=1

Njw̃II,j

w̃II,j − λ̃
− 1

)
= 0.
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Proof. Let L̃ ∈ R(N+1)×(N+1) denote the Laplacian matrix that is associated with a K block zero-
diagonal symmetric affinity matrix with an additional Type II outlier that is correlated with all
blocks, i.e.,

L̃ =



d̃II −w̃II,1 −w̃II,1 −w̃II,1 −w̃II,2 −w̃II,2 −w̃II,2 −w̃II,K −w̃II,K −w̃II,K

−w̃II,1 d̃1 −w1 −w1

−w̃II,1 −w1 d̃1 −w1

...
...

... . . .
−w̃II,1 −w1 −w1 d̃1
−w̃II,2 d̃2 −w2 −w2

−w̃II,2 −w2 d̃2 −w2

...
...

... . . .
−w̃II,2 −w2 −w2 d̃2
... . . . ...

...
−w̃II,K d̃K −wK −wK

−w̃II,K −wK d̃K −wK

...
...

... . . .
−w̃II,K −wK −wK d̃K


where d̃II =

∑K
j=1Njw̃II,j and d̃j = (Nj − 1)wj + w̃II,j. To compute the eigenvalues of the

Laplacian matrix L̃, det(L̃− λ̃I) = 0 is considered which can equivalently be written in matrix
form as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d̃II−λ̃ −w̃II,1 −w̃II,1 −w̃II,1 −w̃II,2 −w̃II,2 −w̃II,2 −w̃II,K −w̃II,K −w̃II,K

−w̃II,1 d̃1−λ̃ −w1 −w1

−w̃II,1 −w1 d̃1−λ̃ −w1

...
...

... . . .
−w̃II,1 −w1 −w1 d̃1−λ̃
−w̃II,2 d̃2−λ̃ −w2 −w2

−w̃II,2 −w2 d̃2−λ̃ −w2

...
...

... . . .
−w̃II,2 −w2 −w2 d̃2−λ̃
... . . . ...

...
−w̃II,K d̃K−λ̃ −wK −wK

−w̃II,K −wK d̃K−λ̃ −wK

...
...

... . . .
−w̃II,K −wK −wK d̃K−λ̃

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

To simplify the above determinant, the matrix determinant lemma (for details, see Lemma 1.1 in
[DZ07]) can be generalized as follows4

det(H+UV⊤) = det(H)det(I+V⊤H†U)

where H ∈ R(N+1)×(N+1) denotes an invertible matrix, I is the identity matrix and U,V ∈
R(N+1)×(N+1). Then, for det(L̃− λ̃I) = det(H+UV⊤) = 0, it follows that

4For a detailed information about the generalization of the matrix determinant lemma, see Section A.5.1.
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where zII =
∑K

j=1Njw̃II,j and zj = Njwj + w̃II,j for j = 1, . . . ,K. . Using the determinant
properties of block matrices (for details, see Section 2 in [Sil00]), it holds that

0 =

∣∣∣∣∣∣∣∣
1 −N1w̃II,1(z1−λ̃)−1 −N2w̃II,2(z2−λ̃)−1 ... −NKw̃II,K(zK−λ̃)−1

−w̃II,1(zII−λ̃)−1 −N1w1(z1−λ̃)−1+1 0 ... 0
−w̃II,2(zII−λ̃)−1 0 −N2w2(z2−λ̃)−1+1 ... 0

...
...

−w̃II,K(zII−λ̃)−1 0 ... −NKwK(zK−λ̃)−1+1

∣∣∣∣∣∣∣∣ det(H).

To simplify the determinant of the first matrix, it transformed into a lower diagonal matrix by
applying the following Gaussian elimination steps

N1w̃II,1(z1 − λ̃)−1

−N1w1(z1 − λ̃)−1 + 1
R2 + R1 → R1

N2w̃II,2(z2 − λ̃)−1

−N2w2(z2 − λ̃)−1 + 1
R3 + R1 → R1

...

NKw̃II,K(zK − λ̃)−1

−NKwK(zK − λ̃)−1 + 1
RK+1 + R1 → R1

where RK denotes the Kth row. Then, the simplified determinant can be written as

0 =cII(zII − λ̃)
K∏
i=1

(−Niwi(zi − λ̃)−1 + 1)
K∏
j=1

(zj − λ̃)Nj

where

cII =

(
1−

K∏
i=1

Niw̃II,i(zi − λ̃)−1w̃II,i(zII − λ̃)−1

−Niwi(zi − λ̃)−1 + 1

)
.

For zII =
∑K

j=1Njw̃II,j and zj = Njwj + w̃II,j such that j = 1, . . . ,K the determinant yields
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(a) G̃ = {Ṽ, Ẽ,W̃}

d̃1=5.8 d̃2=2.2 d̃3=10.4 d̃II=10.8
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−w1=−0.6 −w2=−0.3 −w3=−0.9
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(b) L̃ ∈ R(N+1)×(N+1)
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(c) λ̃λλ ∈ RN+1

Figure A.2: Examplary illustration of Theorem 4.S. (n = [1, 10, 8, 12]⊤ ∈ RK+1,N+ 1 = 31,K = 3).

0 =(zII − λ̃)−1

(
zII − λ̃ −

K∑
i=1

Niw̃II,i(zi − λ̃)−1w̃II,i

−Niwi(zi − λ̃)−1 + 1

)
(zII − λ̃)

K∏
j=1

(−Njwj(zj − λ̃)−1 + 1)
K∏
k=1

(zk − λ̃)Nk

0 =

(
K∑
i=1

(Niw̃II,i)− λ̃ −
K∑
j=1

Njw̃2
II,j

w̃II,j − λ̃

)
K∏
k=1

(w̃II,k − λ̃)
K∏
l=1

(Nlwl + w̃II,l − λ̃)Nl−1

0 =

(
− λ̃ +

K∑
i=1

(
Niw̃II,i −

Niw̃2
II,i

w̃II,i − λ̃

)) K∏
j=1

(w̃II,j − λ̃)
K∏
k=1

(Nkwk + w̃II,k − λ̃)Nk−1

0 =

(
− λ̃ −

K∑
i=1

Niw̃II,iλ̃
w̃II,i − λ̃

)
K∏
j=1

(w̃II,j − λ̃)
K∏
k=1

(Nkwk + w̃II,k − λ̃)Nk−1

0 =λ̃

(
− 1−

K∑
i=1

Niw̃II,i

w̃II,i − λ̃

)
K∏
j=1

(w̃II,j − λ̃)
K∏
k=1

(Nkwk + w̃II,k − λ̃)Nk−1

Now,N+ 1− K number of eigenvalues can be computed as

N1 − 1 elements of ~λλλ are equal to z1 = N1w1 + w̃II,1

N2 − 1 elements of ~λλλ are equal to z2 = N2w2 + w̃II,2
...
NK − 1 elements of ~λλλ are equal to zK = NKwK + w̃II,K

the smallest element of ~λλλ is equal to zero

and the remainingK number of eigenvalues are the roots of

0 =
K∏
j=1

(w̃II,j − λ̃)

(
−

K∑
j=1

Njw̃II,j

w̃II,j − λ̃
− 1

)
.
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A.2.2.2 Group Similarity Effect on Eigenvalues

This section analyzes group similarity effect on eigenvalues based on the standard eigen-
decomposition in Eq. (2.5).

Theorem. 5.S. Let W̃ ∈ RN×N define an affinity matrix, that is equal toW, except that block i
has similarity with the remaining K− 1 blocks with w̃i,j= w̃j,i>0 denoting the value around which
the similarity coefficients between blocks i and j are concentrated for j = 1, . . . ,K and i ̸= j. Then,
the eigenvalues λ̃λλ ∈ RN of L̃ ∈ RN×N are as follows:

Ni − 1 elements of ~λλλ are equal to Niwi +
K∑
j=1
j̸=i

Njw̃i,j

Nj − 1 elements of ~λλλ are equal to Njwj +Niw̃i,j
...
NK − 1 elements of ~λλλ are equal to NKwK +Niw̃i,K

the smallest element of ~λλλ is equal to zero

and the remaining K− 1 eigenvalues in λ̃λλ are the roots of

K∏
j=1
j ̸=i

(Niw̃i,j − λ̃)

(
K∑
j=1
j ̸=i

−
Njw̃i,j

Niw̃i,j − λ̃
− 1

)
=0

where λ̃ ∈ λ̃λλ.

Proof. Let L̃ ∈ RN×N denote the Laplacian matrix associated withK block zero diagonal affinity
matrix inwhich ith block has similaritywith the remainingK−1 number of blocks. For simplicity,
let i = 1, i.e.,

176



L̃ =



d̃1 −w1 ... −w1 −w̃1,2 ... −w̃1,2 ... −w̃1,K ... −w̃1,K

−w1 d̃1 ... −w1 −w̃1,2 −w̃1,2 ... −w̃1,K ... −w̃1,K

...
... . . . ... . . . ... . . .

−w1 −w1 ... d̃1 −w̃1,2 ... −w̃1,2 ... −w̃1,K ... −w̃1,K

−w̃1,2 ... −w̃1,2 d̃2 −w2 ... −w2

−w̃1,2 −w̃1,2 −w2 d̃2 ... −w2

... . . . ...
...

... . . .
−w̃1,2 ... −w̃1,2 −w2 −w2 ... d̃2
...

...
...

... . . . ...
...

−w̃1,K ... −w̃1,K d̃K −wK ... −wK

−w̃1,K −w̃1,K ... −wK d̃K ... −wK

...
...

...
... . . .

−w̃1,K −w̃1,K ... −wK −wK ... d̃K



where d̃1 = (N1 − 1)w1 +
∑K

j=2 Njw̃1,j and d̃j = (Nj − 1)wj +N1w̃1,j, j = 1, . . . ,K. To estimate
the eigenvalues of the Laplacian matrix L̃, det(L̃− λ̃I) = 0 is considered which can equivalently
be written in matrix form as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d̃1−λ̃ −w1 ... −w1 −w̃1,2 ... −w̃1,2 ... −w̃1,K ... −w̃1,K

−w1 d̃1−λ̃ ... −w1 −w̃1,2 −w̃1,2 ... −w̃1,K ... −w̃1,K

...
... . . . ... . . . ... . . .

−w1 −w1 ... d̃1−λ̃ −w̃1,2 ... −w̃1,2 ... −w̃1,K ... −w̃1,K

−w̃1,2 ... −w̃1,2 d̃2−λ̃ −w2 ... −w2

−w̃1,2 −w̃1,2 −w2 d̃2−λ̃ ... −w2

... . . . ...
...

... . . .
−w̃1,2 ... −w̃1,2 −w2 −w2 ... d̃2−λ̃
...

...
...

... . . . ...
...

−w̃1,K ... −w̃1,K d̃K−λ̃ −wK ... −wK

−w̃1,K −w̃1,K ... −wK d̃K−λ̃ ... −wK

...
...

...
... . . .

−w̃1,K −w̃1,K ... −wK −wK ... d̃K−λ̃

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

To simplify, the matrix determinant lemma (for details, see Lemma 1.1 in [DZ07]) can be
generalized as follows5

det(H+UV⊤) = det(H)det(I+V⊤H†U)

where H ∈ R(N+1)×(N+1) denotes an invertible matrix, I is the identity matrix and U,V ∈
R(N+1)×(N+1). Then, for det(L̃− λ̃I) = det(H+UV⊤) = 0, it follows that

5For a detailed information about the generalization of the matrix determinant lemma, see Section A.5.1.
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where z1 = N1w1 +
∑K

j=2Njw̃1,j and zj = Njwj +N1w̃1,j for j = 2, . . . ,K. Using the determinant
properties of block matrices (for details, see Section 2 in [Sil00]), it holds that

0 = det(H)

∣∣∣∣∣∣∣∣
−N1w1(z1−λ̃)−1+1 −N2w̃1,2(z2−λ̃)−1 −N3w̃1,3(z3−λ̃)−1 ... −NKw̃1,K(zK−λ̃)−1

−N1w̃1,2(z1−λ̃)−1 −N2w2(z2−λ̃)−1+1 0 ... 0
−N1w̃1,3(z1−λ̃)−1 0 −N3w3(z3−λ̃)−1+1 ... 0

...
...

−N1w̃1,K(z1−λ̃)−1 0 ... −NKwK(zK−λ̃)−1+1

∣∣∣∣∣∣∣∣.
To simplify the determinant of the second matrix, it transformed into a lower diagonal matrix by
applying the following Gaussian elimination steps

N2w̃1,2(z2 − λ̃)−1

−N2w2(z2 − λ̃)−1 + 1
R2 + R1 → R1

N3w̃1,3(z3 − λ̃)−1

−N3w3(z3 − λ̃)−1 + 1
R3 + R1 → R1

...

NKw̃1,K(zK − λ̃)−1

−NKwK(zK − λ̃)−1 + 1
RK + R1 → R1

whereRK denotes theKth row. Then, the simplified determinant yields

0 = det(H)

∣∣∣∣∣∣∣∣
c1 0 0 ... 0

−N1w̃1,2(z1−λ̃)−1 −N2w2(z2−λ̃)−1+1 0 ... 0
−N1w̃1,3(z1−λ̃)−1 0 −N3w3(z3−λ̃)−1+1 ... 0

...
...

−N1w̃1,K(z1−λ̃)−1 0 ... −NKwK(zK−λ̃)−1+1

∣∣∣∣∣∣∣∣
where c1 equals to

c1 = −N1w1(z1 − λ̃)−1 + 1−
K∑
i=2

Niw̃1,i(zi − λ̃)−1N1w̃1,i(z1 − λ̃)−1

−Niwi(zi − λ̃)−1 + 1
.

For z1 = N1w1 +
∑K

j=2 Njw̃1,j and zj = Njwj + N1w̃1,j such that j = 2, . . . ,K, the determinant
det(L̃− λ̃I) = 0 yields
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(a) G̃ = {Ṽ, Ẽ,W̃}
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Figure A.3: Examplary illustration of Theorem 5.S.(n = [10, 8, 12]⊤ ∈ RK,N = 30,K = 3, i = 1).

0 =c1
K∏
i=1

(zi − λ̃)Ni

K∏
j=2

(−Njwj(zj − λ̃)−1 + 1)

0 =c1(z1 − λ̃)N1

K∏
i=2

(−Niwi(zi − λ̃)Ni−1 + (zi − λ̃)Ni)

0 =(z1 − λ̃)−1

(
−N1w1 + z1 − λ̃ −

K∑
i=2

Niw̃1,i(zi − λ̃)−1N1w̃1,i

−Niwi(zi − λ̃)−1 + 1

)
(z1 − λ̃)N1

K∏
j=2

(zj − λ̃)Nj−1
K∏

k=2

(−Nkwk + zk − λ̃)

0 =

(
−N1w1 + z1 − λ̃ −

K∑
i=2

Niw̃1,i(zi − λ̃)−1N1w̃1,i

−Niwi(zi − λ̃)−1 + 1

)
K∏
j=1

(zj − λ̃)Nj−1
K∏

k=2

(−Nkwk + zk − λ̃)

0 =

(
K∑
i=2

(Niw̃1,i)− λ̃ −
K∑
j=2

N1Njw̃2
1,j

N1w̃1,j − λ̃

)(
N1w1 +

K∑
k=2

Nkw̃1,k − λ̃
)N1−1 K∏

l=2

(
Nlwl +N1w̃1,l − λ̃

)Nl−1 K∏
p=2

(N1w̃1,p − λ̃)

0 =λ̃

(
− 1−

K∑
i=2

Niw̃1,i

N1w̃1,i − λ̃

)(
N1w1 +

K∑
j=2

Njw̃1,j − λ̃
)N1−1 K∏

k=2

(
Nkwk +N1w̃1,k − λ̃

)Nk−1 K∏
l=2

(N1w̃1,l − λ̃)

Based on this, theN+ 1− K number of eigenvalues are

N1 − 1 elements of ~λλλ are equal to N1w1 +
K∑
j=2

Njw̃1,j

N2 − 1 elements of ~λλλ are equal to N2w2 +N1w̃1,2
...
NK − 1 elements of ~λλλ are equal to NKwK +N1w̃1,K

the smallest element of ~λλλ is equal to zero
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and additionallyK− 1 number of eigenvalues are roots of the following equation

K∏
j=2

(N1w̃1,j − λ̃)

(
−

K∑
j=2

Njw̃1,j

N1w̃1,j − λ̃
− 1

)
= 0.

A.3 Outlier Effects on the Fiedler Vector

A.3.0.1 Proof of Preposition 4.4.1

For simplicity, let W ∈ RN×N and the corresponding Laplacian L ∈ RN×N consist of K = 2
blocks. To compute the eigenvectors associated with the two smallest (zero-valued) eigenvalues,
the ym ∈ {y0,y1}, where ym is the eigenvector associated with the mth eigenvalue λm of L, we
consider the eigen-decompositions Lym = λmym and Lym = λmDym whose corresponding
eigenvectors are equivalent and can be written as 6

y1,0
y1,0
y3,0
y3,0



y1,1
y1,1
y3,1
y3,1


where yn,m denotes the nth embedding results in the ym. Adding a single outlier to the affinity
matrixW leads to the corrupted affinity matrix, weight matrix and Laplacian matrix denoted as
W̃ ∈ R(N+1)×(N+1), D̃ ∈ R(N+1)×(N+1) and L̃ ∈ R(N+1)×(N+1), respectively. Since aType I outlier
can be considered as a single-element block, the eigenvectors associated with the three smallest
(zero-valued) eigenvalues, i.e. ỹm ∈ {ỹ0, . . . , ỹ2}, where ỹm is the eigenvector associated with
themth eigenvalue λ̃m for L̃, are equivalent for both eigen-decompositions

ỹ1,0
ỹ1,0
ỹ3,0
ỹ3,0
ỹoI,0




ỹ1,1
ỹ1,1
ỹ3,1
ỹ3,1
ỹoI,1




ỹ1,2
ỹ1,2
ỹ3,2
ỹ3,2
ỹoI,2

 .

6For a detailed discussion about the eigen-decomposition ofL, see [Lux07].
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Here, ỹn,m denotes the nth embedding result in the mth eigenvector and ỹoI,m is the embedding
result of the outlier in the mth eigenvector of the corrupted Laplacian matrix L̃. According to
the information that eigenvectors are indicator vectors of connected components [Lux07], for a
Fiedler vector that is associated with the eigenvalue corresponding to Type I outlier |̃yoI,F| → 1,
the remaining embedding results associated with different blocks become small-valued to satisfy
∥ỹF∥22 = 1. As a result, the Euclidean distance between embeddings of different blocks decreases
to zero.

A.3.0.2 Proof of Preposition 4.4.2

The eigenvectors associated with the Laplacian matrix L ∈ RN×N of distinct blocks are identical
for both eigen-decompositions Lym = λmym and Lym = λmDym. Then, the matrix
Y = [y0, . . . ,yK−1] ∈ RN×K, i.e., forK = 2

Y =


0 y1,1
0 y1,1
y3,0 0
y3,0 0

 .

The next step is to design the matrix Ỹ = [ỹ0, . . . , ỹK−1] ∈ RN×K using the eigenvectors of the
corrupted Laplacian matrix L̃ ∈ RN×N based on, respectively, the standard eigen-decomposition
Lym = λmym and the generalized oneLym = λmDym as7

Ỹ =


ỹ1,0 ỹ1,1
ỹ1,0 ỹ1,1
ỹ1,0 −ỹ1,1
ỹ1,0 −ỹ1,1

 Ỹ =


ỹ1,0 ỹ1,1
ỹ1,0 ỹ1,1
ỹ1,0 ỹ3,1
ỹ1,0 ỹ3,1


By looking at the first column of Ỹ associated with the smallest eigenvalue λ̃0, it is evident that
all feature vectors are embedded onto the same location ỹ1,1 for the eigen-decompositions Lym =

λmym andLym = λmDym.

7For a detailed information about the eigenvectors of L̃, see Appendix C.1 and C.2 in [TMZ22].
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A.4 Theoretical Analysis of RRLPI

A.4.0.1 Proof of Theorem 9

The objective function of RLPI, for the transformation vector βββm, is given by

L(X, ŷm, β̂ββm) = ∥ym −X⊤βββm∥2 + γ∥βββm∥2.

Introducing the weight matrixΩΩΩ ∈ RN×N leads to:

L(X, ŷm, β̂ββm) =ΩΩΩ∥ym −X⊤βββm∥2 + γ∥βββm∥2

=tr[ΩΩΩymy
⊤
m − 2ΩΩΩym(X

⊤βββm)⊤ +ΩΩΩX⊤βββm(X⊤βββm)⊤] + γtr(βββmβββ⊤m)

=tr[ΩΩΩyy⊤
m − 2ΩΩΩymβββ⊤mX+ΩΩΩX⊤βββmβββ⊤mX] + γtr(βββmβββ⊤m)

=tr[ΩΩΩymy
⊤
m − 2ΩΩΩyβββ⊤mX+ βββmβββ⊤m(XΩΩΩX⊤ + γI)]

Setting the derivative of the right hand side with respect to βββm to zero, yields

−2XΩΩΩym + 2βββm(XΩΩΩX⊤ + γI) = 0.

Thus,

β̂ββm = (XΩΩΩX⊤ + γI)−1XΩΩΩym.

For a Fiedler vector estimate ym = yF, substituting ΩΩΩ = I in Eq. (4.38) shows that RLPI is a
special case of RRLPI and substitutingΩΩΩ = I and γ→ 0 leads to LPI.
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A.4.0.2 Proof of Theorem 10

Suppose that rank(X) = rX, the SVD ofX is

X = UΣΣΣV⊤,

where ΣΣΣ = diag(Σ1, . . . ,ΣrX),U ∈ RM×rX ,V ∈ RN×rX andU⊤U = V⊤V = I. This can be
generalized using the weighted singular value decomposition [Gal96], i.e.,

X∗ = UΣΣΣV⊤ΩΩΩ.

whereΩΩΩ ∈ RN×N is a square positive definite symmetric weight matrix such thatV⊤ΩΩΩV = I.
LetV∗ be a weighted matrix whose columns are weighted orthonormal eigenvectors ofV, i.e.,

V∗ =ΩΩΩV. Then, the orthogonality term can be equivalently written asV⊤V∗ = I. The Fiedler
vectoryF is in the space spanned by the column vectors ofV∗, becauseyF is spanned by row vectors
of the weighted data matrixX∗. Accordingly, the Fiedler vector yF can be represented as a unique
linear combination of the linearly independent column vectors ofV∗. For a set of combination
coefficients b ∈ RrX ,

V∗b =yF

ΩΩΩVb =yF

V⊤ΩΩΩVb =V⊤yF

b =V⊤yF.

Substituting b = V⊤yF intoV∗b = yF, yieldsV∗V⊤y = yF. To continue, using the pseudo
inverse of the data matrixX† and the weighted data matrix (X∗)† which can be written as 8

X† = VΣΣΣ−1U⊤

and

(X∗)† = VΣΣΣ−1U⊤ΨΨΨ,

8For a detailed discussion about the inverse of the weighted data matrix (X∗)†, see Section A.5.2.
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it follows that

β̂ββF = (XΩΩΩX⊤ + γσ2I)−1XΩΩΩyF = (X∗X⊤ + γσ2I)−1X∗yF.

For γ→ 0

β̂ββF =(X∗X⊤ + γσ2I)−1X∗yF = (X⊤)−1(X∗)−1X∗yF = UΣΣΣ−1V⊤VΣΣΣ−1U⊤ΨΨΨUΣΣΣV⊤ΩΩΩyF

=UΣΣΣ−1V⊤V(V)−1yF = UΣΣΣ−1V⊤yF.

Further, inserting the equation for βββF into ŷF = X⊤β̂ββF leads to

ŷF = X⊤β̂ββF = VΣΣΣU⊤UΣΣΣ−1V⊤yF = yF.

This shows that β̂ββF is the eigenvector of eigen-problem in Eq. (4.29) for γ→ 0.

A.4.0.3 Proof of Corollary 10.1

Based on Theorem 10, it holds that for rank(X) = N all eigenvectors y0, . . . ,yN−1 associated
with λ0 ≤ λ1 ≤ . . . λN−1 are in the space spanned by the row vectors ofX and the transformation
vector for themth eigenvector is

β̂ββ
(RRLPI)
m = UΣΣΣ−1V⊤ym,

where γ → 0,U⊤ΨΨΨU = I andV⊤ΩΩΩV = I. If all feature vectors are linearly independent, each
transformation vector is unique and is equal to the transformation functions of LPI, i.e.,

β̂ββ
(LPI)
m = UΣΣΣ−1V⊤ym = βββ(RRLPI)m .

185



A.5 Auxiliary Information

A.5.1 The GeneralizedMatrix Determinant Lemma

LetM ∈ R2N×2N be a block matrix that can be shown as[
H U

−V⊤ I

]

where I ∈ RN×N is the identity matrix andH,U,V ∈ RN×N. Using the determinant properties
of block matrices with non-commuting blocks (for details, see Section 2 in [Sil00]), for−V⊤I =

I(−V⊤) the determinant ofM can be written as follows

det(M) = det(HI−U(−V⊤)) = det(H+UV⊤).

Now, the next step is to simplify the determinant det(H+UV⊤) by computing a block diagonal
matrix using Gaussian elimination. First, the entry underH is eliminated as follows[

I 0
V⊤H† I

][
H U

−V⊤ I

]
=

[
H U

0 V⊤H†U+ I

]
.

Then, the entry above I is eliminated as[
H U

−V⊤ I

][
I −H†U

0 I

]
=

[
H 0
−V⊤ V⊤H†U+ I

]
.

Combining these two operations leads to[
I 0

V⊤H† I

][
H U

−V⊤ I

][
I −H†U

0 I

]
=

[
H 0
0 V⊤H†U+ I

]
.

Consequently, the determinant yields

det

([
I 0

V⊤H† I

][
H U

−V⊤ I

][
I −H†U

0 I

])
= det

([
H 0
0 V⊤H†U+ I

])
det(H+UV⊤) = det(H)det(I+V⊤H†U)

.
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A.5.2 Moore-Penrose Inverse ofWeighted DataMatrix

LetX ∈ RM×N, ΩΩΩ ∈ RN×N and ΨΨΨ ∈ RM×M denote a data matrix, and positive definite weight
matrices, respectively. If there exist matrices ΩΩΩ and ΨΨΨ that satisfyU⊤ΨΨΨU = I andV⊤ΩΩΩV = I

such thatX∗ = UΣΣΣV⊤ΩΩΩ, the weightedMoore-Penrose inverse (X∗)† can be written as

(X∗)† = VΣΣΣ−1U⊤ΨΨΨ

if it satisfies four conditions that are examined as

• X∗(X∗)†X∗ ?
= X∗

X∗(X∗)†X∗ = UΣΣΣV⊤ΩΩΩVΣΣΣ−1U⊤ΨΨΨUΣΣΣV⊤ΩΩΩ = UΣΣΣΣΣΣ−1ΣΣΣV⊤ΩΩΩ = UΣΣΣV⊤ΩΩΩ = X∗

• (X∗)†X∗(X∗)†
?
= (X∗)†

(X∗)†X∗(X∗)† = VΣΣΣ−1U⊤ΨΨΨUΣΣΣV⊤ΩΩΩVΣΣΣ−1U⊤ΨΨΨ = VΣΣΣ−1ΣΣΣΣΣΣ−1U⊤ΨΨΨ = VΣΣΣ−1U⊤ΨΨΨ = (X∗)†

• (ΨΨΨX∗(X∗)†)⊤
?
= ΨΨΨX∗(X∗)†

(ΨΨΨX∗(X∗)†)⊤ = (ΨΨΨUΣΣΣV⊤ΩΩΩVΣΣΣ−1U⊤ΨΨΨ)⊤ = (ΨΨΨUU⊤ΨΨΨ)⊤ = ((U⊤)−1U−1)⊤ = (U⊤)−1U−1 = ΨΨΨX∗(X∗)†

• (ΩΩΩ(X∗)†X∗)⊤
?
=ΩΩΩ(X∗)†X∗

(ΩΩΩ(X∗)†X∗)⊤ = (ΩΩΩVΣΣΣ−1U⊤ΨΨΨUΣΣΣV⊤ΩΩΩ)⊤ = (ΩΩΩVV⊤ΩΩΩ)⊤ = ((V⊤)−1V−1)⊤ = (V⊤)−1V−1 =ΩΩΩ(X∗)†X∗

Thus, for weight matricesΩΩΩ andΨΨΨ, which satisfyU⊤ΨΨΨU = I andV⊤ΩΩΩV = I such thatX∗ =

UΣΣΣV⊤ΩΩΩ, there exists a Moore-Penrose inverse of the weighted data matrix (X∗)†.
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B
Additional Information for Robust Graph

Clustering Methods

This chapter providesmethodological and experimental details, respectively, for the SPARCODE,
FRS-BDR and RRLPI methods.

B.1 Additional Information for SPARCODE

B.1.1 Scenario 1

The SBM1(N,ααα,B) is defined using following parameters: N = 300 number of vertices, K = 7
communities, a probability vector ααα =

[Nc1
N , . . . ,

NcK
N

]
, and a symmetric connectivity matrixB ∈

RK×K whose bci,cjth element denotes the probability of an edge between cith and cjth community
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block. For this simulation,B is chosen as

B =



1 1 1 0 0 1 0
1 1 0 1 1 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
1 0 0 0 0 1 0
0 0 0 0 0 0 1


.

The affinity matrix W ∈ Rn×n, whose entries vary between zero and one, is symmetric, zero-
diagonal and nonnegative. The community blocks are labelled as c1, . . . , c7, and the density
parameters (μ and σ) of similarity coefficients for within community and between community
connections are summarized in Tab. B.1. The number of vertices for each block is denoted as
Nc. The similarity coefficients are generated as w = bci,cj(μci,cj + rσci,cj) s.t. w ∈ bci,cj where r is a
random real number distributed asU[0, 1).

c1 c2 c3 c4 c5 c6 c7 Nc

c1
μ 0.8 0.005 0.35 - - 0.25 - 45σ 0.19 0.0045 0.1 - - 0.05 -

c2
μ 0.005 0.7 - 0.35 0.19 - - 40σ 0.0045 0.1 - 0.1 0.15 - -

c3
μ 0.35 - 0.9 - - - - 55σ 0.1 - 0.09 - - - -

c4
μ - 0.35 - 0.85 - - - 42σ - 0.1 - 0.14 - - -

c5
μ - 0.19 - - 0.79 - - 37σ - 0.15 - - 0.15 - -

c6
μ 0.25 - - - - 0.85 - 46σ 0.05 - - - - 0.14 -

c7
μ - - - - - - 0.95 35σ - - - - - - 0.04

Table B.1: Similarity coefficients for seven object communities for Scenario 1. The density parameters of similarity coefficients
associated with bci,cj = 0 are denotes as ’‐’.

189



B.1.2 Scenario 2

The SBM2(N,ααα,B) considers N = 300 number of vertices, K = 3 number of communities, a
probability vector ααα =

[Nc1
N , . . . ,

NcK
N

]
, and a symmetric connectivity matrixB ∈ RK×K where

B =


1 1 0 1
1 1 1 1
0 1 1 1
1 1 1 1

 .

The communities are labelled as c1, . . . , c3, and the outliers as o. The density parameters of
similarity coefficients for intra-community, outer-community blocks and outliers are summarized
in Tab. B.2. Both the number of vertices of communities and outliers are denoted as Nc. The
similarity coefficients are generated with the same principle in the Appendix B.1.1.

c1 c2 c3 o Nc

c1
μ 0.7 0.01 - 0.005 66σ 0.29 0.29 - 0.025

c2
μ 0.01 0.8 0.27 0.005 102σ 0.29 0.19 0.1 0.025

c3
μ - 0.27 0.7 0.005 90σ - 0.1 0.24 0.025

o μ 0.005 0.005 0.005 0.005 42σ 0.025 0.025 0.025 0.025

Table B.2: Similarity coefficients for three object communities and outliers for Scenario 2. The density parameters of similarity
coefficients associated with bci,cj = 0 denotes as ’‐’.
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B.2 Additional Information for FRS-BDR

B.2.1 Visual Summary of FRS-BDR

L ∈ RN×N G = {V,E,W}

1
×

2 3 4 5 6 7 8 9 10 11 12
×

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1×
2
3
4
5
6
7
8
9
10
11
12×
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

d1 d2 d3 dI = −wI = 0

−w1 −w2 −w3

−w̃1,2 −w̃1,3 −w̃2,3

(a) Initialization

L̇ ∈ R(N−NI)×(N−NI) Ġ = {V̇, Ė,Ẇ}

oI
×

1 2 3 4 5 6 7 8 9 10 oI
×

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
oI×
1
2
3
4
5
6
7
8
9
10
oI×
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

d1 d2 d3 dI = −wI ̸∈ L̇

−w1 −w2 −w3

−w̃1,2 −w̃1,3 −w̃2,3

(b) Step 1.1: Type I Outlier Removal
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L̈ ∈ R(N−NI)×(N−NI) G̈ = {V̈, Ë,Ẅ}
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v̈ ∈ RN−NI

d1 d2 d3
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(c) Step 1.2: Similarity‐based Block Diagonal Ordering (sBDO)

˙̇L̇ ∈ R(N−NI)×(N−NI) ˙̇Ġ = { ˙̇ ˙V , ˙̇Ė, ˙̇Ẇ}
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(d) Step 1.3: Increase Sparsity for Excessive Group Similarity
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˙̇v̇ ∈ RN−NI

(Nc = 2×Kcand = 2× 3 = 6)

τ̂0

τ̂1
τ̂2

τ̂3
τ̂4

τ̂5
τ̂6

8 4 18 n1

8 6 16 n2

8 8 14 n3

8 10 12 n4

8 15 7 n5

12 2 16 n6

12 4 14 n7

12 6 12 n8

12 11 7 n9

14 2 14 n10

14 4 12 n11

14 9 7 n12

16 2 12 n13

16 7 7 n14

18 5 7 n15

N(K) = [n1,n2, . . . ,nζ ]
⊤ ∈ Zζ×K

+

ζ =
(

Nc

K−1

)
=

(
6
2

)
= 15

(e) Step 2.1: Compute Candidate Block Sizes
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(f) Step 2.2.1: Estimate Target Similarity Coefficients diag(Wsim)
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(g) Step 2.2.2: Estimate Undesired Similarity Coefficients (i = 2, j = 1)
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(h) Step 2.2.2: Estimate Undesired Similarity Coefficients (i = 3, j = 1)
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(i) Step 2.2.2: Estimate Undesired Similarity Coefficients (i = 3, j = 2)
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Figure B.1: Visual summary of FRS‐BDR
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B.2.2 Sparse LaplacianMatrix Analysis

In Step 1.3, a sparse Laplacian matrix has been determined in which second smallest eigenvalue
λ1 closes to zero. Considering eigenvalues of Laplacian matrix, that is associated with target
block zero-diagonal symmetric affinity matrix, λ1 is definitely zero-valued. However, in real-
world applications the distinct blocks may include negligibly small valued undesired similarity
coefficients between different blocks. These coefficients result in an increase of λ1 and affect
definition of ”close to zero”. Therefore, this section provides set of experiments for determining a
sparse Laplacian matrix.

In Theorem 5 it has been shown that multiple group similarity results in additional increase in
the vector of eigenvalues. Therefore, for simplicity, W̃ ∈ RN×N defining a K = 2 block affinity
matrix and associated Laplacian matrix L̃ ∈ RN×N are considered in the experiments. In W̃ ∈
RN×N each block Wi, i = 1, 2 is associated to a number Ni ∈ Z+ > 1 of feature vectors and
concentrated around a similarity constant wi ∈ R+, i = 1, 2 with negligibly small variations.
Further, w̃i,j denotes a constant around which the similarity coefficients between blocks i and j are
concentrated, i.e.

W̃ =



0 w1 ... w1 w̃1,2 ... w̃1,2
w1 0 ... w1 w̃1,2 w̃1,2

...
... . . . ... . . . ...

w1 w1 ... 0 w̃1,2 ... w̃1,2
w̃1,2 ... w̃1,2 0 w2 ... w2
w̃1,2 w̃1,2 w2 0 ... w2

... . . . ...
...

... . . . ...
w̃1,2 ... w̃1,2 w2 w2 ... 0

 and L̃ =



d̃1 −w1 ... −w1 −w̃1,2 ... −w̃1,2

−w1 d̃1 ... −w1 −w̃1,2 −w̃1,2

...
... . . . ... . . . ...

−w1 −w1 ... d̃1 −w̃1,2 ... −w̃1,2

−w̃1,2 ... −w̃1,2 d̃2 −w2 ... −w2

−w̃1,2 −w̃1,2 −w2 d̃2 ... −w2

... . . . ...
...

... . . . ...
−w̃1,2 ... −w̃1,2 −w2 −w2 ... d̃2


,

where d̃1 = (N1 − 1)w1 +N2w̃1,2, d̃2 = (N2 − 1)w2 +N1w̃1,2 and wi > w̃1,2, i = 1, 2. According
to the generalized eigen-decomposition, the second smallest eigenvalue λ1 of L̃ is

λ1 =
d̃1N1w̃1,2 + d̃2N2w̃1,2

d̃1d̃2
.

Based on this, for w̃1,2 → 1 and wi > w̃1,2, i = 1, 2, λ1 reaches its maximum value

λ1max =
N1 +N2

N1 +N2 − 1

which tends to 1 forN1+N2 ≫ 1. Even though themaximum value of λ1 is explicit, its minimum
value depends on different variablesNi, wi and w̃i,j for i = 1, 2, j = 1, 2 and i ̸= j. Therefore, λ1
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Figure B.2: λ1 for increasing values of α associated with generalized eigen‐decomposition

is analyzed as a function of α for different block size values in Fig. B.2. Here, α denotes the ratio
between smallest target similarity coefficient wmin and that of undesired w̃i,j for i = 1, 2, j = 1, 2
and i ̸= j. As can be seen, the second smallest eigenvalue λ1 decreases to zero for w1 ≫ w̃1,2 and
w2 ≫ w̃1,2.

In contrast to generalized eigen-decomposition, the second smallest eigenvalue λ1 of L̃ associated
to the standard eigen-decomposition does not affected by target similarity coefficients, i.e. λ1 =

w̃1,2(N1 +N2).
AsNi > 1, i = 1, 2, λ1 can be reduced to zero for considerably small-valued undesired similarity

coefficients. Therefore, λ1 is analyzed as a function of w̃1,2 for different block size values in Fig. B.3.
The figure implies that the value of undesired similarity coefficients is directly linked to closeness
to zero. Therefore, the closeness to zero can be determined according to total sample size and
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Figure B.3: λ1 for increasing values of w̃1,2 associated with standard eigen‐decomposition

desired value of undesired similarity. To summarize, the eigenvalues based on generalized eigen-
decomposition are less sensitive to block sizes which makes definition of close easier. As a result,
based on the assumption that target similarity coefficients considerably larger valued than that of
undesired coefficients, a selected λ1 value smaller than 0.05 might be sufficient to obtain sparse
Laplacian matrices. In the proposed default setting, a Laplacian matrix is assumed to be sparse if
its second smallest eigenvalue is valued by 0 ≤ λ1 < 10−3.

B.2.3 Computational Complexity Analysis

Due to its essential role in graph analysis, the computational complexity of the proposedFRS-BDR
method is analyzed in terms of its main operations. The computational analysis is detailed using
the following terms [Ste01], [Ste98]:

fladd : an operation that consists of a floating-point addition

flmlt : an operation that consists of a floating-point multiplication

fldiv : an operation that consists of a floating-point division

flam : a compound operation that consists of one addition and one multiplication

Additionally, the Landau’s big O symbol is used when the complexity is not specified as above
terms. In the sequel, the computational complexity of the proposed approach is detailed for the
fundamental steps.
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B.2.3.0.1 Initial Graph Construction
As in [CHZ07], the pairwise cosine similarity which takes 1

2N
2M + 2NM flam can be used for

constructing an initial graphG.

B.2.3.0.2 Step 1: Enhancing BD Structure
Step 1.1 (optional): Type I Outlier Removal
Since removing unconnected vertices associated with Type I outliers results in negligibly smaller
cost in comparison to remaining estimation steps, the complexity of Type I outlier removal is
ignored in the complexity analysis.

Step 1.2: sBDO Algorithm
In this step, the complexity of sBDO algorithm is detailed for two main operations as follows.

To determine the starting nodes, the overall edge weights must be sorted which is of complexity
O(NlogN) and there are computationally efficient alternatives such as [Han20] for which the
complexity is reduced toO(N

√
logN).

The secondmain operation is adding themost similar node to the vector of previously estimated
nodes. For a vector of previously estimated nodes b̂(s) ∈ Zs−1

+ at the sth stage, the method sums
up the similarity coefficients that takes s − 2 additions for every neighbor. For N(s)

neigh number of
neighbors, it follows that

N∑
s=2

(s− 2)N(s)
neigh

fladd. Even though the complexity is directly linked to number of neighbors, it can be explicitly
calculated if every node is connected to remainingN− 1 number of nodes, i.e.

N∑
s=2

(s− 2)(N− s+ 1)

fladd. In addition to similarity computation, the method sorts vector of neighbor similarities
to find the most similar node. This sorting operation results in minimum O(N(s)

neigh

√
logN(s)

neigh)

complexity at every stage s = 2, . . . ,N.
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Step 1.3 (optional): Increase Sparsity for Excessive Group Similarity
This step evaluates computational complexity of sparse Laplacian matrix design for the two
examplary algorithms which have been provided in Section B.2.4.
Sparse Laplacian Matrix Design based on Adaptive Thresholding: As eigen-decomposition
and sorting operations are computationally demanding in comparison to thresholding operation,
the complexity is detailed in terms of these two main processes. The proposed sparse Laplacian
matrix design computes eigenvalues for each iteration in which e.g. MATLABuses a Krylov Schur
decomposition [Ste02]. The decomposition is built upon two main phases that are known as
expansion and contraction. The computational cost of decomposition mainly depends on these
phases when N is larger than NLan, where NLan denotes the number of Lanczos basis vectors
(preferably chosen as NLan ≥ 2Neig for Neig eigenvectors). In more details, the expansion
phase requires between N(N2

Lan − N2
eig) flam and 2N(N2

Lan − N2
eig) flam while the contraction

phase requires NNLanNeig flam [Ste01]. To find the second smallest eigenvalues, the computed
eigenvalues must be sorted which is of complexity O(N

√
logN) in [Han20]. WhenNLan → N,

the cost of eigen-decomposition dominates the sorting operation. Thus, sparse Laplacian matrix
design using adaptive thresholding with respect to flam yields minimally

Niter(N(N2
Lan −N2

eig) +NNLanNeig),

whereNiter denotes the number of performed iterations to achieve a sparse Laplacian matrix.
Sparse Laplacian Matrix Design based on p-Nearest Neighbor Graph: In contrast to
adaptive thresholding-based graph construction, computing a p-nearest neighbor graph results in
considerable cost. In addition to eigen-decomposition and sorting operations, the algorithm finds
p-nearest neighbors which is of complexity N2logN flam [CHZ07] in each iteration. Therefore,
the overall computational cost of sparse Laplacian matrix design using p-nearest graph is written
in terms of flam as follows

Npiter(N(N2
Lan −N2

eig) +NNLanNeig +N2logN).
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B.2.3.0.3 Step 2: Estimating Vector v
Step 2.1: Computing Candidate Block Sizes
The estimation of candidate block size matrix can mainly be attributed to changepoint detection
which is a widely researched topic in the literature and there are variety of different alternatives for
changepoint detection, e.g. binary segmentation (BS) or optimal partitioning (OP) approaches.
In [KFE12], the computational cost of BS and OP are indicated as O(NlogN) and O(N2),
respectively. Then, a computationally efficient the pruned exact linear time (PELT) method has
been provided. The complexity of the PELT method is O(N) (under certain conditions) which
can be reachO(N2) in the worst-case [KFE12].

Step 2.2: EstimatingMatrix of Similarity Coefficients
Step 2.2.1: Estimating Target Similarity Coefficients
Since the eigen-decomposition of 2 × 2 matrix does not require a considerable time, the
computational complexity of plane-based piece wise linear fitting algorithm in [YYZ19] mainly
depends on covariance matrix and the mean vector estimation.

First, let consider the covariance matrix computation. For two random vectors, the
covariance function includes N executions where each execution includes two addition and one
multiplication. Therefore, it can be said that calculation of covariance for two random vectors
requires 2Nfladd+Nflmlt+ 1fldiv. As vector ...v fitting generates covariance matrix of dimension
2× 2, our covariance matrix computation necessitates 6Nfladd+ 3Nflmlt+ 3fldiv.

After computing covariancematrix, themean operator includingN−1 additions and a division
is executed two times for two vectors. Thus, mean vector computation mainly requires 2(N − 1)
fladd+2 fldiv and total piece-wise linear fitting complexity results in 8N− 2 fladd+3N flmlt+5
fldiv.

Step 2.2.2: Estimating Undesired Similarity Coefficients
The undesired similarity coefficients’ estimation consists of two consecutive steps. For every
candidate size vector nr = [Nr1 ,Nr2 , . . . ,NrKcand ] ∈ ZKcand

+ the proposed method first computes
shifted vector whose complexity principally depends on vector of increase computation. To
compute a vector of increase associated with group similarity between block i and j, the method
executesNri times where each execution includesNrj − 1 addition. This means that the vector of
increase associatedwith group similarity betweenblock i and j results inNri(Nrj−1)fladd. Further,
the algorithm finds median of computed vector which is of dimension Nri × 1. To compute
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the median, the vector can be sorted in O(Nri
√

logNri) complexity using [Han20]. When size
of the jth block Nrj is sufficiently large valued, the vector of increase computation dominates
median operation. Therefore, computing an undesired similarity coefficient corresponds to group
similarity between block i and j takes minimally Nri(Nrj − 1) fladd and that can be written for
i = 2, . . . ,Kcand and j = 1, . . . , i− 1 as follows

Kcand∑
i=2

i−1∑
j=1

Nri(Nrj − 1) fladd.

To summarize, estimating the similarity coefficients matrix Ŵ(r)
sim and the vector v̂(r) ∈ RN

associated with a candidate block size vector nr ∈ ZKcand
+ requires minimally

Kcand(8N− 2 fladd+ 3N flmlt+ 5 fldiv)

+

Kcand∑
i=2

i−1∑
j=1

Nri(Nrj − 1) fladd.

To compute all possible Ŵ
(r)
sim ∈ RKcand×Kcand and .̂..

v
(r) ∈ RN correspond to

N(Kcand) = [n1,n2, . . . ,nζ]
⊤ ∈ Zζ×Kcand

+ for Kcand = Kmin, . . . ,Kmax, the proposed method
requires

ζ
(
Kcand(8N− 2 fladd+ 3N flmlt+ 5 fldiv)

+

Kcand∑
i=2

i−1∑
j=1

Nri(Nrj − 1) fladd
)
.

When the number of candidate block size vectors increases, the complexity of these numerous
operations is significantly larger than changepoint detection using PELT method. Thus, its
computational cost can be ignored in vector v estimation.
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B.2.4 Additional Algorithms

Algorithm 10: Sparse LaplacianMatrix Design using Adaptive Thresholding
Input: a non-sparse affinity matrix Ẅ ∈ R(N−NI)×(N−NI), initial threshold Tini (optional,

default is Tini = 0.5), increasement constant Tinc (optional, default is Tinc = 10−3)
Set T = Tini
while T < 1 do

Compute affinity matrix Ẅ(T) which is equal to Ẅ except that the similarity
coefficients smaller than T in
Ẅ(T) are zero, i.e. ∀ẅ(T)

m,n < T ∈ Ẅ(T), ẅ(T)
m,n = 0 wherem = 1, . . . ,N−NI,

n = 1, . . . ,N−NI andm ̸= n
Based on obtained Ẅ(T), compute D̈(T) and L̈(T) of dimensionR(N−NI)×(N−NI)

Compute λ̈λλ
(T)

=[λ̈
(T)
0 , λ̈

(T)
1 , . . . , λ̈

(T)
N−NI−1]∈RN−NI in ascending order

if λ̈
(T)
1
∼= 0 (For detailed analysis, see Section B.2.2.) and ∀λ̈

(T)
m ∈ λ̈λλ

(T)
, λ̈

(T)
m ≥ 0 for

m = 1, . . . ,N−NI − 1 then...
W = Ẅ(T),

...
D = D̈(T) and

...
L = L̈(T)

break;
else if λ̈

(T)
1 ̸= 0 and ∀λ̈

(T)
m ∈ λ̈λλ

(T)
, λ̈

(T)
m ≥ 0 form = 1, . . . ,N−NI − 1 then...

Walt = Ẅ(T),
...
Dalt = D̈(T) and

...
Lalt = L̈(T)

T← T+ Tinc
else
T← T+ Tinc

end if
end
if

...
W does not exist then
if

...
Walt exists then...
W =

...
Walt

else
error : Please start with a smaller threshold

end if
end if
Output: Estimated sparse matrices

...
W,

...
D and

...
L
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Algorithm 11: Sparse LaplacianMatrix Design using p-nearest Graph
Input: a non-sparse affinity matrix Ẅ ∈ R(N−NI)×(N−NI), initial number of neighbors

value pini (optional, default is pini = N− 2), decreasement constant pdec (optional,
default is pdec = 1), minimum number of nodes in per blockNmin (optional,
default isNmin ≈ N

Kmax
∈ Z+)

Set p = pini
while p > Nmin do

Construct affinity matrix Ẅ(p) using p nearest neighbors as in [CHZ07]
Based on obtained Ẅ(p), compute D̈(p) and L̈(p) of dimensionR(N−NI)×(N−NI)

Compute λ̈λλ
(p)
=[λ̈

(p)
0 , λ̈

(p)
1 , . . . , λ̈

(p)
N−NI−1]∈RN−NI

if λ̈
(p)
1
∼= 0 (For detailed analysis, see Section B.2.2.) and ∀λ̈

(p)
m ∈ λ̈λλ

(p)
, λ̈

(p)
m ≥ 0 for

m = 1, . . . ,N−NI − 1 then...
W = Ẅ(p),

...
D = D̈(p) and

...
L = L̈(p)

break;
else if λ̈

(p)
1 ̸= 0 and ∀λ̈

(p)
m ∈ λ̈λλ

(p)
, λ̈

(p)
m ≥ 0 form = 1, . . . ,N−NI − 1 then...

Walt = Ẅ(p),
...
Dalt = D̈(p) and

...
Lalt = L̈(p)

p← p− pdec
else
p← p− pdec

end if
end
if

...
W does not exist then
if

...
Walt exists then...
W =

...
Walt

else
error : Please start with a greater pini

end if
end if
Output: Estimated sparse matrices

...
W,

...
D and

...
L
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B.2.5 Experimental Setting and Additional Experimental Results

B.2.5.1 Experimental Setting

FRS-BDR for Unknown Number of Blocks

Eigen-decomposition function: the generalized eigen-decomposition

Minimum number of blocks (Kmin): 2

Maximum number of blocks (Kmax): 2× K

Minimum number of nodes in the blocks (Nmin): N
Kmax

Maximum number of changepoints (Ncmax): 2× (Kmax− 1)

Sparse Laplacian matrix design algorithm: p-nearest graph (For details, see Algorithm 11.)

FRS-BDR for Known Number of Blocks

Eigen-decomposition function : the generalized eigen-decomposition

Minimum number of nodes in the blocks (Nmin) : N
2×K

Maximum number of changepointsNcmax : 2× (K− 1)

Sparse Laplacian matrix design algorithm : p-nearest graph (For details, see Algorithm 11.)
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B.2.5.2 Additional Experimental Results

B.2.5.2.1 MNISTData Set

Average Clustering Accuracy (p̄acc) for Different Block Diagonal RepresentationMethods

Minimum-MaximumClustering Accuracy (paccmin − paccmax) for Different Regularization Parameters

MNIST
Data Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 87.1 50.5-82.6 50.5-90.3 50.4-53.2 51.1-89.9 51.5-86.8 50.9-91.8 51.0-89.8 50.5-91.6 50.5-92.2 85.5 89.7
3 subjects 72.0 33.9-37.5 33.8-76.1 34.1-37.1 34.3-72.5 34.9-71.8 34.4-67.6 34.4-67.7 33.9-70.0 33.9-79.0 68.6 79.6
5 subjects 60.9 20.6-25.1 20.4-63.7 20.8-24.2 21.1-62.5 20.6-60.8 23.0-48.6 20.5-54.4 20.6-59.2 20.6-65.4 52.3 67.5
8 subjects 53.4 13.1-18.0 12.9-56.0 13.4-16.9 13.7-52.4 13.8-53.7 13.9-37.6 13.3-46.0 13.1-50.1 13.1-57.7 42.3 59.3
10 subjects 51.2 10.7-16.9 10.4-52.7 10.9-14.5 11.2-50.8 11.6-50.1 10.9-33.5 10.8-45.4 10.6-44.1 10.5-53.4 38.9 57.6

Average 64.9 25.8-36.0 25.6-67.8 25.9-29.2 26.3-65.6 26.5-64.6 26.6-55.8 26.0-60.7 25.7-63.0 25.7-69.5 57.5 70.7

Table B.3: Subspace clustering performance of different block diagonal representation approaches on MNIST data set. The
results are summarized for the similarity measureW = X⊤X.

Detailed Computation time (t) for FRS-BDRMethod

MNIST
Data Set

Step 1.1 Step 1.2 Step 1.3 Step 2

2 subjects 0.007 0.064 0.194 0.004
3 subjects 0.011 0.171 0.602 0.007
5 subjects 0.033 1.106 3.262 0.018
8 subjects 0.096 5.045 15.797 0.018
10 subjects 0.164 10.053 35.965 0.017

Table B.4: Computation time performance of FRS‐BDR method on MNIST data set. The results are summarized for the
similarity measureW = X⊤X.

Computation time (t) for Different Block Diagonal RepresentationMethods

Computation Time (t) for Optimally Tuned Regularization Parameters

MNIST
Data Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 0.002 0.971 1.081 3.093 3.224 0.004 0.624 0.959 4.774 13.743 0.009 0.075
3 subjects 0.003 0.666 1.681 5.168 5.517 0.007 1.580 2.166 11.782 1.565 0.017 0.189
5 subjects 0.006 1.574 4.315 14.679 14.725 0.016 7.783 7.776 244.397 8.169 0.043 1.157
8 subjects 0.013 3.766 10.936 26.520 29.069 0.040 25.090 24.991 572.827 21.823 0.116 5.159
10 subjects 0.018 6.068 16.493 34.692 64.749 0.063 44.883 55.796 748.296 35.881 0.208 10.235

Average 0.008 2.609 6.901 16.830 23.457 0.026 15.992 18.338 316.415 16.236 0.079 3.363

Table B.5: Computation time performance of different block diagonal representation approaches on MNIST data set. The
results are summarized for the similarity measureW = X⊤X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS‐BDR is detailed for Steps 1.1, 1.2 and 2.
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B.2.5.2.2 USPS Data Set

Average Clustering Accuracy (p̄acc) for Different Block Diagonal RepresentationMethods

Minimum-MaximumClustering Accuracy (paccmin − paccmax) for Different Regularization Parameters

USPS Data
Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 87.6 51.0-69.5 54.3-90.6 50.9-53.5 52.2-85.9 56.0-88.6 51.1-93.0 51.1-93.1 51.0-92.9 51.0-93.2 87.0 92.6
3 subjects 70.4 34.4-55.0 36.8-77.4 34.8-38.3 35.5-69.4 38.3-71.9 36.5-85.1 34.7-85.6 34.4-80.7 34.4-86.6 77.2 87.5
5 subjects 61.1 21.2-44.4 24.7-66.9 21.8-25.4 22.1-54.6 23.1-63.9 22.4-74.5 21.2-76.0 21.2-65.0 21.2-76.8 63.3 77.3
8 subjects 50.7 13.7-35.7 18.1-59.4 14.4-18.1 14.5-46.1 15.3-58.7 13.8-69.2 14.7-68.4 13.7-60.1 13.7-70.7 52.4 65.2
10 subjects 49.4 11.0-41.4 10.6-56.0 11.6-15.0 12.2-39.8 13.8-52.0 12.2-68.6 14.8-68.2 11.0-57.8 11.2-69.8 47.4 59.8

Average 63.9 26.3-49.2 28.9-70.1 26.7-30.1 27.3-59.2 29.3-67.0 27.2-78.1 27.3-78.2 26.3-71.3 26.3-79.4 65.5 76.5

Table B.6: Subspace clustering performance of different block diagonal representation approaches on USPS data set. The
results are summarized for the similarity measureW = X⊤X.

Detailed Computation time (t) for FRS-BDRMethod

USPS Data
Set

Step 1.1 Step 1.2 Step 1.3 Step 2

2 subjects 0.003 0.015 0.049 0.002
3 subjects 0.004 0.034 0.154 0.003
5 subjects 0.007 0.108 0.401 0.005
8 subjects 0.019 0.464 1.689 0.004
10 subjects 0.032 1.110 3.444 0.119

Table B.7: Computation time performance of FRS‐BDR method on USPS data set. The results are summarized for the similarity
measureW = X⊤X.

Computation time (t) for Different Block Diagonal RepresentationMethods

Computation Time (t) for Optimally Tuned Regularization Parameters

USPS Data
Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 0.001 0.096 0.108 0.561 0.587 0.001 0.260 0.256 0.561 3.971 0.006 0.020
3 subjects 0.001 0.228 0.252 1.239 1.115 0.001 0.607 0.606 2.358 0.952 0.008 0.041
5 subjects 0.001 0.631 0.632 2.639 2.509 0.002 1.757 1.781 5.302 1.962 0.011 0.120
8 subjects 0.003 1.429 2.011 4.106 4.286 0.006 4.837 5.095 11.177 4.579 0.028 0.487
10 subjects 0.003 2.260 2.929 4.257 4.713 0.008 7.127 7.664 14.232 8.551 0.050 1.261

Average 0.002 0.929 1.186 2.561 2.642 0.004 2.918 3.080 6.726 4.003 0.020 0.386

Table B.8: Computation time performance of different block diagonal representation approaches on USPS data set. The results
are summarized for the similarity measureW = X⊤X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS‐BDR is detailed for Steps 1.1, 1.2 and 2.
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Figure B.4: Numerical results for USPS data set.

B.2.5.2.3 COIL20 Data Set
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Figure B.5: Average clustering accuracy (̄pacc) of FRS‐BDR for increasing number of PCA features.

Average Clustering Accuracy (p̄acc) for Different Block Diagonal RepresentationMethods

Minimum-MaximumClustering Accuracy (paccmin − paccmax) for Different Regularization Parameters

COIL20
Data Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 68.9 52.5-86.6 54.5-65.9 53.5-61.0 60.8-63.6 58.0-61.8 54.3-95.9 53.3-95.6 52.5-72.9 52.5-69.7 95.8 93.1
3 subjects 42.3 36.0-83.3 39.3-54.9 39.9-41.1 58.2-67.1 44.1-47.3 38.2-89.1 37.8-88.8 36.2-66.0 35.9-72.1 90.1 88.1
5 subjects 26.4 23.0-80.6 26.2-57.6 28.9-29.7 65.1-76.4 34.3-37.0 25.3-83.3 27.1-83.1 23.1-73.6 22.8-75.4 80.9 82.5
8 subjects 17.3 15.6-75.6 18.2-63.3 21.9-22.8 64.0-73.4 25.2-28.0 18.0-75.6 21.9-75.6 15.5-71.3 15.5-74.2 72.4 77.3
10 subjects 14.6 13.1-72.5 15.6-65.3 19.2-20.3 63.7-73.0 20.6-24.9 15.3-74.5 20.0-74.2 13.1-72.0 13.0-73.4 69.1 75.9

Average 33.9 28.1-79.7 30.8-61.4 32.7-35.0 62.4-70.7 36.4-39.8 30.2-83.7 32.0-83.5 28.1-71.2 27.9-73.0 81.7 83.4

Table B.9: Subspace clustering performance of different block diagonal representation approaches on COIL20 data set. The
results are summarized for the similarity measureW = X⊤X.
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Detailed Computation time (t) for FRS-BDRMethod

COIL20
Data Set

Step 1.1 Step 1.2 Step 1.3 Step 2

2 subjects 0.002 0.004 0.014 0.002
3 subjects 0.003 0.007 0.029 0.003
5 subjects 0.006 0.014 0.071 0.007
8 subjects 0.019 0.039 0.192 0.098
10 subjects 0.032 0.064 0.319 0.206

Table B.10: Computation time performance of FRS‐BDR method on COIL20 data set. The results are summarized for the
similarity measureW = X⊤X.

Computation time (t) for Different Block Diagonal RepresentationMethods

Computation Time (t) for Optimally Tuned Regularization Parameters

COIL20
Data Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 3× 10−4 0.017 0.031 0.012 0.021 3× 10−4 0.043 0.040 0.001 1.120 0.003 0.007
3 subjects 3× 10−4 0.041 0.049 0.013 0.017 2× 10−4 0.098 0.119 0.002 0.275 0.005 0.013
5 subjects 4× 10−4 0.092 0.104 0.038 0.054 3× 10−4 0.244 0.249 0.004 3.688 0.005 0.027
8 subjects 0.001 0.190 0.184 0.050 0.080 0.001 0.686 0.702 0.006 1.075 0.008 0.156
10 subjects 0.001 0.250 0.254 0.058 0.108 0.001 0.908 0.878 0.011 1.058 0.041 0.302

Average 4× 10−4 0.118 0.124 0.034 0.056 5× 10−4 0.396 0.397 0.005 1.443 0.012 0.101

Table B.11: Computation time performance of different block diagonal representation approaches on COIL20 data set. The
results are summarized for the similarity measureW = X⊤X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS‐BDR is detailed for Steps 1.1, 1.2 and 2.

B.2.5.2.4 ORLData Set
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Figure B.6: Average clustering accuracy (̄pacc) of FRS‐BDR for increasing number of PCA features.
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Average Clustering Accuracy (p̄acc) for Different Block Diagonal RepresentationMethods

Minimum-MaximumClustering Accuracy (paccmin − paccmax) for Different Regularization Parameters

ORL Data
Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 56.8 55.0-81.9 55.1-64.0 55.6-57.6 59.1-69.1 57.7-60.5 55.0-95.6 55.3-95.4 55.0-73.7 x 95.2 93.1
3 subjects 41.5 38.8-80.8 43.4-50.7 42.0-44.3 58.0-59.7 45.1-46.6 38.9-90.5 40.0-90.5 39.0-62.9 38.8-69.0 90.5 90.1
5 subjects 28.4 26.0-77.1 31.5-41.0 32.0-33.3 57.0-66.7 36.3-38.9 26.2-80.1 30.8-80.1 26.1-60.6 25.7-70.8 83.0 84.2
8 subjects 21.8 18.6-74.4 25.3-35.8 26.3-27.5 56.7-68.5 26.8-28.5 18.9-79.1 34.6-78.5 18.6-75.4 18.5-75.1 74.1 79.4
10 subjects 18.7 16.3-74.2 22.7-36.1 24.1-25.1 62.7-72.8 24.0-25.3 16.4-78.4 31.2-78.9 16.5-72.5 16.1-72.4 69.9 77.2

Average 33.5 30.9-77.7 35.6-45.5 36.0-37.6 58.7-67.3 38.0-40.0 31.1-84.7 38.4-84.7 31.0-69.0 24.8-71.8 82.5 84.8

Table B.12: Subspace clustering performance of different block diagonal representation approaches on ORL data set. The
results are summarized for the similarity measureW = X⊤X. ‘x’ denotes the failed results.

Detailed Computation time (t) for FRS-BDRMethod

ORL Data
Set

Step 1.1 Step 1.2 Step 1.3 Step 2

2 subjects 0.001 0.002 0.005 0.002
3 subjects 0.001 0.002 0.009 0.002
5 subjects 0.002 0.005 0.018 0.010
8 subjects 0.004 0.010 0.044 0.119
10 subjects 0.007 0.014 0.079 1.810

Table B.13: Computation time performance of FRS‐BDR method on ORL data set. The results are summarized for the similarity
measureW = X⊤X.

Computation time (t) for Different Block Diagonal RepresentationMethods

Computation Time (t) for Optimally Tuned Regularization Parameters

ORL Data
Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 3× 10−4 0.016 0.023 0.011 0.012 4× 10−5 0.009 0.009 2× 10−4 x 0.003 0.005
3 subjects 3× 10−4 0.018 0.025 0.012 0.014 5× 10−5 0.027 0.026 4× 10−4 0.133 0.003 0.006
5 subjects 3× 10−4 0.034 0.047 0.013 0.017 8× 10−5 0.053 0.054 0.001 0.171 0.003 0.017
8 subjects 4× 10−4 0.114 0.078 0.032 0.051 2× 10−4 0.063 0.065 0.003 2.089 0.011 0.133
10 subjects 5× 10−4 0.111 0.108 0.036 0.051 3× 10−4 0.116 0.085 0.004 3.274 0.232 1.831

Average 4× 10−4 0.058 0.056 0.021 0.029 2× 10−4 0.054 0.048 0.002 1.417 0.050 0.398

Table B.14: Computation time performance of different block diagonal representation approaches on ORL data set. The results
are summarized for the similarity measureW = X⊤X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS‐BDR is detailed for Steps 1.1, 1.2 and 2.
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B.2.5.2.5 JAFFE Data Set
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Figure B.7: Average clustering accuracy (̄pacc) of FRS‐BDR for increasing number of PCA features.

Average Clustering Accuracy (p̄acc) for Different Block Diagonal RepresentationMethods

Minimum-MaximumClustering Accuracy (paccmin − paccmax) for Different Regularization Parameters

JAFFE Data
Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 56.1 52.1-93.3 52.8-70.4 52.8-56.1 57.1-59.0 53.4-57.1 52.3-99.7 52.4-99.7 52.4-82.0 52.0-79.6 94.9 93.4
3 subjects 39.7 36.2-95.2 37.1-59.7 37.8-40.8 49.0-65.3 39.8-45.1 36.1-98.0 36.5-98.0 36.2-76.7 35.9-75.5 92.4 96.9
5 subjects 26.4 23.3-95.3 26.4-76.5 27.9-28.9 60.0-85.0 33.1-37.8 23.2-94.2 28.3-94.2 23.3-69.0 23.1-88.0 90.7 96.4
8 subjects 19.1 15.8-93.6 18.6-91.9 21.8-22.6 80.3-89.6 24.2-38.1 15.8-94.3 34.2-94.3 15.8-87.4 15.7-94.2 82.4 94.4
10 subjects x 13.1-93.0 16.4-93.9 17.4-25.4 85.9-92.0 11.7-55.9 12.2-91.5 25.8-91.5 13.1-92.0 12.7-94.8 77.9 96.7

Average 35.3 28.1-94.1 30.3-78.5 31.5-34.8 66.5-78.2 32.4-46.8 27.9-95.6 35.4-95.6 28.2-81.4 27.9-86.4 87.7 95.5

Table B.15: Subspace clustering performance of different block diagonal representation approaches on JAFFE data set. The
results are summarized for the similarity measureW = X⊤X. ‘x’ denotes the failed results.

Detailed Computation time (t) for FRS-BDRMethod

JAFFE Data
Set

Step 1.1 Step 1.2 Step 1.3 Step 2

2 subjects 0.002 0.004 0.015 0.002
3 subjects 0.003 0.008 0.034 0.003
5 subjects 0.007 0.016 0.087 0.013
8 subjects 0.022 0.047 0.245 0.298
10 subjects 0.043 0.076 0.469 0.777

Table B.16: Computation time performance of FRS‐BDR method on JAFFE data set. The results are summarized for the
similarity measureW = X⊤X.
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Computation time (t) for Different Block Diagonal RepresentationMethods

Computation Time (t) for Optimally Tuned Regularization Parameters

JAFFE Data
Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 3× 10−4 0.022 0.032 0.015 0.018 8× 10−5 0.060 0.060 0.006 0.505 0.004 0.008
3 subjects 4× 10−4 0.053 0.044 0.050 0.056 3× 10−4 0.106 0.108 0.002 1.794 0.004 0.015
5 subjects 4× 10−4 0.109 0.109 0.066 0.087 4× 10−4 0.246 0.247 0.004 0.563 0.005 0.037
8 subjects 5× 10−4 0.215 0.216 0.068 0.129 0.001 0.561 0.555 0.010 0.972 0.036 0.367
10 subjects 6× 10−4 0.291 0.235 0.063 0.120 0.001 0.625 0.635 0.013 1.044 0.083 0.896

Average 4× 10−4 0.138 0.127 0.052 0.082 4× 10−4 0.320 0.321 0.007 0.976 0.026 0.264

Table B.17: Computation time performance of different block diagonal representation approaches on JAFFE data set. The
results are summarized for the similarity measureW = X⊤X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS‐BDR is detailed for Steps 1.1, 1.2 and 2.

B.2.5.2.6 Yale Data Set
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Figure B.8: Average clustering accuracy (̄pacc) of FRS‐BDR for increasing number of PCA features.

Average Clustering Accuracy (p̄acc) for Different Block Diagonal RepresentationMethods

Minimum-MaximumClustering Accuracy (paccmin − paccmax) for Different Regularization Parameters

Yale Data
Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 55.3 54.5-75.6 54.7-58.8 55.5-60.2 57.5-60.9 54.5-57.3 53.6-84.2 54.5-83.9 54.5-60.4 x 84.1 83.1
3 subjects 41.9 38.4-67.2 43.0-46.7 42.3-43.9 50.9-53.6 42.1-43.8 38.6-68.5 39.0-68.6 38.6-52.4 38.2-55.1 71.6 74.5
5 subjects 29.8 25.5-57.9 30.5-37.4 32.0-33.2 49.2-54.4 31.1-33.2 25.7-62.3 29.9-62.2 25.4-49.9 25.2-52.9 60.2 61.7
8 subjects 21.6 18.1-52.6 22.3-29.7 25.7-26.7 47.3-50.7 23.6-25.4 18.3-51.9 28.5-51.5 18.3-48.6 17.9-49.6 53.8 54.8
10 subjects 18.7 15.6-50.0 20.2-30.2 23.4-24.7 46.2-47.9 20.8-22.0 15.8-51.6 24.5-51.6 15.9-46.3 15.4-46.3 49.2 51.2

Average 33.5 30.4-60.7 34.1-40.6 35.8-37.7 50.2-53.5 34.4-36.3 30.4-63.7 35.3-63.6 30.5-51.5 24.2-51.0 63.8 65.1

Table B.18: Subspace clustering performance of different block diagonal representation approaches on Yale data set. The
results are summarized for the similarity measureW = X⊤X. ‘x’ denotes the failed results.
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Detailed Computation time (t) for FRS-BDRMethod

Yale Data
Set

Step 1.1 Step 1.2 Step 1.3 Step 2

2 subjects 0.001 0.002 0.007 0.002
3 subjects 0.001 0.003 0.013 0.003
5 subjects 0.002 0.006 0.025 0.013
8 subjects 0.005 0.012 0.056 0.046
10 subjects 0.008 0.018 0.099 0.160

Table B.19: Computation time performance of FRS‐BDR method on Yale data set. The results are summarized for the similarity
measureW = X⊤X.

Computation time (t) for Different Block Diagonal RepresentationMethods

Computation Time (t) for Optimally Tuned Regularization Parameters

Yale Data
Set

WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

2 subjects 3× 10−4 0.011 0.018 0.013 0.011 5× 10−5 0.010 0.010 2× 10−4 x 0.003 0.005
3 subjects 4× 10−4 0.022 0.023 0.010 0.011 6× 10−5 0.039 0.049 4× 10−4 0.059 0.003 0.007
5 subjects 3× 10−4 0.039 0.040 0.013 0.017 1× 10−4 0.043 0.038 0.002 0.276 0.005 0.021
8 subjects 4× 10−4 0.093 0.090 0.031 0.053 3× 10−4 0.055 0.053 0.003 0.705 0.006 0.063
10 subjects 4× 10−4 0.138 0.126 0.036 0.062 4× 10−4 0.061 0.069 0.004 1.077 0.022 0.186

Average 4× 10−4 0.061 0.059 0.021 0.031 2× 10−4 0.042 0.044 0.002 0.529 0.008 0.056

Table B.20: Computation time performance of different block diagonal representation approaches on Yale data set. The results
are summarized for the similarity measureW = X⊤X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS‐BDR is detailed for Steps 1.1, 1.2 and 2.
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Figure B.9: Numerical results for Yale data set.
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B.2.5.2.7 Comparisons with Popular Block Diagonal Representation
Approaches based on Additional Clustering Data Sets

Estimated Parameters of FRS-BDR for Different Clustering Data Sets

Detailed Computation Time (t) Estimation
Error

Data Set N K K̂ p̄acc n = [n1, n2, . . . , nK]⊤ n̂ = [n̂1, n̂2, . . . , n̂K̂]⊤
Step
1.1

Step
1.2

Step
1.3 Step 2 ∥v− v̂∥

Breast Cancer [WM89], 569 2 2 90.128 [212, 357]⊤ [173, 396]⊤ 0.038 1.584 4.674 0.021 604.387
Ceramic [HZZ16][HZZ16], 88 2 2 98.864 [44, 44]⊤ [44, 44]⊤ 0.002 0.010 0.031 0.007 24.271
Vertebral Column [RSB11], 310 2,3 2 75.784 [100, 210]⊤ [120, 190]⊤ 0.009 0.183 0.543 0.011 140.272
Fisheriris [Fis36], 150 3 3 96.667 [50, 50, 50]⊤ [51, 49, 50]⊤ 0.003 0.033 0.098 0.018 48.121
Gait [SAZ19], 800 5 5 77.125 [160, 160, 160, 160, 160]⊤ [100, 128, 166, 201, 205]⊤ 0.087 5.011 15.327 1.139 466.761
O. Cancer [CFR04], 216 2 2 77.315 [95, 121]⊤ [65, 151]⊤ 0.012 0.075 0.208 0.011 131.006
Person Id. [TSM18], 187 4 4 96.791 [38, 40, 47, 62]⊤ [34, 36, 52, 65]⊤ 0.027 0.053 0.190 0.108 70.456
Parkinson A. [NPC16], 240 2 2 58.208 [120, 120]⊤ [78, 162]⊤ 0.006 0.095 0.266 0.013 111.626

Table B.21: Estimation performance of FRS‐BDR on well‐known clustering data sets. The results are summarized for the
similarity measureW = X⊤X.

Average Clustering Accuracy (p̄acc) for Different Block Diagonal RepresentationMethods

Minimum-MaximumClustering Accuracy (paccmin − paccmax) for Different Regularization Parameters

Data Set WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

Breast Cancer [WM89], 88.2 51.0-74.7 50.3-88.2 54.3-90.3 88.0-90.0 73.5-88.2 62.4-90.0 52.9-90.2 62.6-91.7 60.3-90.0 85.2 90.1
Ceramic [HZZ16], 98.9 51.1-98.9 51.1-100 95.5-98.9 95.5-98.9 54.5-98.9 51.1-100 51.1-98.9 51.1-95.5 51.1-98.9 98.9 98.9
Vertebral Column [RSB11], 73.2 50.0-77.7 50.3-74.8 53.9-72.6 72.6-72.6 62.6-75.8 67.4-76.8 71.9-76.8 67.4-71.3 67.4-76.1 74.8 75.8
Fisheriris [Fis36], 78.0 34.7-82.7 34.0-83.3 38.7-80.7 80.0-98.0 78.0-82.7 34.0-96.7 65.3-96.7 34.0-80.0 34.7-84.0 98.0 96.7
Gait [SAZ19], 77.3 20.3-77.4 20.1-77.5 26.1-83.9 78.9-83.5 55.4-75.9 20.3-84.8 26.4-84.5 20.5-85.5 20.4-81.6 81.1 77.1
O. Cancer [CFR04], 61.7 51.4-73.6 50.9-71.3 52.3-76.4 54.2-76.4 51.9-66.2 53.7-75.9 51.9-74.1 55.6-88.4 55.6-75.5 77.8 77.3
Person Id. [TSM18], x 33.7-96.8 31.6-95.7 49.7-94.7 71.1-94.7 33.2-64.2 31.6-96.3 59.4-95.7 34.2-94.1 33.7-95.7 97.3 96.8
Parkinson A.[NPC16], 61.3 50.4-58.8 50.0-61.3 50.4-54.2 50.4-61.3 57.9-61.3 50.4-61.3 50.0-61.3 50.4-61.7 50.4-61.3 56.7 58.2

Average 76.9 42.8-80.1 42.3-81.5 52.6-81.4 73.8-84.4 58.4-76.6 46.4-85.2 53.6-84.8 47.0-83.5 46.7-82.9 83.7 83.9

Table B.22: Subspace clustering performance of different block diagonal representation approaches on well‐known clustering
data sets. The results are summarized for the similarity measureW = X⊤X. ‘x’ denotes the failed results due to the
complex‐valued eigenvectors.

Computation time (t) for Different Block Diagonal RepresentationMethods

Computation Time (t) for Optimally Tuned Regularization Parameters

Data Set WN−1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR

Breast Cancer [WM89], 0.003 1.123 2.967 0.456 1.034 0.009 4.510 4.502 2.793 10.782 0.116 1.643
Ceramic [HZZ16], 4× 10−4 0.074 0.076 0.074 0.086 3× 10−4 0.139 0.137 0.174 0.918 0.007 0.019
Vertebral Column [RSB11], 0.001 0.518 0.490 0.122 0.230 0.002 0.897 0.902 0.031 2.018 0.038 0.203
Fisheriris [Fis36], 5× 10−4 0.161 0.166 0.070 0.066 0.001 0.030 0.025 0.024 9.330 0.012 0.054
Gait [SAZ19], 0.006 6.465 6.642 1.214 2.877 0.018 1.377 1.212 7.392 865.055 0.583 6.237
O. Cancer [CFR04], 0.008 3.036 3.883 8.316 8.387 0.016 0.503 0.506 9.192 17.590 0.026 0.098
Person Id. [TSM18], 5× 10−4 0.234 0.236 0.039 0.125 0.001 0.905 0.485 0.012 0.873 0.017 0.188
Parkinson A. [NPC16], 0.001 0.350 0.354 0.321 0.399 0.001 0.066 0.065 0.170 2.397 0.025 0.113

Average 0.002 1.495 1.851 1.327 1.651 0.006 1.053 0.979 2.473 113.620 0.103 1.069

Table B.23: Computation time performance of different block diagonal representation approaches on well‐known clustering
data sets. The results are summarized for the similarity measureW = X⊤X and sparsity assumed to be known for all sparse
representation methods which means that computation time of FRS‐BDR is detailed for Steps 1.1, 1.2 and 2.
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B.2.5.2.8 Comparisons with Popular Community Detection Approaches based
on Additional Clustering Data Sets

K̂ for Different Cluster EnumerationMethods

Data Set Louvain Martelot BNMF DenPeak Combo MAP Sparcode FRS-BDR K

Breast Cancer [WM89], 2 1 1 3 2 1 2 2 2
Ceramic [HZZ16], 2 2 1 3 2 1 2 2 2
Vertebral Column [RSB11], 2 2 1 3 2 1 2 2 2,3
Fisheriris [Fis36], 2 2 1 3 2 1 1 3 3
Gait [SAZ19], 3 2 1 2 3 1 2 5 5
O. Cancer [CFR04], 2 2 1 3 2 1 4 2 2
Person Id. [TSM18], 3 3 1 47 2 2 3 4 4
Parkinson A. [NPC16], 1 1 1 3 1 1 2 2 2

Table B.24: Performance of different cluster enumeration approaches on well‐known clustering data sets. The results are
summarized for the similarity measureW = X⊤X.

mod for Different Cluster EnumerationMethods

Data Set Louvain Martelot BNMF DenPeak Combo MAP Sparcode FRS-BDR

Breast Cancer [WM89], 0.001 0.000 0.000 0.000 0.001 0.000 0.022 0.345
Ceramic [HZZ16], 0.055 0.055 0.000 0.040 0.055 0.000 0.440 0.441
Vertebral Column [RSB11], 0.015 0.015 0.000 0.000 0.015 0.000 0.330 0.418
Fisheriris [Fis36], 0.016 0.016 0.000 0.016 0.016 0.000 0.000 0.472
Gait [SAZ19], 0.017 0.014 0.000 0.000 0.017 0.000 0.375 0.641
O. Cancer [CFR04], 0.006 0.006 0.000 0.005 0.006 0.000 0.019 0.334
Person Id. [TSM18], 0.128 0.124 0.000 0.051 0.128 0.000 0.515 0.694
Parkinson A. [NPC16], 0.000 0.000 0.000 0.000 0.000 0.000 0.179 0.342

Average 0.030 0.029 0.000 0.014 0.030 0.000 0.235 0.461

Table B.25: Partitioning performance of different cluster enumeration approaches on well‐known clustering data sets. The
results summarized formod using the similarity measureW = X⊤X.

Conductance (cond) for Different Cluster EnumerationMethods

Data Set Louvain Martelot BNMF DenPeak Combo MAP Sparcode FRS-BDR

Breast Cancer [HZZ16], 0.448 0.000 0.000 0.007 0.448 0.000 0.079 0.098
Ceramic [HZZ16], 0.445 0.445 0.000 0.449 0.445 0.000 0.058 0.059
Vertebral Column [RSB11], 0.484 0.484 0.000 0.022 0.484 0.000 0.119 0.079
Fisheriris [Fis36], 0.424 0.429 0.000 0.433 0.424 0.000 0.000 0.183
Gait [SAZ19], 0.615 0.479 0.000 0.003 0.615 0.000 0.121 0.138
O. Cancer [CFR04], 0.451 0.476 0.000 0.487 0.451 0.000 0.047 0.140
Person Id. [TSM18], 0.296 0.294 0.000 0.660 0.296 -0.035 0.095 0.047
Parkinson A. [NPC16], 0.000 0.000 0.000 0.017 0.000 0.000 0.312 0.157

Average 0.395 0.326 0.000 0.260 0.395 -0.004 0.104 0.113

Table B.26: Partitioning performance of different cluster enumeration approaches on well‐known clustering data sets. The
results summarized for conductance (cond) using the similarity measureW = X⊤X.
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Computation Time (t) for Different Cluster EnumerationMethods

Data Set Louvain Martelot BNMF DenPeak Combo MAP Sparcode FRS-BDR

Breast Cancer [WM89], 0.270 0.547 22.839 0.080 3.965 2.016 3.644 5.334
Ceramic [HZZ16], 0.008 0.004 0.273 0.009 0.083 0.219 0.103 0.059
Vertebral Column [RSB11], 0.059 0.066 4.154 0.036 1.040 0.719 0.820 0.818
Fisheriris [Fis36], 0.012 0.010 0.752 0.017 0.241 0.375 0.323 0.178
Gait [SAZ19], 0.629 1.654 48.883 0.118 3.706 2.766 5.723 21.321
O. Cancer [CFR04], 0.026 0.023 1.769 0.024 0.546 0.484 0.509 0.337
Person Id. [TSM18], 0.027 0.016 1.363 0.047 0.366 0.344 0.420 0.366
Parkinson A. [NPC16], 0.029 0.032 2.307 0.027 0.003 0.578 0.540 0.425

Average 0.132 0.294 10.293 0.045 1.243 0.938 1.510 3.605

Table B.27: Computation performance of different cluster enumeration approaches on well‐known clustering data sets. The
results are summarized for the similarity measureW = X⊤X and FRS‐BDR is detailed for all steps.

B.3 Additional Information for RRLPI

B.3.1 Experimental Setting

Group Information Feature Space Parameters Number of samples
μμμ ϑ

Cluster-1 (c1) μμμc1=[5.50; 4.50; 2.00; 0.75; 2.50; 4.50] ϑc1 = 0.50 Nc1 = 50 forNout = 0
Cluster-2 (c2) μμμc2=[7.50; 1.00; 5.50; 2.50; 1.00; 1.50] ϑc2 = 0.50 Nc2 = 50 forNout = 0
Cluster-3 (c3) μμμc3=[8.50; 0.75; 6.00; 4.50; 1.50; 1.25] ϑc3 = 0.50 Nc3 = 50 forNout = 0
Type II Outliers (o2) μμμ2=[7.00; 0.25; 5.00; 2.00; 0.50; 0.75] ϑ2 = 1.50 Nout ∈ {0, 5, 10, . . . , 20}

Table B.28: Detailed numerical information for the synthetic data set

• The originalmth feature vectorxm,i associatedwith the ith cluster ci, such that i = 1, . . . ,K
and m = 1, . . . ,Ni, is computed as xm,i = μμμci + ϑciυυυ where υυυ denotes a vector of
independently and identically distributed random variables from a uniform distribution on
the interval [−0.5, 0.5].

• If xm,i is replaced with a Type I outlier, the outlier x̃(1)
m is computed as x̃(1)

m = xm,i + ϑ1υυυ
where ϑ1 ∈ {0, 1, 2, . . . , 10}.

• If xm,i is replaced with a Type II outlier, the outlier x̃(2)
m is computed as x̃(2)

m = μμμ2 + ϑ2υυυ.
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B.3.2 Additional Results for Synthetic Data Sets

Examplary plot of the first three features
of the uncorrupted synthetic data set.

Examplary plot of the first three features of
the synthetic data set after corruption with
Type I and Type II outliers (red crosses).
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Figure B.10: Estimated eigenvectors for the uncorrupted and corrupted data sets.
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(c) K-medoids partitioning with Tukey’s
distance function for the initialization
(cTukey = 3)
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(d) K-medoids partitioning with Tukey’s
distance function for the initialization
(cTukey = 4.68)

Figure B.11: p̄acc performance of different partitioning methods for increasing ϑ1 associated with Type I outlier
(N = 300,Nout = 10, ϑ2 = 1.5, ϑcK = 0.5 s.t. K = 1, . . . ,K.)
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(c) K-medoids partitioning with Tukey’s
distance function for the initialization
(cTukey = 3)
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(d) K-medoids partitioning with Tukey’s
distance function for the initialization
(cTukey = 4.68)

Figure B.12: p̄acc performance of different partitioning methods for each of outlier type with increasingNout
(N = 300, ϑ1 = 5, ϑ2 = 1.5, ϑcK = 0.5 s.t. K = 1, . . . ,K.)
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B.3.3 Additional Results for Cluster Enumeration
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(b) Performance rank for K-means partitioning
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(d) Performance rank for K-medoids
partitioning
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(e) p̄det with respect to different penalty
parameters for K-medoids partitioning with
Tukey’s distance function for the initialization
(cTukey = 3)
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(f) Performance rank for K-medoids
partitioning with Tukey’s distance function for
the initialization (cTukey = 3)
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(g) p̄det with respect to different penalty
parameters for K-medoids partitioning with
Tukey’s distance function for the initialization
(cTukey = 4.68)
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(h) Performance rank for K-medoids
partitioning with Tukey’s distance function for
the initialization (cTukey = 4.68)

Figure B.13: Numerical results for cluster enumeration using different partitioning algorithms.
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Figure B.14: Overall performance rank for different partitioning algorithms.

Performance Analysis for Different Values of Huber’s Tuning Parameter

c = 2 (99%ARE) c = 1.345 (95%ARE) c = 0.73175 (85%ARE)

Data Set K̂ mod K̂ mod K̂ mod K Similarity

Gait [SAZ19], 4 0.5331 4 0.5462 4 0.5442 5 enet
Breast Cancer [WM89], 2 0.0004 2 0.0005 2 0.0005 2 cos
Fisheriris [Fis36], 3 0.4985 3 0.4985 3 0.4985 3 enet
Person Id. [TSM18], 4 0.4015 4 0.4079 4 0.3911 4 enet
Sonar [GS88], 2 0.0194 2 0.0199 2 0.0203 2 cos
Ionosphere [SWH89], 2 0.0883 2 0.1196 6 0.0145 2 cos
D. Retinopathy [AH14], 2 0.1088 2 0.1080 2 0.1080 2 cos
Gesture Phase S. [WPM14], 5 0.0040 5 0.0042 5 0.0040 5 cos

Table B.29: Performance for different c values on well‐known clustering data sets. The results are summarized for similarity
measures cosine (cos) and elastic net (enet) using a penalty parameter of ρ = 0.5. The partitioning is determined byK‐means.

Performance Analysis for Different Values of Huber’s Tuning Parameter

c = 2 (99%ARE) c = 1.345 (95%ARE) c = 0.73175 (85%ARE)

Data Set K̂ mod K̂ mod K̂ mod K Similarity

Gait [SAZ19], 4 0.5323 5 0.5480 4 0.5442 5 enet
Breast Cancer [WM89], 2 0.0004 2 0.0005 2 0.0005 2 cos
Fisheriris [Fis36], 3 0.4985 3 0.4985 3 0.4985 3 enet
Person Id. [TSM18], 4 0.4015 4 0.4074 4 0.3945 4 enet
Sonar [GS88], 2 0.0188 2 0.0195 2 0.0203 2 cos
Ionosphere [SWH89], 2 0.0865 2 0.1196 6 0.0134 2 cos
D. Retinopathy [AH14], 2 0.1088 2 0.1080 2 0.1080 2 cos
Gesture Phase S. [WPM14], 5 0.0040 5 0.0041 5 0.0041 5 cos

Table B.30: Performance for different c values on well‐known clustering data sets. The results are summarized for similarity
measures cosine (cos) and elastic net (enet) using a penalty parameter of ρ = 0.5. The partitioning is determined byK‐
medoids with Tukey’s distance function for the initialization (cTukey = 3).
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K̂ for Different Cluster EnumerationMethods

Data Set Martelot Combo Sparcode RLPFM LE LPI RLPI RRLPI K Similarity

Gait [SAZ19], 4 6 5 4 4 4 4 5 5 enet
Breast Cancer [WM89], 1 2 2 2 4 2 2 2 2 Pearson
Fisheriris [Fis36], 2 3 2 3 5 3 3 3 3 enet
Person Id. [TSM18], 6 7 4 5 10 4 4 4 4 enet
Sonar [GS88], 2 2 2 2 5 2 2 2 2 Pearson
Ionosphere [SWH89], 3 3 3 3 10 3 2 2 2 Pearson
D. Retinopathy [AH14], 2 2 2 2 2 2 2 2 2 Pearson
Gesture Phase S. [WPM14], 2 4 3 3 4 2 4 5 5 Pearson

Table B.31: Performance of different cluster enumeration approaches on well‐known clustering data sets. The partitioning is
determined byK‐medoids with Tukey’s distance function [ZKO18] for the initialization (cTukey = 3).

modK̂ for Different Cluster EnumerationMethods

Data Set Martelot Combo Sparcode RLPFM LE LPI RLPI RRLPI Similarity

Gait [SAZ19], 0.612 0.669 0.459 0.534 0.570 0.551 0.544 0.548 enet
Breast Cancer [WM89], 0.000 0.001 0.047 0.001 0.000 0.001 0.001 0.001 Pearson
Fisheriris [Fis36], 0.440 0.502 0.282 0.496 0.451 0.498 0.499 0.499 enet
Person Id. [TSM18], 0.706 0.727 0.119 0.414 0.406 0.516 0.405 0.407 enet
Sonar [GS88], 0.058 0.058 0.172 0.041 0.036 0.058 0.040 0.045 Pearson
Ionosphere [SWH89], 0.206 0.213 0.340 0.148 0.144 0.114 0.193 0.194 Pearson
D. Retinopathy [AH14], 0.178 0.178 0.485 0.176 0.171 0.178 0.177 0.176 Pearson
Gesture Phase S. [WPM14], 0.137 0.157 0.193 0.024 0.049 0.043 0.020 0.019 Pearson

Table B.32: Modularity performance of different cluster enumeration approaches on well‐known clustering data sets. The
partitioning is determined byK‐medoids with Tukey’s distance function [ZKO18] for the initialization (cTukey = 3).

K̂ for Different Cluster EnumerationMethods

Data Set Martelot Combo Sparcode RLPFM LE LPI RLPI RRLPI K Similarity

Gait [SAZ19], 4 6 5 4 4 4 4 5 4 enet
Breast Cancer [WM89], 1 2 2 2 4 2 2 2 2 Pearson
Fisheriris [Fis36], 2 3 2 3 5 3 3 3 3 enet
Person Id. [TSM18], 6 7 4 5 10 4 4 4 4 enet
Sonar [GS88], 2 2 2 2 5 2 2 2 2 Pearson
Ionosphere [SWH89], 3 3 3 3 10 3 2 2 2 Pearson
D. Retinopathy [AH14], 2 2 2 2 2 2 2 2 2 Pearson
Gesture Phase S. [WPM14], 2 4 3 3 5 2 4 5 5 Pearson

Table B.33: Performance of different cluster enumeration approaches on well‐known clustering data sets. The partitioning is
determined byK‐means.
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modK̂ for Different Cluster EnumerationMethods

Data Set Martelot ComboSparcode RLPFMLE LPI RLPI RRLPISimilarity

Gait [SAZ19], 0.612 0.669 0.459 0.530 0.570 0.551 0.538 0.530 enet
Breast Cancer [WM89], 0.000 0.001 0.047 0.001 0.000 0.001 0.001 0.001 Pearson
Fisheriris [Fis36], 0.440 0.502 0.282 0.498 0.451 0.498 0.498 0.498 enet
Person Id. [TSM18], 0.706 0.727 0.119 0.410 0.406 0.516 0.405 0.407 enet
Sonar [GS88], 0.058 0.058 0.172 0.041 0.037 0.058 0.041 0.047 Pearson
Ionosphere [SWH89], 0.206 0.213 0.340 0.143 0.144 0.117 0.193 0.194 Pearson
D. Retinopathy [AH14], 0.178 0.178 0.485 0.050 0.043 0.049 0.049 0.049 Pearson
Gesture Phase S. [WPM14], 0.137 0.157 0.193 0.064 0.063 0.042 0.020 0.019 Pearson

Table B.34: Modularity performance of different cluster enumeration approaches on well‐known clustering data sets. The
partitioning is determined byK‐means.
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B.3.4 Additional Results for Image Segmentstion

Iseg Index K Cluster Index Annotation Iseg Color Code

I
(1)
seg 2

1 [90 116] [ 1.000 1.000 1.000]

2 [0 198] [0.612 0.812 0.902]

I
(2)
seg 2

1 [160 150] [0.490 0.278 0.243]

2 [6 230] [0.612 0.812 0.902]

I
(3)
seg 2

1 [140 120] [0.902 0.902 0.902]

2 [6 230] [0.612 0.812 0.902]

I
(4)
seg 2

1 [0 0] [0.902 0.902 0.902]

2 [143 255] [0.490 0.278 0.243]

I
(5)
seg 3

1 [6 230] [0.612 0.812 0.902]
2 [112 9] [0.910 0.910 0.490]
3 [4 200] [0.129 0.478 0.310]

I
(6)
seg 3

1 [4 200] [0.129 0.478 0.310]
2 [4 250] [0.635 0.800 0.431]
3 [6 230] [0.612 0.812 0.902]

I
(7)
seg 4

1 [9 7] [0.173 0.416 0.580]
2 [6 230] [0.612 0.812 0.902]
3 [4 200] [0.129 0.478 0.310]
4 [160 150] [0.839 0.788 0.663]

I
(8)
seg 2

1 [4 250] [0.635 0.800 0.431]

2 [255 0] [0.969 0.929 0.843]

I
(9)
seg 2

1 [140 120] [0.839 0.788 0.663]

2 [6 230] [0.612 0.812 0.902]

I
(10)
seg 4

1 [4 250] [0.635 0.800 0.431]
2 [4 200] [0.129 0.478 0.310]
3 [143 255] [0.612 0.812 0.902]
4 [0 0] [0.490 0.278 0.243]

Table B.35: Reference annotations for the ground truth images.
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Image Index K Performance
Measure

FastEFM LSC RLPFM LE LPI RLPI RRLPI ξ

I(1) 2
F̄score 0.297 0.905 0.906 0.294 0.908 0.905 0.867

0.178J̄ 0.421 0.867 0.867 0.421 0.868 0.868 0.854

p̄acc 0.841 0.960 0.960 0.841 0.961 0.960 0.957

I(2) 2
F̄score 0.390 0.949 0.696 0.297 0.687 0.592 0.635

0.332J̄ 0.700 0.986 0.942 0.265 0.940 0.915 0.928

p̄acc 0.825 0.993 0.970 0.531 0.969 0.955 0.963

I(3) 2
F̄score 0.177 0.911 0.904 0.179 0.904 0.178 0.927

0.426J̄ 0.400 0.941 0.939 0.400 0.938 0.287 0.942

p̄acc 0.800 0.980 0.979 0.800 0.979 0.573 0.980

I(4) 2
F̄score 0.194 0.198 0.395 0.196 0.409 0.395 0.348

0.195J̄ 0.284 0.288 0.618 0.284 0.644 0.619 0.555

p̄acc 0.568 0.570 0.787 0.568 0.801 0.787 0.748

I(5) 3
F̄score 0.758 0.755 0.838 0.860 0.842 0.839 0.838

0.509J̄ 0.683 0.652 0.867 0.867 0.877 0.862 0.863

p̄acc 0.932 0.924 0.971 0.970 0.973 0.970 0.971

I(6) 3
F̄score 0.162 0.159 0.359 0.368 0.361 0.369 0.388

0.477J̄ 0.250 0.250 0.635 0.558 0.637 0.633 0.621

p̄acc 0.750 0.750 0.769 0.856 0.772 0.764 0.738

I(7) 4
F̄score 0.401 0.207 0.372 0.140 0.381 0.374 0.373

0.477J̄ 0.572 0.314 0.576 0.125 0.580 0.589 0.599

p̄acc 0.737 0.631 0.748 0.498 0.755 0.775 0.800

I(8) 2
F̄score 0.310 0.310 0.562 0.318 0.573 0.422 0.500

0.230J̄ 0.420 0.420 0.747 0.420 0.753 0.642 0.710

p̄acc 0.840 0.840 0.912 0.840 0.915 0.845 0.890

I(9) 2
F̄score 0.170 0.843 0.755 0.170 0.755 0.766 0.732

0.470J̄ 0.281 0.967 0.952 0.281 0.952 0.954 0.949

p̄acc 0.562 0.984 0.976 0.562 0.976 0.977 0.974

I(10) 4
F̄score 0.309 0.381 0.401 0.374 0.386 0.402 0.403

0.260J̄ 0.392 0.499 0.431 0.414 0.442 0.432 0.429

p̄acc 0.645 0.755 0.545 0.763 0.593 0.545 0.538

Average Results
F̄score 0.317 0.562 0.619 0.320 0.621 0.524 0.601

J̄ 0.440 0.618 0.757 0.404 0.763 0.680 0.745

p̄acc 0.750 0.839 0.862 0.723 0.869 0.815 0.856

Table B.36: Detailed performance results for the original images
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Image Index K Performance
Measure

FastEFM LSC RLPFM LE LPI RLPI RRLPI ξ

Ĩ(1) 2
F̄score 0.290 0.300 0.904 0.294 0.908 0.905 0.900

0.178J̄ 0.421 0.422 0.865 0.421 0.866 0.866 0.864

p̄acc 0.841 0.841 0.960 0.841 0.960 0.960 0.959

Ĩ(2) 2
F̄score 0.295 0.721 0.497 0.297 0.492 0.305 0.393

0.332J̄ 0.735 0.958 0.907 0.265 0.905 0.801 0.868

p̄acc 0.849 0.979 0.951 0.531 0.950 0.890 0.929

Ĩ(3) 2
F̄score 0.179 0.181 0.885 0.179 0.887 0.172 0.899

0.426J̄ 0.400 0.400 0.934 0.400 0.935 0.392 0.939

p̄acc 0.800 0.800 0.977 0.800 0.978 0.572 0.979

Ĩ(4) 2
F̄score 0.195 0.196 0.332 0.196 0.338 0.327 0.294

0.195J̄ 0.284 0.284 0.612 0.284 0.627 0.604 0.582

p̄acc 0.568 0.568 0.781 0.568 0.788 0.776 0.762

Ĩ(5) 3
F̄score 0.754 0.849 0.828 0.855 0.833 0.824 0.828

0.509J̄ 0.678 0.885 0.869 0.869 0.877 0.862 0.866

p̄acc 0.930 0.974 0.972 0.970 0.974 0.970 0.971

Ĩ(6) 3
F̄score 0.256 0.406 0.289 0.253 0.299 0.289 0.303

0.477J̄ 0.484 0.560 0.586 0.509 0.592 0.587 0.590

p̄acc 0.586 0.858 0.730 0.831 0.730 0.733 0.725

Ĩ(7) 4
F̄score 0.376 0.364 0.362 0.135 0.370 0.372 0.374

0.477J̄ 0.576 0.396 0.572 0.124 0.579 0.581 0.581

p̄acc 0.749 0.737 0.743 0.497 0.757 0.764 0.763

Ĩ(8) 2
F̄score 0.316 0.310 0.385 0.320 0.394 0.346 0.359

0.230J̄ 0.420 0.420 0.635 0.421 0.640 0.597 0.605

p̄acc 0.840 0.840 0.838 0.840 0.842 0.808 0.815

Ĩ(9) 2
F̄score 0.170 0.170 0.699 0.170 0.710 0.708 0.678

0.470J̄ 0.281 0.281 0.947 0.281 0.949 0.949 0.945

p̄acc 0.562 0.562 0.973 0.562 0.974 0.974 0.972

Ĩ(10) 4
F̄score 0.180 0.372 0.383 0.375 0.373 0.380 0.383

0.260J̄ 0.203 0.512 0.430 0.416 0.433 0.432 0.426

p̄acc 0.670 0.624 0.546 0.765 0.575 0.560 0.536

Average Results
F̄score 0.301 0.387 0.556 0.307 0.560 0.463 0.541

J̄ 0.448 0.512 0.736 0.399 0.740 0.667 0.727

p̄acc 0.740 0.778 0.847 0.721 0.853 0.801 0.841

Table B.37: Detailed performance results for the corrupted images. (σ(ξ) = 10−3)
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I(i) FastEFM LSC RLPFM LE LPI RLPI RRLPI Iseg

1

Figure B.15: Image segmentation results for the original images
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Ĩ(i) FastEFM LSC RLPFM LE LPI RLPI RRLPI Iseg
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Figure B.16: Image segmentation results for the corrupted images
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The following list comprises themost important notations, operators and symbols. The remaining
ones have been determined upon usage.

Notations

n

N

x

X

X̃

R
R+

Z+

Rn×1

Rn×n

1.

f(·)
argmax

x
F(x)

argmin
x

F(x)

lowercase letter denotes a scalar

uppercase letter denotes a scalar

bold lowercase letter denotes a column vector

bold uppercase letter denotes a matrix

a corrupted matrix

set of real numbers

set of positive real numbers

set of positive integers

set of column vectors of size n onR
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probability density function
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X
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D
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G
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E

i

j

k

m

n

r

wm,n

wi,j

a data matrix

the affinity matrix

the adjacency matrix

the diagonal matrix of overall edge weights

the unnormalized Laplacian matrix

graph

set of vertices

set of edges

index operator for the blocks/clusters

index operator for the blocks/clusters

index operator for the blocks/clusters

index operator for the samples

index operator for the samples

index operator for the samples

m, nth similarity coefficient

a constant around which the similarity coefficients
between block i and j are concentrated
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Wi

λm
ym

yF

yn,m
yn,F
βββm
βββF
cm
M

N

Ni

NI

NII

Nmin

Nc

Ncmax

NK

NE

K

Kcand

Kmin

Kmax

mod

cond

n

nr

w

ei

ith block of the BD affinity matrix

mth eigenvalue ofL

eigenvector associated withmth eigenvalue ofL

the Fiedler vector

nth embedding result in ym

nth embedding result in the Fiedler vector

transformation vector associated with ym

transformation vector associated with yF

label of themth feature vector

dimension of feature vectors

number of feature vectors

N associated with the ith block

number of Type I outliers

number of Type II outliers

minimum number of samples in clusters or blocks

number of changepoints

determined maximum number of changepoints

candidate number of clusters or blocks

number of experiments

number of clusters or blocks

candidate number of clusters or blocks

minimum number of clusters or blocks

maximum number of clusters or blocks

modularity

conductance

column vector of block sizes

rth column vector of candidate block sizes

column vector of similarity coefficients that the blocks
concentrated around

embedding vector associated with ith feature vector
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v

τττ

pdet
p̄acc
t

column vector that represents L as a piece-wise linear
function

column vector containing changepoint locations

the empirical probability of detection

average clustering accuracy

computation time
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