5 research outputs found

    An interactive image segmentation method in hand gesture recognition

    Get PDF
    In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy

    Supervised Sparsity Preserving Projections for Face Recognition

    Get PDF
    Recently feature extraction methods have commonly been used as a principled approach to understand the intrinsic structure hidden in high-dimensional data. In this paper, a novel supervised learning method, called Supervised Sparsity Preserving Projections (SSPP), is proposed. SSPP attempts to preserve the sparse representation structure of the data when identifying an efficient discriminant subspace. First, SSPP creates a concatenated dictionary by class-wise PCA decompositions and learns the sparse representation structure of each sample under the constructed dictionary using the least squares method. Second, by maximizing the ratio of non-local scatter to local scatter, a Laplacian discriminant function is defined to characterize the separability of the samples in the different sub-manifolds. Then, to achieve improved recognition results, SSPP integrates the learned sparse representation structure as a regular term into the Laplacian discriminant function. Finally, the proposed method is converted into a generalized eigenvalue problem. The extensive and promising experimental results on several popular face databases validate the feasibility and effectiveness of the proposed approach
    corecore