1,920 research outputs found

    An empirical evaluation of imbalanced data strategies from a practitioner's point of view

    Full text link
    This research tested the following well known strategies to deal with binary imbalanced data on 82 different real life data sets (sampled to imbalance rates of 5%, 3%, 1%, and 0.1%): class weight, SMOTE, Underbagging, and a baseline (just the base classifier). As base classifiers we used SVM with RBF kernel, random forests, and gradient boosting machines and we measured the quality of the resulting classifier using 6 different metrics (Area under the curve, Accuracy, F-measure, G-mean, Matthew's correlation coefficient and Balanced accuracy). The best strategy strongly depends on the metric used to measure the quality of the classifier. For AUC and accuracy class weight and the baseline perform better; for F-measure and MCC, SMOTE performs better; and for G-mean and balanced accuracy, underbagging

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357

    A Selective Sampling Method for Imbalanced Data Learning on Support Vector Machines

    Get PDF
    The class imbalance problem in classification has been recognized as a significant research problem in recent years and a number of methods have been introduced to improve classification results. Rebalancing class distributions (such as over-sampling or under-sampling of learning datasets) has been popular due to its ease of implementation and relatively good performance. For the Support Vector Machine (SVM) classification algorithm, research efforts have focused on reducing the size of learning sets because of the algorithm\u27s sensitivity to the size of the dataset. In this dissertation, we propose a metaheuristic approach (Genetic Algorithm) for under-sampling of an imbalanced dataset in the context of a SVM classifier. The goal of this approach is to find an optimal learning set from imbalanced datasets without empirical studies that are normally required to find an optimal class distribution. Experimental results using real datasets indicate that this metaheuristic under-sampling performed well in rebalancing class distributions. Furthermore, an iterative sampling methodology was used to produce smaller learning sets by removing redundant instances. It incorporates informative and the representative under-sampling mechanisms to speed up the learning procedure for imbalanced data learning with a SVM. When compared with existing rebalancing methods and the metaheuristic approach to under-sampling, this iterative methodology not only provides good performance but also enables a SVM classifier to learn using very small learning sets for imbalanced data learning. For large-scale imbalanced datasets, this methodology provides an efficient and effective solution for imbalanced data learning with an SVM
    • …
    corecore