5 research outputs found

    Multilayer perceptron network optimization for chaotic time series modeling

    Get PDF
    Chaotic time series are widely present in practice, but due to their characteristics—such as internal randomness, nonlinearity, and long-term unpredictability—it is difficult to achieve high-precision intermediate or long-term predictions. Multi-layer perceptron (MLP) networks are an effective tool for chaotic time series modeling. Focusing on chaotic time series modeling, this paper presents a generalized degree of freedom approximation method of MLP. We then obtain its Akachi information criterion, which is designed as the loss function for training, hence developing an overall framework for chaotic time series analysis, including phase space reconstruction, model training, and model selection. To verify the effectiveness of the proposed method, it is applied to two artificial chaotic time series and two real-world chaotic time series. The numerical results show that the proposed optimized method is effective to obtain the best model from a group of candidates. Moreover, the optimized models perform very well in multi-step prediction tasks.This research was funded in part by the NSFC grant numbers 61972174 and 62272192, the Science-Technology Development Plan Project of Jilin Province grant number 20210201080GX, the Jilin Province Development and Reform Commission grant number 2021C044-1, the Guangdong Universities’ Innovation Team grant number 2021KCXTD015, and Key Disciplines Projects grant number 2021ZDJS138

    A novel kernel based approach to arbitrary length symbolic data with application to type 2 diabetes risk

    Get PDF
    Predictive modeling of clinical data is fraught with challenges arising from the manner in which events are recorded. Patients typically fall ill at irregular intervals and experience dissimilar intervention trajectories. This results in irregularly sampled and uneven length data which poses a problem for standard multivariate tools. The alternative of feature extraction into equal-length vectors via methods like Bag-of-Words (BoW) potentially discards useful information. We propose an approach based on a kernel framework in which data is maintained in its native form: discrete sequences of symbols. Kernel functions derived from the edit distance between pairs of sequences may then be utilized in conjunction with support vector machines to classify the data. Our method is evaluated in the context of the prediction task of determining patients likely to develop type 2 diabetes following an earlier episode of elevated blood pressure of 130/80 mmHg. Kernels combined via multi kernel learning achieved an F1-score of 0.96, outperforming classification with SVM 0.63, logistic regression 0.63, Long Short Term Memory 0.61 and Multi-Layer Perceptron 0.54 applied to a BoW representation of the data. We achieved an F1-score of 0.97 on MKL on external dataset. The proposed approach is consequently able to overcome limitations associated with feature-based classification in the context of clinical data
    corecore