12 research outputs found

    Kernel functions based on triplet comparisons

    Full text link
    Given only information in the form of similarity triplets "Object A is more similar to object B than to object C" about a data set, we propose two ways of defining a kernel function on the data set. While previous approaches construct a low-dimensional Euclidean embedding of the data set that reflects the given similarity triplets, we aim at defining kernel functions that correspond to high-dimensional embeddings. These kernel functions can subsequently be used to apply any kernel method to the data set

    Less but Better: Generalization Enhancement of Ordinal Embedding via Distributional Margin

    Full text link
    In the absence of prior knowledge, ordinal embedding methods obtain new representation for items in a low-dimensional Euclidean space via a set of quadruple-wise comparisons. These ordinal comparisons often come from human annotators, and sufficient comparisons induce the success of classical approaches. However, collecting a large number of labeled data is known as a hard task, and most of the existing work pay little attention to the generalization ability with insufficient samples. Meanwhile, recent progress in large margin theory discloses that rather than just maximizing the minimum margin, both the margin mean and variance, which characterize the margin distribution, are more crucial to the overall generalization performance. To address the issue of insufficient training samples, we propose a margin distribution learning paradigm for ordinal embedding, entitled Distributional Margin based Ordinal Embedding (\textit{DMOE}). Precisely, we first define the margin for ordinal embedding problem. Secondly, we formulate a concise objective function which avoids maximizing margin mean and minimizing margin variance directly but exhibits the similar effect. Moreover, an Augmented Lagrange Multiplier based algorithm is customized to seek the optimal solution of \textit{DMOE} effectively. Experimental studies on both simulated and real-world datasets are provided to show the effectiveness of the proposed algorithm.Comment: Accepted by AAAI 201

    Efficient Data Analytics on Augmented Similarity Triplets

    Full text link
    Many machine learning methods (classification, clustering, etc.) start with a known kernel that provides similarity or distance measure between two objects. Recent work has extended this to situations where the information about objects is limited to comparisons of distances between three objects (triplets). Humans find the comparison task much easier than the estimation of absolute similarities, so this kind of data can be easily obtained using crowd-sourcing. In this work, we give an efficient method of augmenting the triplets data, by utilizing additional implicit information inferred from the existing data. Triplets augmentation improves the quality of kernel-based and kernel-free data analytics tasks. Secondly, we also propose a novel set of algorithms for common supervised and unsupervised machine learning tasks based on triplets. These methods work directly with triplets, avoiding kernel evaluations. Experimental evaluation on real and synthetic datasets shows that our methods are more accurate than the current best-known techniques

    Insights into Ordinal Embedding Algorithms: A Systematic Evaluation

    Full text link
    The objective of ordinal embedding is to find a Euclidean representation of a set of abstract items, using only answers to triplet comparisons of the form "Is item ii closer to the item jj or item kk?". In recent years, numerous algorithms have been proposed to solve this problem. However, there does not exist a fair and thorough assessment of these embedding methods and therefore several key questions remain unanswered: Which algorithms scale better with increasing sample size or dimension? Which ones perform better when the embedding dimension is small or few triplet comparisons are available? In our paper, we address these questions and provide the first comprehensive and systematic empirical evaluation of existing algorithms as well as a new neural network approach. In the large triplet regime, we find that simple, relatively unknown, non-convex methods consistently outperform all other algorithms, including elaborate approaches based on neural networks or landmark approaches. This finding can be explained by our insight that many of the non-convex optimization approaches do not suffer from local optima. In the low triplet regime, our neural network approach is either competitive or significantly outperforms all the other methods. Our comprehensive assessment is enabled by our unified library of popular embedding algorithms that leverages GPU resources and allows for fast and accurate embeddings of millions of data points
    corecore