15,632 research outputs found

    Unsupervised Adaptive Re-identification in Open World Dynamic Camera Networks

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Existing approaches have concentrated on either designing the best feature representation or learning optimal matching metrics in a static setting where the number of cameras are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re-identification problem, where a new camera may be temporarily inserted into an existing system to get additional information. To address such a novel and very practical problem, we propose an unsupervised adaptation scheme for re-identification models in a dynamic camera network. First, we formulate a domain perceptive re-identification method based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt with a newly introduced target camera, without requiring a very expensive training phase. Second, we introduce a transitive inference algorithm for re-identification that can exploit the information from best source camera to improve the accuracy across other camera pairs in a network of multiple cameras. Extensive experiments on four benchmark datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art unsupervised learning based alternatives whilst being extremely efficient to compute.Comment: CVPR 2017 Spotligh

    Learning to rank in person re-identification with metric ensembles

    Full text link
    We propose an effective structured learning based approach to the problem of person re-identification which outperforms the current state-of-the-art on most benchmark data sets evaluated. Our framework is built on the basis of multiple low-level hand-crafted and high-level visual features. We then formulate two optimization algorithms, which directly optimize evaluation measures commonly used in person re-identification, also known as the Cumulative Matching Characteristic (CMC) curve. Our new approach is practical to many real-world surveillance applications as the re-identification performance can be concentrated in the range of most practical importance. The combination of these factors leads to a person re-identification system which outperforms most existing algorithms. More importantly, we advance state-of-the-art results on person re-identification by improving the rank-11 recognition rates from 40%40\% to 50%50\% on the iLIDS benchmark, 16%16\% to 18%18\% on the PRID2011 benchmark, 43%43\% to 46%46\% on the VIPeR benchmark, 34%34\% to 53%53\% on the CUHK01 benchmark and 21%21\% to 62%62\% on the CUHK03 benchmark.Comment: 10 page

    Structured learning of metric ensembles with application to person re-identification

    Full text link
    Matching individuals across non-overlapping camera networks, known as person re-identification, is a fundamentally challenging problem due to the large visual appearance changes caused by variations of viewpoints, lighting, and occlusion. Approaches in literature can be categoried into two streams: The first stream is to develop reliable features against realistic conditions by combining several visual features in a pre-defined way; the second stream is to learn a metric from training data to ensure strong inter-class differences and intra-class similarities. However, seeking an optimal combination of visual features which is generic yet adaptive to different benchmarks is a unsoved problem, and metric learning models easily get over-fitted due to the scarcity of training data in person re-identification. In this paper, we propose two effective structured learning based approaches which explore the adaptive effects of visual features in recognizing persons in different benchmark data sets. Our framework is built on the basis of multiple low-level visual features with an optimal ensemble of their metrics. We formulate two optimization algorithms, CMCtriplet and CMCstruct, which directly optimize evaluation measures commonly used in person re-identification, also known as the Cumulative Matching Characteristic (CMC) curve.Comment: 16 pages. Extended version of "Learning to Rank in Person Re-Identification With Metric Ensembles", at http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Paisitkriangkrai_Learning_to_Rank_2015_CVPR_paper.html. arXiv admin note: text overlap with arXiv:1503.0154

    A Novel Multi-Color Feature Selection Method for Person Re-identification

    Get PDF
    In this paper, a novel multi-color feature selection method is proposed for person re-identification. Firstly, multi-color features, which consisting of HSV, LAB, RGB and nRnG color features, were extracted and concatenated into a whole feature vector. Then the D-optimal Partial Least Squares feature selection method was adopted to select an optimal feature subset that could minimize the variance of the regression model. Finally, an asymmetric distance model for similarity matching was utilized to observe distinctive features from a different perspective. Experimental results show that rank 1 performance of the proposed method were 48.67%, 63.12% and 65.04% respectively on the VIPeR, Prid_450s and CUHK01 databases, which have achieved state-of-art performances

    Person re-identification via efficient inference in fully connected CRF

    Full text link
    In this paper, we address the problem of person re-identification problem, i.e., retrieving instances from gallery which are generated by the same person as the given probe image. This is very challenging because the person's appearance usually undergoes significant variations due to changes in illumination, camera angle and view, background clutter, and occlusion over the camera network. In this paper, we assume that the matched gallery images should not only be similar to the probe, but also be similar to each other, under suitable metric. We express this assumption with a fully connected CRF model in which each node corresponds to a gallery and every pair of nodes are connected by an edge. A label variable is associated with each node to indicate whether the corresponding image is from target person. We define unary potential for each node using existing feature calculation and matching techniques, which reflect the similarity between probe and gallery image, and define pairwise potential for each edge in terms of a weighed combination of Gaussian kernels, which encode appearance similarity between pair of gallery images. The specific form of pairwise potential allows us to exploit an efficient inference algorithm to calculate the marginal distribution of each label variable for this dense connected CRF. We show the superiority of our method by applying it to public datasets and comparing with the state of the art.Comment: 7 pages, 4 figure

    A Watch-List Based Classification System

    Get PDF
    Watch-list-based classification and verification is advantageous in a variety of surveillance applications. In this thesis, we present an approach for verifying if a query image lies in a predefined set of target samples (the watch-list) or not. This approach is particularly useful at identifying a small set of target subjects and therefore can render high levels of accuracy. Further, this approach can also be extended to identify the query image exactly out of the target samples. The three- stages approach proposed here consists of using a combination of color and texture features to represent the image and further using, Kernel Partial Least Squares for dimensionality reduction followed by a classifier. This approach provides improved accuracy as shown by experiments on two datasets
    • …
    corecore