7 research outputs found

    Kayawood, a Key Agreement Protocol

    Get PDF
    Public-key solutions based on number theory, including RSA, ECC, and Diffie-Hellman, are subject to various quantum attacks, which makes such solutions less attractive long term. Certain group theoretic constructs, however, show promise in providing quantum-resistant cryptographic primitives because of the infinite, non-cyclic, non-abelian nature of the underlying mathematics. This paper introduces Kayawood Key Agreement protocol (Kayawood, or Kayawood KAP), a new group-theoretic key agreement protocol, that leverages the known NP-Hard shortest word problem (among others) to provide an Elgamal-style, Diffie-Hellman-like method. This paper also (i) discusses the implementation of and behavioral aspects of Kayawood, (ii) introduces new methods to obfuscate braids using Stochastic Rewriting, and (iii) analyzes and demonstrates Kayawood\u27s security and resistance to known quantum attacks

    Attack on Kayawood Protocol: Uncloaking Private Keys

    Get PDF
    We analyze security properties of a two-party key-agreement protocol recently proposed by I. Anshel, D. Atkins, D. Goldfeld, and P. Gunnels, called Kayawood protocol. At the core of the protocol is an action (called E-multiplication) of a braid group on some finite set. The protocol assigns a secret element of a braid group to each party (private key). To disguise those elements, the protocol uses a so-called cloaking method that multiplies private keys on the left and on the right by specially designed elements (stabilizers for E-multiplication). We present a heuristic algorithm that allows a passive eavesdropper to recover Alice\u27s private key by removing cloaking elements. Our attack has 100% success rate on randomly generated instances of the protocol for the originally proposed parameter values and for recent proposals that suggest to insert many cloaking elements at random positions of the private key. Our implementation of the attack is available on GitHub

    Analysis of a Group of Automorphisms of a Free Group as a Platform for Conjugacy-Based Group Cryptography

    Full text link
    Let F be a finitely generated free group and Aut(F) its group of automorphisms. In this monograph we discuss potential uses of Aut(F) in group-based cryptography. Our main focus is on using Aut(F) as a platform group for the Anshel-Anshel-Goldfeld protocol, Ko-Lee protocol, and other protocols based on different versions of the conjugacy search problem or decomposition problem, such as Shpilrain-Ushakov protocol. We attack the Anshel-Anshel-Goldfeld and Ko-Lee protocols by adapting the existing types of the length-based attack to the specifics of Aut(F). We also present our own version of the length-based attack that significantly increases the attack\u27 success rate. After discussing attacks, we discuss the ways to make keys from Aut(F) resistant to the different versions of length-based attacks including our own

    Conjugacy Separation Problem in Braids: an Attack on the Original Colored Burau Key Agreement Protocol

    Get PDF
    In this paper, we consider the conjugacy separation search problem in braid groups. We deeply redesign the algorithm presented in (Myasnikov & Ushakov, 2009) and provide an experimental evidence that the problem can be solved for 100%100\% of very long randomly generated instances. The lengths of tested randomly generated instances is increased by the factor of two compared to the lengths suggested in the original proposal for 120120 bits of security. An implementation of our attack is freely available in CRAG. In particular, the implementation contains all challenging instances we had to deal with on a way to 100%100\% success. We hope it will be useful to braid-group cryptography community

    AN ATTACK ON THE WALNUT DIGITAL SIGNATURE ALGORITHM

    Get PDF
    In this paper, we analyze security properties of the WalnutDSA, a digital signature algorithm recently proposed by I. Anshel, D. Atkins, D. Goldfeld, and P. Gunnels,that has been accepted by the National Institute of Standards and Technology for evaluation as a standard for quantum-resistant public-key cryptography. At the core of the algorithm is an action, named E-multiplication, of a braid group on some finite set. The protocol assigns a pair of braids to the signer as a private key. A signature of a message mm is a specially constructed braid that is obtained as a product of private keys, the hash value of mm encoded as a braid, and three specially designed cloaking elements. We present a heuristic algorithm that allows a passive eavesdropper to recover a substitute for the signer\u27s private key by removing cloaking elements and then solving a system of conjugacy equations in braids. Our attack has 100%100\% success rate on randomly generated instances of the protocol. It works with braids only and its success rate is not affected by a choice of the base finite field. In particular, it has the same 100%100\% success rate for recently suggested parameters values (including a new way to generate cloaking elements, see NIST PQC forum https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum). Implementation of our attack in C++, as well as our implementation of the WalnutDSA protocol, is available on GitHub (https://github.com/stevens-crag/crag)

    Factoring Products of Braids via Garside Normal Form

    Get PDF
    Braid groups are infinite non-abelian groups naturally arising from geometric braids. For two decades they have been proposed for cryptographic use. In braid group cryptography public braids often contain secret braids as factors and it is hoped that rewriting the product of braid words hides individual factors. We provide experimental evidence that this is in general not the case and argue that under certain conditions parts of the Garside normal form of factors can be found in the Garside normal form of their product. This observation can be exploited to decompose products of braids of the form ABC when only B is known. Our decomposition algorithm yields a universal forgery attack on WalnutDSAâ„¢, which is one of the 20 proposed signature schemes that are being considered by NIST for standardization of quantum-resistant public-key cryptography. Our attack on WalnutDSAâ„¢ can universally forge signatures within seconds for both the 128-bit and 256-bit security level, given one random message-signature pair. The attack worked on 99.8% and 100% of signatures for the 128-bit and 256-bit security levels in our experiments. Furthermore, we show that the decomposition algorithm can be used to solve instances of the conjugacy search problem and decomposition search problem in braid groups. These problems are at the heart of other cryptographic schemes based on braid groups.SCOPUS: cp.kinfo:eu-repo/semantics/published22nd IACR International Conference on Practice and Theory of Public-Key Cryptography, PKC 2019; Beijing; China; 14 April 2019 through 17 April 2019ISBN: 978-303017258-9Volume Editors: Sako K.Lin D.Publisher: Springer Verla

    Attack on Kayawood protocol: uncloaking private keys

    No full text
    We analyze security properties of a two-party key-agreement protocol recently proposed by I. Anshel, D. Atkins, D. Goldfeld, and P. Gunnels, called Kayawood protocol. At the core of the protocol is an action (called E-multiplication) of a braid group on some finite set. The protocol assigns a secret element of a braid group to each party (private key). To disguise those elements, the protocol uses a so-called cloaking method that multiplies private keys on the left and on the right by specially designed elements (stabilizers for E-multiplication)
    corecore