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Abstract. Braid groups are infinite non-abelian groups naturally arising from geometric
braids. For two decades they have been proposed for cryptographic use. In braid group
cryptography public braids often contain secret braids as factors and it is hoped that rewriting
the product of braid words hides individual factors. We provide experimental evidence that this
is in general not the case and argue that under certain conditions parts of the Garside normal
form of factors can be found in the Garside normal form of their product. This observation
can be exploited to decompose products of braids of the form 𝐴𝐵𝐶 when only 𝐵 is known.
Our decomposition algorithm yields a universal forgery attack on WalnutDSATM, which is one
of the 20 proposed signature schemes that are being considered by NIST for standardization
of quantum-resistant public-key cryptography. Our attack on WalnutDSATM can universally
forge signatures within seconds for both the 128-bit and 256-bit security level, given one
random message-signature pair. The attack worked on 99.8% and 100% of signatures for the
128-bit and 256-bit security levels in our experiments.
Furthermore, we show that the decomposition algorithm can be used to solve instances of the
conjugacy search problem and decomposition search problem in braid groups. These problems
are at the heart of other cryptographic schemes based on braid groups.

1 Introduction

Continuous progress in quantum computing and the prospect of large scale quantum comput-
ers necessitate the development of quantum-resistant cryptographic algorithms. Currently, the
security of most widespread algorithms relies on the hardness of the discrete logarithm problem,
the elliptic-curve discrete logarithm problem or the integer factorization problem. All of these
mathematical problems can be solved using Shor’s quantum algorithm [42]. Even though quantum
computers with sufficient processing power to pose a threat to current cryptographic applications
presumably do not yet exist, researchers, intelligence agencies and the industry aspire to develop
cryptographic systems that remain safe once such devices come into being. Current approaches to
attain quantum-resistance include cryptography based on codes, isogenies, lattices and multivariate
polynomials over finite fields [19, 36, 38, 44]. Another approach are cryptographic systems based on
non-abelian groups [22]. Indeed no quantum algorithm to solve the hidden subgroup problem (the core
problem solved by Shor’s algorithm for finite abelian groups) is known for general non-abelian groups.

The conjugacy search problem is a fundamental decision problem in combinatorial group theory.

Definition 1. Given two braids 𝑋,𝑌 ∈ 𝐵𝑁 where 𝑌 = 𝐶 ·𝑋 ·𝐶−1 for some 𝐶 ∈ 𝐵𝑁 , the conjugacy
search problem (CSP) in braid groups is to find 𝐶 ∈ 𝐵𝑁 such that 𝑌 = 𝐶 ·𝑋 · 𝐶−1.

The asserted computational difficulty of the CSP and its variations has inspired many cryptographic
primitives on non-abelian groups such as [3, 33].
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To establish standards for quantum-secure cryptography [40] the National Institute of Standards
and Technology (NIST) is currently evaluating public-key algorithms [40]. One of the 20 signature
schemes being considered for standardisation is WalnutDSATM [6] operating on braid groups.

NIST’s ongoing standardization project and thus the potential for widespread use of WalnutDSATM

and other braid group algorithms make a thorough security analysis and understanding of the
braid group vital. WalnutDSATM has been analysed before [10, 29, 35] bringing some weaknesses of
the signature scheme to light. However, the attacks could be thwarted by increasing parameters
and slightly changing the protocol [41]. A fundamental assumption underlying the security of
WalnutDSATM is that individual factors in a product of three braids are “obfuscated” when they
are presented in some normal form.

Our contribution: In this paper, we describe how the Garside normal forms of factors relate to
the Garside normal form of their product. Together with an observation based on experiments, we
use this to locate single factors in a product of braids and to decompose certain products in braid
groups. More precisely, we give an algorithm that can recover the factors of a product 𝐴𝐵𝐶 ∈ 𝐵𝑁

up to the centre of the group when only 𝐵 is known.
Signatures of WalnutDSATM can be written as a braid word 𝑊1 ·𝐸 ·𝑊2, where 𝑊1 and 𝑊2 are

secret braids and 𝐸 is a deterministic encoding of the message. The product is presented rewritten,
e.g. in normal form, with the explicit aim of obfuscating individual factors. Our observations imply
that 𝑊1 and 𝑊2 can in fact be efficiently recovered up to the centre of the group. Replacing 𝐸 by
the encoding of any other message yields a new universal forgery attack that works within seconds
on most random message-signature pairs.

Related work: Braid groups have been suggested for cryptographic purposes for two decades
[22] and protocols such as the Anshel-Anshel-Goldfeld key exchange [4] and Ko et al.’s protocol [33]
have been studied extensively. A newer protocol sharing some design components with WalnutDSATM

is the Algebraic Eraser [5]. This scheme and the Anshel-Anshel-Goldfeld key exchange have been
subject to numerous attacks which were mostly based on representation theory [8, 9, 31] or on a
length-based approach [30, 39]. Yet, the same cryptanalytic techniques do not seem to apply to
WalnutDSATM.

Considerable work has been devoted towards a solution of the conjugacy search problem (CSP)
in braid groups. Apart from heuristic approaches such as the previously mentioned length-based
attacks, the most successful approaches use summit sets [13, 24, 25].

Responsible Disclosure Process: We provided the designers of WalnutDSATM with the
details of our attack on the 20th of August. They acknowledged that the attack works. To prevent
malicious use of our attack on the signature scheme or similar products by SecureRF, we agreed to
postpone the publication of our findings until the 21st of November.

Outline: In Section 2, we provide preliminary results on braid groups and the Garside normal
form. In Section 3 we present the current instantiation of WalnutDSATM and how it was modified
to thwart previous attacks. Section 4 gives our algorithm to recover the factors of a braid 𝐴𝐵𝐶
presented by its normal form when the braid 𝐵 is known. In Section 5 we describe our attack on
WalnutDSATM and discuss potential countermeasures. Section 6 shows how the decomposition
algorithm can be used to solve instances of the conjugacy search problem. We conclude our work in
Section 7.
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2 Braid Groups

This section provides preliminary mathematical background on braid groups. In Section 2.1 we
define braid groups and provide their algebraic presentation. Section 2.2 defines the colored Burau
representation of braid groups which is needed to explain WalnutDSATM but not essential for the
understanding of our contribution. In Section 2.3 we define the Garside normal form. A reader
familiar with braid groups and the Garside normal form may proceed to Section 3.

2.1 Artin Presentation

Let 𝑁 be a positive integer and let 𝐵𝑁 denote the braid group on 𝑁 strands introduced by Emil
Artin [7]. Geometrically, the elements of a braid group are the equivalence classes of 𝑁 strands
under ambient isotopy, i.e. we consider two braids the same if we can distort one into the other
without breaking any strand. Artin proved that 𝐵𝑁 is indeed a group with presentation

𝐵𝑁 =
⟨
𝑏1, . . . , 𝑏𝑁−1

⃒⃒⃒ 𝑏𝑖𝑏𝑖+1𝑏𝑖 = 𝑏𝑖+1𝑏𝑖𝑏𝑖+1

𝑏𝑖𝑏𝑗 = 𝑏𝑗𝑏𝑖 for |𝑖− 𝑗| ≥ 2

⟩
, (1)

where the group operation is given by concatenation of the strings. Thus, we can represent any braid
of 𝐵𝑁 as a finite, non-unique word in the so called Artin generators 𝑏𝑖. Imagining our strands lying
in a plane and numbering the strands from left to right, the generator 𝑏𝑖 corresponds to the 𝑖-th
strand crossing over the (𝑖+ 1)-th strand.

Figures 1 and 2 illustrate the relations given in Presentation (1).

=

Fig. 1: 𝑏𝑖𝑏𝑖+1𝑏𝑖 = 𝑏𝑖+1𝑏𝑖𝑏𝑖+1

=. . . . . .

Fig. 2: 𝑏𝑖𝑏𝑗 = 𝑏𝑗𝑏𝑖, if |𝑖− 𝑗| ≥ 2

Note that there is a natural homomorphism sending elements of 𝐵𝑁 to the induced permutations
in the symmetric group S𝑁 . More precisely, each Artin generator 𝑏𝑖 is sent to the transposition
𝜋𝑖 := (𝑖, 𝑖 + 1). For some braid word 𝑏𝜖1𝑖1 . . . 𝑏

𝜖𝑘
𝑖𝑘

the induced permutation is 𝜋𝜖1
𝑖1
. . . 𝜋𝜖𝑘

𝑖𝑘
. Since the

corresponding permutations respect the relations in Presentation (1), sending braids to their in-
duced permutations is a well-defined homomorphism. Clearly, this homomorphism from 𝐵𝑁 to S𝑁
is surjective. Braids in the kernel, i.e. braids inducing the identity permutation, are called pure braids.

It is well known that the group of pure braids can be generated by 𝑔𝑖𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 [12], where

𝑔𝑖𝑗 := 𝑏𝑗−1 · 𝑏𝑗−2 · · · · · 𝑏𝑖+1 · 𝑏2𝑖 · 𝑏−1
𝑖+1 · · · · · 𝑏

−1
𝑗−2 · 𝑏

−1
𝑗−1. (2)

The generator 𝑔𝑖𝑗 may be depicted geometrically as braid where the 𝑗-th string passes behind the
strings (𝑗 − 1), . . . , (𝑖+ 1), in front of the 𝑖-th string and then behind the strings 𝑖, . . . , 𝑗 − 1 back to
the 𝑗-th position.
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2.2 Colored Burau Representation

The colored Burau representation of braid groups which we will describe in this section is used to
define WalnutDSATM and its underlying problem. A reader who is mainly interested in the structure
being preserved in products of Garside normal forms may want to skip this section.

Let 𝑞 be the power of a prime and let F𝑞[𝑡
±1
1 , . . . , 𝑡±1

𝑁 ] be the ring of Laurent polynomials with
coefficients in the finite field F𝑞 with 𝑞 elements. There exists an action of S𝑁 on F𝑞[𝑡

±1
1 , . . . , 𝑡±1

𝑁 ],
where a permutation acts on the indices of the variables of the Laurent polynomial. That is, for
every 𝜎 ∈ S𝑁 and 𝑓 ∈ F𝑞[𝑡

±1
1 , . . . , 𝑡±1

𝑁 ]

𝑓(𝑡1, . . . , 𝑡𝑁 ) ↦→ 𝜎𝑓 = 𝑓(𝑡𝜎(1), . . . , 𝑡𝜎(𝑁))

The action of S𝑁 extends to GL𝑁 (F𝑞[𝑡
±1
1 , . . . , 𝑡±1

𝑁 ]) by applying it entry-wise. For 𝜎 ∈ S𝑁 and
𝑀 ∈ GL𝑁 (F𝑞[𝑡

±1
1 , . . . , 𝑡±1

𝑁 ]), we denote the action by 𝑀 ↦→ 𝜎𝑀 .

The colored Burau matrices of each Artin generator are defined as follows [6]:

CB(𝑏1) :=

⎛⎜⎜⎜⎝
−𝑡1 1

1
. . .

1

⎞⎟⎟⎟⎠ and CB(𝑏𝑖) :=

⎛⎜⎜⎜⎜⎜⎜⎝

1
. . .
𝑡𝑖 −𝑡𝑖 1

. . .
1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the 𝑡𝑖 are written in the 𝑖-th row for 2 ≤ 𝑖 ≤ 𝑁 − 1. Equipping the semidirect product
GL𝑁 (F𝑞[𝑡

±1
1 , . . . , 𝑡±1

𝑁 ])o S𝑁 with the operation

(𝑀1, 𝜎1) · (𝑀2, 𝜎2) = (𝑀1 · 𝜎1𝑀2, 𝜎1𝜎2),

one obtains a group and one can check that the map

𝛷 : 𝐵𝑁 → GL𝑁
(︀
F𝑞[𝑡

±1
1 , . . . , 𝑡±1

𝑁 ]
)︀
o S𝑁 (3)

𝑏𝑖 ↦→
(︀
CB(𝑏𝑖), 𝜋𝑖

)︀
,

where 𝜋𝑖 denotes the transposition (𝑖, 𝑖+ 1) ∈ S𝑁 , extends to a group homomorphism. This group
homomorphism is called colored Burau representation of 𝐵𝑁 [16].

2.3 Garside Normal Form

A normal form in a group is a canonical way to represent the elements and thus it provides an
opportunity to compare them.

Garside was the first to develop a normal form for braid groups [23] which was improved most
notably by Thurston [21] and Elrifai and Morton [20] leading to what is known as the Garside
normal form today. For further normal forms in braid groups see [11, 15, 18].

In this section we reproduce some results that led to the development of the Garside normal
form to introduce terminology necessary for the explanation of our observation in Section 4.
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Let 𝐵+
𝑁 denote the monoid of positive braids in 𝐵𝑁 which are the braids that can be written as

a product of positive powers of Artin generators. This is a well-defined monoid as all the defining
relations in the presentation of braid groups (1) contain only positive powers of Artin generators.

We denote Garside’s “fundamental braid ” [23] by 𝛥. Recall that this braid is the unique positive
braid in which any two strands cross exactly once and it is of central importance in the Garside
normal form. We recall some properties of the fundamental braid due to Garside [23].

Proposition 2. Let 𝐵𝑁 be the braid group on 𝑁 strands. For 𝑖 = 1, . . . , 𝑁 − 1, we have

𝑏𝑖𝛥 = 𝛥𝑏𝑁−𝑖.

In particular 𝛥2 commutes with every generator and lies in the centre of 𝐵𝑁 . In fact, the centre of
𝐵𝑁 is cyclic and generated by 𝛥2.

Remark 3. Let 𝜏 be the inner automorphism of 𝐵𝑁 conjugating elements with 𝛥, i.e.

𝜏 : 𝐵𝑁 → 𝐵𝑁

𝛽 ↦→ 𝛥𝛽𝛥−1

Let 𝑊 = 𝑏𝜖1𝑖1 . . . 𝑏
𝜖𝑘
𝑖𝑘

∈ 𝐵𝑁 with 𝜖𝑗 ∈ {0, 1}. Then the previous Proposition implies

𝜏(𝑊 ) = 𝛥𝑊𝛥−1 = 𝜏(𝑏𝑖1)
𝜖1 . . . 𝜏(𝑏𝑖𝑘)

𝜖𝑘 = 𝑏𝜖1𝑁−𝑖1
. . . 𝑏𝜖𝑘𝑁−𝑖𝑘

.

In particular, 𝜏2 is the identity automorphism. We will continue to denote this automorphism by 𝜏
and call it the reflection in 𝐵𝑁 throughout this paper.

Proposition 4. [23] For any generator 𝑏𝑖, 𝑖 = 1, . . . , 𝑁 − 1, we can find positive braids 𝑥𝑖 and
𝑦𝑖 ∈ 𝐵+

𝑁 such that
𝑏𝑖𝑥𝑖 = 𝛥 = 𝑦𝑖𝑏𝑖.

An explicit description of the braids 𝑥𝑖, 𝑦𝑖 is given at the same place. Together with Proposition 2
this observation can be used to rewrite any representation of an element of 𝐵𝑁 efficiently in the form
𝛥𝑟𝑃 , where 𝑟 ∈ Z and 𝑃 is a positive braid that cannot be written as a positive word containing 𝛥
as a subword. Listing all possible words 𝑃 and choosing the lexicographically minimal one for 𝑃
yields the initial normal form due to Garside. This algorithm has exponential running time in the
number of strands 𝑁 and the braid length, so it is not completely satisfactory from a computational
point of view. However, we have the following natural partial order in the monoid of positive braids.

Definition 5. Let 𝑎, 𝑏 ∈ 𝐵+
𝑁 . We write 𝑎 ≤ 𝑏 if 𝑎𝑐 = 𝑏 for some 𝑐 ∈ 𝐵+

𝑁 . We say 𝑎 is a prefix of 𝑏.
This is a partial order invariant under left multiplication, i.e. 𝑎 ≤ 𝑏 implies 𝑑𝑎 ≤ 𝑑𝑏 for all 𝑑 ∈ 𝐵+

𝑁 .

Let 1 denote the identity in 𝐵𝑁 . We see that 1 ≤ 𝐴 if and only if 𝐴 ∈ 𝐵+
𝑁 .

Given a partial order as in Definition 5 one may wonder whether there is a greatest common
prefix in some sense.

Proposition 6. [23] For any two elements 𝑎, 𝑏 ∈ 𝐵+
𝑁 there exists a unique element 𝑑 such that

𝑑 ≤ 𝑎, 𝑑 ≤ 𝑏 and that 𝑑′ ≤ 𝑑 for every common prefix 𝑑′ of 𝑎 and 𝑏.
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Definition 7. Using the same notation as in the previous proposition, we call 𝑑 the greatest common
divisor (gcd) of 𝑎 and 𝑏 and we write 𝑑 = 𝑎 ∧ 𝑏.

Elrifai and Morton [20] and Thurston [21] independently developed two different algorithms to
compute the normal form of a braid in polynomial time building on top of Garside’s results. The
centrepiece of their work is to consider the following braids.

Definition 8. The positive prefixes of 𝛥 are called permutation braids, i.e. 𝐴 ∈ 𝐵𝑁 is a permutation
braid if and only if 1 ≤ 𝐴 ≤ 𝛥.

Permutation braids are exactly those positive braids with any pair of strands crossing at most once
and thus uniquely determined by the permutation they induce.

Instead of listing exponentially many representatives and choosing the lexicographically minimal
one, the idea of Thurston, Elrifai and Morton was to write a braid word 𝛽 as a product of permutation
braids

𝛽 = 𝛥𝑟𝐴1 · · ·𝐴𝑘,

where uniqueness is achieved by requiring each letter to appear as far to the left as possible.

Definition 9. A product of permutation braids 𝐴𝑖𝐴𝑖+1 is called left-weighted if 𝐴𝑖𝐴𝑖+1 ∧𝛥 = 𝐴𝑖.

That is, if we move any crossing from 𝐴𝑖+1 to 𝐴𝑖 the resulting braid would not be a permutation
braid anymore. This allows us to formulate the Garside left normal form.

Theorem 10 (Garside left normal form). Every braid 𝛽 can be represented uniquely by a braid
word

𝛥𝑟𝐴1 · · ·𝐴𝑘,

where 𝑟 ∈ Z, 1 < 𝐴𝑖 < 𝛥 and 𝐴𝑖𝐴𝑖+1 is a left-weighted product for 1 ≤ 𝑖 ≤ 𝑘.

Definition 11. Consider the notation of the preceding Theorem 10. We call the integer 𝑘 the
canonical length of 𝛽 and the integer 𝑟 the infimum of 𝛽.

For details on the algorithms to compute the Garside left normal form we refer to [20, 21]. Using
the approach of Elrifai and Morton the normal form of some given positive braid word 𝑏𝑖1 . . . 𝑏𝑖𝑘 can
be computed in time 𝒪(𝑘2𝑁), where 𝑘 is the number of Artin generators of the braid word given.
Thurston’s alternative but equivalent solution computes the left normal form of a positive braid
word given as a product of permutation braids 𝐴1 . . . 𝐴𝑘′ with time complexity 𝒪(𝑘′2𝑁 log𝑁) [21].
Note, this might be faster than the previous algorithm as most permutation braids are a product of
multiple Artin generators.

We want to point out that similar observations as the ones we will state in Section 4 for
the Garside normal form hold for other normal forms such as the Birman-Ko-Lee (BKL) normal
form as well. In particular, structure in the BKL normal form can be exploited directly to attack
WalnutDSATM or solve instances of the conjugacy search problem too. However, using the Garside
normal form turned out to be slightly more efficient in our experiments which is why we will mean
the Garside left normal form when talking about left normal forms for the remainder of this paper.
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3 WalnutDSATM

WalnutDSATM is a digital signature scheme operating on braid groups. It was proposed by Anshel,
Atkins, Goldfeld and Gunnels [6]. This Section summarizes the newest version of the signature
scheme. In Section 3.1 we define E-Multiplication and cloaking elements and state the underlying
hardness assumption of WalnutDSATM. The section is not necessary to understand our attack, but
these basic building blocks are needed to define the signature scheme itself. Section 3.2 provides
details about parameters used and the signature generation and validation. Finally, we will give
a brief overview of previous work on WalnutDSATM showing that our approach is fundamentally
disparate in Section 3.3.

3.1 E-MultiplicationTM and Cloaking Elements

E-Multiplication was first introduced as a one-way function [5] and it is a foundation of WalnutDSATM.
Let F×

𝑞 denote the non-zero elements of the finite field F𝑞. An 𝑁 -tuple of the form

𝜏 = (𝜏1, . . . , 𝜏𝑁 ) ∈ (F×
𝑞 )

𝑁

will be called “T-values” in the following. Given such a tuple, we can evaluate any Laurent polynomial
F𝑞[𝑡

±1
1 , . . . , 𝑡±1

𝑁 ] at 𝜏 , denoted ↓𝜏 :

↓𝜏 : F𝑞[𝑡
±1
1 , . . . , 𝑡±1

𝑁 ] → F𝑞

𝑓 ↦→ 𝑓(𝜏1, . . . , 𝜏𝑁 )

Similarly, we can evaluate any matrix 𝑀 ∈ GL𝑁 (F𝑞[𝑡
±1
1 , . . . , 𝑡±1

𝑁 ]) to 𝑀 ↓𝜏 by doing so entrywise.

E-Multiplication is a right action of the colored Burau group GL𝑁 (F𝑞[𝑡
±1
1 , . . . , 𝑡±1

𝑁 ]) o S𝑁 on
GL𝑁 (F𝑞)× S𝑁 . We will follow the notation of [6] denoting E-Multiplication with a star: ⋆.

For a single Artin generator 𝑏𝑖, E-Multiplication is defined as

(𝑀,𝜎) ⋆ 𝛷(𝑏𝑖) :=
(︁
𝑀 · 𝜎(CB(𝑏𝑖)) ↓𝜏 , 𝜎 · 𝜋𝑖

)︁
,

where 𝜋𝑖 = (𝑖, 𝑖+1) ∈ S𝑁 and 𝛷 is the map given in Equation (3). For a general braid 𝛽 represented
by 𝑏𝜖1𝑖1 . . . 𝑏

𝜖𝑘
𝑖𝑘

with 𝜖𝑗 ∈ {−1, 1}, we define E-Multiplication inductively left-to-right as

(𝑀,𝜎) ⋆ 𝛷(𝛽) := (𝑀,𝜎) ⋆
(︀
CB(𝑏𝑖1)

𝜖1 , 𝜋𝜖1
𝑖1

)︀
⋆ · · · ⋆

(︀
CB(𝑏𝑖𝑘)

𝜖𝑘 , 𝜋𝜖𝑘
𝑖𝑘

)︀
.

Remark 12. Following the notation of [6], we write (𝑀,𝜎) ⋆ 𝛽 instead of (𝑀,𝜎) ⋆ 𝛷(𝛽) for 𝛽 ∈ 𝐵𝑁 .
Moreover, we denote by 𝒫 the map

𝒫 : 𝐵𝑁 → GL𝑁 (F𝑞)× S𝑁 (4)
𝛽 ↦→ (Id, id) ⋆ 𝛽.

The security of WalnutDSATM is based on the computational hardness assumption of the reversing
E-Multiplication (REM) problem.

Definition 13. Given an ordered pair (𝑀,𝜎) ∈ GL𝑁 (F𝑞) × S𝑁 such that (𝑀,𝜎) = (Id, id) ⋆ 𝛽 for
some braid 𝛽 ∈ 𝐵𝑁 . The reversing E-Multiplication (REM) problem is to find a braid 𝛽′ such that
(Id, id) ⋆ 𝛽′ = (𝑀,𝜎).
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In particular inverting the map given in (4) is assumed to be hard. Reversing E-Multiplication is
enough to break WalnutDSATM, indeed we will see that the ability to solve the REM problem allows
to forge the signature of one message and that solving two instances of the REM problem allows the
recovery of the private key from the public key.

However, our attack on WalnutDSATM bypasses the problem of reversing E-Multiplication. We
will see that our attack works solely on braids and is therefore independent of the colored Burau
representation and of the size 𝑞 of the underlying field F𝑞.

Another basic building block of WalnutDSATM are certain braids termed cloaking elements.

Definition 14. A braid is called cloaking element of (𝑀,𝜎) ∈ GL𝑁 (F𝑞)× S𝑁 , if it stabilizes (𝑀,𝜎)
under the right action of the braid group via E-Multiplication.

In WalnutDSATM cloaking elements of the following form are generated [41].

Proposition 15. Let (𝑀,𝜎) ∈ GL𝑁 (F𝑞)× S𝑁 . Assume 𝜏𝑎 = −𝜏−1
𝑏 for two T-values with indices

1 ≤ 𝑎 < 𝑏 ≤ 𝑁 . Let 𝜎𝑤 denote the permutation induced by some braid 𝑤 ∈ 𝐵𝑁 and let 𝑏𝑖 be an
Artin generator for 1 ≤ 𝑖 ≤ 𝑁 − 1. If

𝜎𝑤(𝑖) = 𝜎−1(𝑎) and 𝜎𝑤(𝑖+ 1) = 𝜎−1(𝑏),

the braid 𝑤 · 𝑏±4
𝑖 · 𝑤−1 cloaks (𝑀,𝜎).

Proof. This is an immediate consequence of
(︀
CB𝑖(𝜏𝑎) · CB𝑖(−𝜏−1

𝑎 )
)︀2

= Id𝑁 .

Remark 16. Cloaking elements as proposed by the designers of WalnutDSATM depend only on the
permutation 𝜎 and not on the matrix 𝑀 of the element they are stabilizing. Therefore, we will say
that some braid cloaks a permutation 𝜎.

For further details on the generation of cloaking elements in WalnutDSATM we refer interested
readers to the original implementation by SecureRF [1] or our implementation in magma [14](see
[37]). However, our attack will be independent of the way cloaking elements are generated.

Concealed cloaking elements are cloaking elements for which the cloaked permutation is not
public. Given a braid word 𝑊 , concealed cloaking elements are added to the word by splitting 𝑊 into
two braid words 𝑊1 and 𝑊2 at a random location and inserting a braid cloaking the permutation
induced by 𝑊1 in between.

3.2 The Signature Scheme

Key Generation and Parameter Values Before any message can be signed, the following system
wide public parameters need to be fixed:

– The rank 𝑁 of the braid group 𝐵𝑁 .
– A rewriting algorithm ℛ : 𝐵𝑁 → 𝐵𝑁 , i.e. an algorithm transforming a braid word 𝑤 into an

equivalent braid word ℛ(𝑤). For example, one can use algorithms computing normal forms
[11, 23], Dehornoy’s handle reduction [17] or the stochastic rewriting algorithm introduced in [2].

– A finite field F𝑞.
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– T-values = {𝜏1, 𝜏2, . . . , 𝜏𝑁} ∈ (F×
𝑞 )

𝑁 , such that 𝜏𝑎 = −𝜏−1
𝑏 for some publicly known integers

1 ≤ 𝑎 < 𝑏 ≤ 𝑁 .
– The number of concealed cloaking elements that will be added.
– A hash function 𝐻 : {0, 1}* → {0, 1}2𝑘 for some 𝑘. Our attack will not depend on any weaknesses

of the hash function and therefore we can treat 𝐻 as a random oracle.

Next, the signer chooses braid words 𝑤 and 𝑤′ by choosing uniformly at random 𝑙 Artin generators
or their inverses. The secret key of the signer is the pair (𝑤,𝑤′), while the public key is (𝒫(𝑤),𝒫(𝑤′))
where 𝒫 is the map given in Remark 12. Note, the length of the private braids 𝑤 and 𝑤′ is chosen
large enough to prevent brute force attacks from being effective.
Later, we will see that the success of our new attack is independent of all parameters but 𝑁 .

As of the 21st of November 2018, the use of the following parameters is suggested for WalnutDSATM:

claimed security level 128-bit security level 256-bit security level
𝑁 10 10
𝑞 231 − 1 261 − 1
𝑙 132 287

concealed cloaking elts 12 24
𝐻 SHA2-256 SHA2-512

Message Encoding In order for signatures to provide integrity and authenticity, a signer must
encode the message that is to be signed into the signature. The Walnut digital signature algorithm
requires the message to be mapped onto a pure braid.

To encode a message in WalnutDSATM it is hashed using the publicly known hash function
𝐻. Then every two bits of the output specify one pure braid generator (see (2)) and the encoding
𝐸(𝐻(𝑚)) of a message 𝑚 is the product of all pure braid generators selected. As the exact choice of
pure braid generators is irrelevant for our attack we refer to [41] for a full description.

Signature Generation A signer needs to perform the following steps to generate a signature.

1. Compute the encoded message 𝐸
(︀
𝐻(𝑚)

)︀
.

2. Generate cloaking elements 𝑣, 𝑣1, 𝑣2 as given by Proposition 15 for the identity and the permu-
tations induced by the private braids 𝑤,𝑤′, respectively.

3. Add the required number of concealed cloaking elements in randomly chosen locations in the
braid words 𝑊1 := 𝑣1 · 𝑤−1 · 𝑣 or 𝑊2 := 𝑤′ · 𝑣2.

4. Use a rewriting algorithm ℛ to obtain a rewritten braid word

Sig := ℛ
(︀
𝑊1 · 𝐸(𝐻(𝑚)) ·𝑊2

)︀
,

which is the signature for 𝑚.

Signature Verification To verify a signature, a receiver computes 𝐸(𝐻(𝑚)) and checks whether

Matrix
(︀
𝒫(𝑤) ⋆ Sig

)︀
= Matrix

(︀
𝒫(𝐸(𝐻(𝑚)))

)︀
·Matrix

(︀
𝒫(𝑤′)

)︀
(5)

comparing the matrix parts of GL𝑁 (F𝑞)× S𝑁 . If both sides of the equation are equal, the receiver
accepts the signature as valid. It is easy to check that legitimately produced signatures satisfy (5).
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3.3 Previous Work on WalnutDSATM

We want to give a brief overview of previous attacks on the Walnut digital signature algorithm
[10, 29, 35] and the changes they have triggered in the scheme to patch the weaknesses. Moreover,
this section shows that our attack uses a completely different approach.

Factorization Attacks The first attack on a previous version of WalnutDSATM was published
by Hart et al. [29]. In the previous version both secret braids were equal and the public key only
consisted of the image of this one secret braid under the map 𝒫 : 𝐵𝑁 → GL𝑁 (F𝑞)× S𝑁 (see Remark
12).

The attack exploited a malleability property of the signatures, enabling an attacker to forge a
signature by solving a factorization problem in a group of matrices. Trying to destroy the malleability
property, the designers of Walnut started using two different private braids. However, Beullens
[10, 41] showed that the following malleability property holds in this case too.

Theorem 17. [10] Let 𝑚, 𝑚1 and 𝑚2 be messages and let ℎ, ℎ1 and ℎ2 be the matrix parts of
𝒫
(︀
𝐸(𝐻(𝑚))

)︀
, 𝒫

(︀
𝐸(𝐻(𝑚1))

)︀
and 𝒫

(︀
𝐸(𝐻(𝑚2))

)︀
, respectively.

For braids 𝑤1, 𝑤2, 𝑤3 ∈ 𝐵𝑁 , we have

i) If ℎ = ℎ−1
1 and Sig1 is a valid signature for 𝑚1 under the public key

(︀
𝒫(𝑤1),𝒫(𝑤2)

)︀
, then Sig−1

1

is a valid signature for 𝑚 under the public key
(︀
𝒫(𝑤2),𝒫(𝑤1)

)︀
.

ii) If ℎ = ℎ1 · ℎ2 and Sig1,Sig2 are valid signatures for 𝑚1 and 𝑚2 under the public keys(︀
𝒫(𝑤1),𝒫(𝑤2)

)︀
and

(︀
𝒫(𝑤2),𝒫(𝑤3)

)︀
respectively, then Sig1 · Sig2 is a valid signature for 𝑚

under the public key
(︀
𝒫(𝑤1),𝒫(𝑤3)

)︀
.

Suppose, an attacker wants to forge a signature for the message𝑚 under the public key
(︀
𝒫(𝑤),𝒫(𝑤′)

)︀
.

Clearly, they can compute the matrix ℎ = Matrix
(︀
𝒫
(︀
𝐸(𝐻(𝑚))

)︀)︀
. Next, the attacker collects pairs

of messages and signatures (𝑚𝑖,Sig𝑖) that are valid under the same public key. By the malleability
properties, it suffices to find a factorization ℎ = ℎ𝑖1 · ℎ−1

𝑖2
· ℎ𝑖3 . . . ℎ

−1
𝑖𝑚−1

· ℎ𝑖𝑚 to get a valid signature
for 𝑚, where ℎ𝑖 denotes the matrix part of 𝒫

(︀
𝐸(𝐻(𝑚𝑖))

)︀
.

Such a factorization can be obtained by writing ℎ · ℎ−1
1 as a product of elements of the set

{︀
ℎ𝑖ℎ

−1
𝑗 | 𝑖 ̸= 𝑗; 1 ≤ 𝑖, 𝑗 ≤ 𝑘

}︀
⊆

{︁(︂
𝑋 𝑌
0 1

)︂
| 𝑋 ∈ GL𝑁−1(F𝑞), 𝑌 ∈ F𝑁−1

𝑞

}︁
. (6)

An algorithm to solve this factorization problem with time complexity 𝒪
(︀
𝑞

𝑁−1
2

)︀
was proposed by

Hart et al. [29]. However, the factorizations contained roughly 225 elements of the set given in (6)
and consequently the forged signature

Sig = Sig𝑖1 · Sig
−1
𝑖2

· · · Sig−1
𝑖𝑚−1

· Sig𝑖𝑚 · Sig−1
1

satisfies the verification equation, but can be easily detected due to its enormous length. By imposing
an upper limit on the length of valid signatures as was done in the implementation submitted to
NIST, the attack was blocked. In contrast, the forgeries produced by our attack will be of the same
length as legitimately produced signatures.
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Collision Search Attack Beullens and Blackburn [10, 41] realized that the originally proposed
4-bit encoder was not injective and that it mapped to a set of braids where the matrix parts under
the function 𝒫 were lying in a surprisingly low dimensional, 13 dimensional, affine subspace over
F𝑞. This made the scheme susceptible to a generic collision search attack. More precisely, it was
possible to find pairs of distinct messages 𝑚1 and 𝑚2 such that 𝒫(𝐸(𝐻(𝑚1))) = 𝒫(𝐸(𝐻(𝑚2))) for
sufficiently small 𝑞 using a generic collision search algorithm. Beullens and Blackburn implemented
the collision search due to van Oorschot and Wiener [45] which takes |𝒫

(︀
𝐸(𝐻({0, 1}))

)︀
| 12 ≤ 𝑞6.5

evaluations of 𝒫 ∘ 𝐸 ∘𝐻.
Recall that a signature is accepted as valid if (5) is satisfied. Given a collision of 𝑚1 and 𝑚2, an

attacker can query a signature for 𝑚1 and gets automatically a valid signature for 𝑚2. Consequently,
the signature scheme was not existentially unforgeable [28].

To counter the attack the designers of WalnutDSATM changed the encoder to the 2-bit version
described previously, where 𝒫

(︀
𝐸(𝐻({0, 1}*))

)︀
lies in an affine subspace of dimension (𝑁 − 2)2 + 1

[41] over F𝑞, which is greater than 13 for 𝑁 ≥ 6. Together with a significant raise of the parameters
𝑁 and 𝑞, the generic collision search attack became ineffective. Our attack will be independent of 𝑞,
but we will see that it can be defeated to some extend by further increasing the parameter 𝑁 .

Reversing E-Multiplication The last attack presented in [10] solves the underlying problem of
WalnutDSATM, reversing E-Multiplication (REM) [see Definition 13], directly.

Note, it suffices to solve a single instance of the REM problem to forge a signature of a freely cho-
sen message or solve two instances of the REM problem to obtain an equivalent pair of secret braids
from the public key. Thus, the hardness of this problem is crucial for the security of WalnutDSATM.

The attack exploits that E-Multiplication restricted to pure braids is a group homomorphism
which maps the chain of subgroups

{𝑒} = 𝑃1 ⊂ 𝑃2 ⊂ · · · ⊂ 𝑃𝑁 ⊂ 𝐵𝑁

to a nice chain of subgroups in GL𝑁 (F𝑞). Here, 𝑃𝑖 ⊂ 𝐵𝑁 denotes the subgroup of pure braids on
𝑁 strings that can be identified with the pure braids of 𝐵𝑖 or, formulated differently, the pure
braids that can be written in the generators 𝑏1, . . . , 𝑏𝑖−1. Exploiting this subgroup structure, the
REM problem can be solved by successively reducing the problem to a smaller subgroup using
collision searches. The authors of [10] suggest moreover a slightly finer chain of subgroups for the
first reductions which are the most costly ones to improve the performance of the algorithm further.

The resulting attack requires 𝒪(𝑞
𝑁
2 −1) E-Multiplications, and was blocked by a significant

increase in the parameters 𝑞 and 𝑁 . As mentioned before, our attack will be independent of 𝑞 and
can only be defeated to some extent by increasing 𝑁 significantly.

Uncloaking Signatures The most recent attack is due to Kotov, Menshov and Ushakov [35]. They
give a heuristic attack which operates purely on braids. The attack removes cloaking elements of a
previous version of the Walnut digital signature algorithm without concealed cloaking elements.

The authors observed that cloaking elements in WalnutDSATM are always generated in such a
way that the strands corresponding to the inverse T-values cross each other (see Proposition 15).
Since T-values are public, an attacker can trace all strands and find “critical positions” in a signature
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where there might be a cloaking element. This allows a length-based attack: Note that untwisting
the middle part of cloaking elements produces a trivial braid. An attacker guesses the location of
cloaking elements and tries to remove them by untwisting the critical position. When multiplying
signatures with removed cloaking elements together, more precisely one such signature multiplied
with the inverse of another, further elements cancel out. If the remaining word is of significantly
shorter length, one has heuristic evidence that the cloaking elements have been removed successfully.

The uncloaking procedure on multiple signatures leads to a system of conjugacy equations in 𝐵𝑁

(potentially with errors). Once again this can be heuristically solved using a length-based approach.
For earlier work about length-based attacks we refer amongst others to [30, 39].

To patch Walnut, concealed cloaking elements, i.e. cloaking elements that are inserted in random
locations before and after the encoded message, were introduced. Removing multiple concealed
cloaking elements that are not inserted consecutively into the signature appears to be more difficult.

The designers of WalnutDSATM suggested to insert

𝜅 ≥ 2 · (security level in bits)
log2(𝑁 !)

(7)

concealed cloaking elements [41]. For 𝑁 = 10 this yields the values given in the table in Section 3.2.
However, the number 𝜅 was estimated under the assumption that one needs to know the permutation
of a cloaking element in order to remove it. As this does not hold, the efficacy of this countermeasure
has been disputed [41].

We will see that the success of our attack is independent of the number of concealed cloaking
elements inserted to the signature the way it was suggested by the designers of WalnutDSATM.
However, we will discuss in Section 5.3 that adding a significant number of concealed cloaking
elements to the encoded message might thwart our attack at the cost of enlarging signatures and
slowing down the signature generation and verification.

4 Decomposition of Products in Braid Groups

The use of normal forms as “obfuscation procedures” in cryptographic schemes such as WalnutDSATM

suggests that properties of single braids are well hidden in the normal form of their product. In this
section, we will see that this is in general not the case. More precisely, we will argue that we can
expect some (potentially reflected) permutation braids of factors with sufficiently large canonical
length to appear in the normal form of their product.

In Section 4.1 we prove how the permutation braids of factors relate to the permutation braids of
their product. Together with the experimental results of Section 4.2 this yields the observation stated
in the previous paragraph. In Section 4.3 we show how the observation can be exploited under certain
conditions to recover the factors of products of the form 𝐴𝐵𝐶 ∈ 𝐵𝑁 up to the centre ⟨𝛥2⟩, when 𝐵
is known. The algorithm to decompose products of braids will be at the heart of our cryptanalysis
of WalnutDSATM in Section 5 and our new solutions to the conjugacy and decomposition search
problems in Section 6.

4.1 Garside Normal Form of Products

Recall that 𝑏𝑖 = 𝛥𝑏𝑁−𝑖𝛥
−1 = 𝜏(𝑏𝑁−𝑖) for 𝑖 = 1, . . . , 𝑁 − 1 by Proposition 2 and Remark 3. Let

𝛥𝑎 · 𝐴1 . . . 𝐴𝑛 and 𝛥𝑏 · 𝐵1 . . . 𝐵𝑚 be the normal forms of two elements 𝐴,𝐵 ∈ 𝐵𝑁 respectively.
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Pushing all 𝛥’s in the product 𝐴𝐵 to the front yields

𝐴𝐵 = 𝛥𝑎 ·𝐴1 . . . 𝐴𝑛 ·𝛥𝑏𝐵1 . . . 𝐵𝑚 = 𝛥𝑎+𝑏 · 𝜏 𝑏(𝐴1) . . . 𝜏
𝑏(𝐴𝑛)𝐵1 . . . 𝐵𝑚 (8)

= 𝛥𝑎+𝑏 · 𝜏 𝑏
′
(𝐴1) . . . 𝜏

𝑏′(𝐴𝑛)𝐵1 . . . 𝐵𝑚,

for 𝑏′ ≡ 𝑏 (mod 2) since 𝜏2 is the identity map. This is a product of permutation braids by the
following Lemma of which we will omit the straightforward proof.

Lemma 18. Let 1 ≤ 𝐴1, 𝐴2 ≤ 𝛥 be elements of 𝐵𝑁 . Then 1 ≤ 𝜏(𝐴1), 𝜏(𝐴2) ≤ 𝛥 too. Furthermore,
𝐴1𝐴2 is a left-weighted product if and only if 𝜏(𝐴1)𝜏(𝐴2) is left-weighted.

Thus, (8) is a product of permutation braids but in general not left-weighted. However, we see
that 𝜏(𝐴1) . . . 𝜏(𝐴𝑛) is a left-weighted product by Lemma 18 and thus the following Lemma is an
immediate consequence.

Lemma 19. Let 𝛥𝑎 ·𝐴1 . . . 𝐴𝑛 and 𝛥𝑏 ·𝐵1 . . . 𝐵𝑚 be the left normal forms of the braids 𝐴,𝐵 ∈ 𝐵𝑁

respectively. Let 𝑏′ ≡ 𝑏 (mod 2), then

𝛥𝑎+𝑏 · 𝜏 𝑏
′
(𝐴1) · · · 𝜏 𝑏

′
(𝐴𝑛)𝐵1 · · ·𝐵𝑚

is the left normal form of 𝐴𝐵 if and only if 𝜏 𝑏
′
(𝐴𝑛)𝐵1 is a left-weighted product.

Clearly, the condition will not be met for most 𝐴,𝐵 ∈ 𝐵𝑁 . When computing the left normal form
of 𝐴𝐵 in general, new 𝛥’s might be created in the process of computing the left-weighted product
of 𝜏 𝑏(𝐴1) . . . 𝜏

𝑏(𝐴𝑛)𝐵1 . . . 𝐵𝑚. Moving these 𝛥’s to the front results in reflections of all leftward
permutation braids, which yields the following proposition.

Proposition 20. Let 𝐴, 𝐵 ∈ 𝐵𝑁 and let 𝛥𝑎 · 𝐴1 . . . 𝐴𝑛 and 𝛥𝑏 · 𝐵1 . . . 𝐵𝑚 be their left normal
form respectively. The left normal form of 𝐴𝐵 is

𝛥𝑎+𝑏+𝑘 · 𝜏 𝑏+𝑘(𝐴1) . . . 𝜏
𝑏+𝑘(𝐴𝑛−𝑐) ·𝑋1 . . . 𝑋𝑙,

for some integer 0 ≤ 𝑐 ≤ 𝑛 and permutation braids 𝑋1, . . . , 𝑋𝑙, where 𝑘 ∈ Z is the number of 𝛥’s
that are created when computing the left normal form of 𝜏 𝑏(𝐴1) . . . 𝜏

𝑏(𝐴𝑛)𝐵1 . . . 𝐵𝑚.

Note that we have 𝛥𝑘 ·𝑋1 . . . 𝑋𝑙 = 𝜏 𝑏(𝐴𝑛−𝐶𝑁+1) . . . 𝜏
𝑏(𝐴𝑛) ·𝐵1 . . . 𝐵𝑚. The algorithms to compute

the Garside left normal form visualize the previous proposition quite well. If 𝐴1 · · ·𝐴𝑛 is a left normal
form and we multiply with an Artin generator 𝑏𝑖 on the right, this modifies the last permutation
braid if 𝐴𝑛𝑏𝑖 ∧𝛥 ̸= 𝐴𝑛 ∧𝛥. If 𝐴𝑛 is not changed all leftward permutation braids are still in left
normal form and we are done. If 𝐴𝑛 is changed two conditions must be met for 𝐴𝑛−1 to be changed
as well. First, 𝐴𝑛𝑏𝑖 ∧𝛥 must contain another Artin generator 𝑏𝑗 in the set of all Artin generators
the word can start with compared to 𝐴𝑛 ∧𝛥. And second, 𝐴𝑛−1𝑏− 𝑗 ∧𝛥 ≠ 𝐴𝑛−1 ∧𝛥. This process
continues inductively to the left until some permutation braid is not changed anymore. If one of the
changed permutation braids becomes 𝛥 during this process, it is moved to the front by reflecting all
leftward permutation braids.

Remark 21. It is not hard to find particular braids for which the previous proposition does not
contain a lot of information as 𝑐 = 𝑛. This happens for example, if 𝐵 = 𝐴−1 when the product
vanishes or if 𝐴 and 𝐵 are braids that do not share common strands and thus commute. However, in
the next section we will see that for every 𝑁 and randomly chosen braids 𝐴,𝐵 ∈ 𝐵𝑁 the expected
value for 𝑐 is bounded independently of 𝑛.
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Clearly, if 𝑐 is smaller than 𝑛 the permutation braids in the left normal forms of 𝐴 and 𝐴𝐵 coincide
on the left hand side up to reflection. Next, we show that the rightmost permutation braids of the
left normal forms of 𝐵 and 𝐴𝐵 coincide too. The following Proposition due to Elrifai and Morton
provides us with a link between multiplication of a braid on the left and on the right.

Proposition 22. [20] Let 𝛥𝑢 · 𝑥1 . . . 𝑥𝑚 be the left normal form of 𝑋. Then the left normal form
of 𝑋−1 is 𝑋−1 = 𝛥−𝑢−𝑚 · 𝑥′

𝑚 . . . 𝑥′
1, where 𝑥′

𝑖 := 𝜏−𝑢−𝑖(𝑥−1
𝑖 𝛥) for 𝑖 = 1, . . . ,𝑚.

The braid 𝑥−1
𝑖 𝛥 is called the right complement of 𝑥𝑖. Let 𝛿 denote the map sending permutation

braids to their right complement. It is easy to check that 𝛿 induces a bijection on the permutation
braids and 𝛿2 = 𝜏 .

Proposition 23. Let 𝐴, 𝐵 ∈ 𝐵𝑁 and let 𝛥𝑎 · 𝐴1 . . . 𝐴𝑛 and 𝛥𝑏 · 𝐵1 . . . 𝐵𝑚 be their left normal
form respectively. The left normal form of 𝐴𝐵 is

𝛥𝑎+𝑏+𝑘 · 𝑌1 . . . 𝑌𝑙 ·𝐵𝑐+1 . . . 𝐵𝑚,

for some integer 0 ≤ 𝑐 ≤ 𝑚 and permutation braids 𝑌1, . . . , 𝑌𝑙, where 𝑘 ∈ Z is the number of 𝛥’s
that are created when computing the left normal form of 𝜏 𝑏(𝐴1) . . . 𝜏

𝑏(𝐴𝑛)𝐵1 . . . 𝐵𝑚.

Proof. Clearly, we can show the proposition for 𝐴−1 and 𝐵−1 instead of 𝐴 and 𝐵. More precisely,
we show that the permutation braids on the right hand side of 𝐴−1𝐵−1 coincide with the ones of 𝐵−1.

By Proposition 20 we know that the left normal form of 𝐵1 . . . 𝐵𝑚𝐴1 . . . 𝐴𝑛 is

𝛥𝑘𝜏𝑘(𝐵1) . . . 𝜏
𝑘(𝐵𝑚−𝑐)𝑋1 . . . 𝑋𝑙, (9)

for some 0 ≤ 𝑐 ≤ 𝑚, 𝑘 ∈ Z and permutation braids 𝑋1, . . . , 𝑋𝑙. Proposition 22 implies that the left
normal form of (𝐵1 . . . 𝐵𝑚𝐴1 . . . 𝐴𝑛)

−1 = 𝐴−1
𝑛 . . . 𝐴−1

1 𝐵−1
𝑚 . . . 𝐵−1

1 is

𝛥−𝑘−(𝑚−𝑐+𝑙) ·𝑋 ′
𝑙 . . . 𝑋

′
1 ·

(︀
𝜏𝑘(𝐵𝑚−𝑐)

)︀′
. . .

(︀
𝜏𝑘(𝐵1)

)︀′
= 𝛥−𝑘−(𝑚−𝑐+𝑙) ·𝑋 ′

𝑙 . . . 𝑋
′
1 · 𝜏−𝑚+𝑐

(︀
𝛿(𝐵𝑚−𝑐)

)︀
. . . 𝜏−1

(︀
𝛿(𝐵1)

)︀
, (10)

using (︀
𝜏𝑘(𝐵𝑖)

)︀′
= 𝜏𝑘−𝑖

(︀
𝛿(𝜏𝑘(𝐵𝑖))

)︀
= 𝛿2(𝑘−𝑖)

(︀
𝛿2𝑘+1(𝐵𝑖)

)︀
= 𝜏−𝑖

(︀
𝛿(𝐵𝑖)

)︀
.

Simultaneously, the left normal form of 𝐵−1
𝑚 . . . 𝐵−1

1 is 𝜏−𝑚(𝛿(𝐵𝑚)) . . . 𝜏−1(𝛿(𝐵1)) by Proposition 22.
Comparing with (10), we see that the left normal forms of 𝐵−1

𝑚 . . . 𝐵−1
1 and 𝐴−1

𝑛 . . . 𝐴−1
1 𝐵−1

𝑚 . . . 𝐵−1
1

coincide on the rightmost 𝑚− 𝑐 permutation braids. This finishes the proof.

4.2 Penetration Distance

In this section we provide experimental results to estimate the size of the parameter 𝑐 in Propositions
20 and 23 for “randomly” chosen braids 𝐴 and 𝐵. We will find that for every 𝑁 this expectation is
uniformly bounded independently of the canonical lengths of the factors 𝐴 and 𝐵.

Since the braid group 𝐵𝑁 is infinite for 𝑁 ≥ 2, choosing braids at random is a non-trivial task. In
practice, there are various ways to choose braids of 𝐵𝑁 in a randomized manner. However, different
methods result in different probability distributions on 𝐵𝑁 .



Factoring Products of Braids via Garside Normal Form 15

Recall that every braid word can be rewritten as an element of the monoid of positive braids 𝐵+
𝑁

which we introduced in Section 2.3. Let |𝑥| denote the length of a positive braid 𝑥 ∈ 𝐵+
𝑁 , i.e. the

number of Artin generators occurring in any positive braid word representing 𝑥. Since the defining
relations of the braid group (and the braid monoid) are homogeneous, this is well-defined.

We start by recalling some results due to Gebhardt and Tawn [27] who studied the Garside
normal forms of random braids. They analysed statistical properties of the normal forms of positive
braids of length 𝑘 generated using two methods:

i) Choose uniformly at random 𝑘 Artin generators 𝑏𝑖 ∈ {𝑏1, . . . , 𝑏𝑁−1} and concatenate them, i.e.
choose uniformly at random a braid word from the set of all positive braid words of 𝐵+

𝑁 of
length 𝑘. We say that we generate positive words of length 𝑘 uniformly at random.

ii) Consider the set of all braids that can be represented by a braid word of length 𝑘 and choose
uniformly at random one braid from this set. We say that we generate uniformly at random
positive braids of length 𝑘.

Note, the number of words representing the same element of 𝐵+
𝑁 depends on the element. Therefore,

both variants yield different probability distributions on the set of all braids that can be represented
by positive braid words of length 𝑘.

However, the implementation of the second method is significantly more difficult in practice
(see [26] for an algorithm that runs polynomially in 𝑁 and 𝑘) which is why most (cryptographic)
applications generate “random braids” similarly to the first method.

Following the terminology of Gebhardt and Tawn, we call conjugation with 𝛥, i.e. a reflection,
of a permutation braid a trivial change. We define the penetration distance as follows.

Definition 24. [27] For two braids 𝐴 and 𝐵, the penetration distance pd(𝐴,𝐵) for the product 𝐴𝐵
is the number of permutation braids at the end of the normal form of 𝐴 which undergo a non-trivial
change in the normal form of the product. I.e.

pd(𝐴,𝐵) = cl(𝐴)− max{𝑖 ∈ {0, . . . , cl(𝐴)} : 𝐴𝛥− inf (𝐴) ∧𝛥𝑖 = 𝐴𝐵𝛥− inf (𝐴𝐵) ∧𝛥𝑖}

where cl(·) denotes the canonical length and inf(·) the infimum of a braid.

Based on their experiments, Gebhardt and Tawn conjectured the following.

Conjecture 25. [27] Let 𝐴 ∈ 𝐵𝑁 be a braid which is randomly chosen from either the uniformly
generated random words or from the uniformly generated random braids of length 𝑘 and let 𝑏𝑖
be a randomly chosen Artin generator of 𝐵𝑁 . Then the expected penetration distance is bounded
independently of the length 𝑘 of the braid, i.e. there exists some 𝐶 such that for all 𝑘

E(pd(𝐴, 𝑏𝑖)) < 𝐶.

The conjecture raises the question whether there still exists an upper bound for the expected
penetration distance of the product 𝐴𝐵 of two randomly chosen braids or braid words independently
of their lengths. That is when 𝐵 is an arbitrary randomly chosen braid or braid word as well instead
of a single randomly chosen Artin generator.

For the purpose of investigating this question, we conducted an experiment in magma [14]. We
generated 2.000 instances of pairs of braid words 𝐴,𝐵 ∈ 𝐵𝑁 for different given lengths using the
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built-in random function of the braid package in magma. To obtain a “random” braid of given
length 𝑘, this function chooses uniformly at random 𝑎𝑖 from 𝑋 ∪𝑋−1∖𝑎−1

𝑖−1 for 𝑘 = 1, . . . , 𝑘, where
𝑋 and 𝑋−1 is the set of Artin generators and their inverses respectively. In other words, the built-in
random function chooses uniformly at random a braid word from the set of all freely reduced braid
words of a given length 𝑘.

Given such pairs of randomly generated braid words 𝐴,𝐵, we computed the product 𝐴𝐵 and
the penetration distance for each particular instance. This was done by comparing the permutation
braids in the left normal forms of 𝐴 and 𝐴𝐵 directly. The diagram in Figure 3 shows the average
penetration distance with respect to the lengths of 𝐴 and 𝐵 for different values of 𝑁 .
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Fig. 3: Average penetration distance after multiplication with braid of given length on the right hand side

We observe that for each 𝑁 the average penetration distance increases with the word lengths of
the random braids and eventually converges to some bound. Furthermore, these bounds increase
with the number of strands 𝑁 of the braid group. Note that for our attack on WalnutDSATM we
will be mainly interested in estimates for 𝑁 = 10 because this is the parameter used.

The convergence suggests that for every 𝑁 there exists an upper bound for the expected
penetration distance of the product of randomly generated freely reduced braid words independently
of their lengths.

Conjecture 26. Let 𝐴,𝐵 ∈ 𝐵𝑁 be braid words that are picked uniformly at random from all freely
reduced braid words of length 𝑘. Then there exists a 𝐶𝑁 ∈ N such that for all 𝑘, we have

E(pd(𝐴,𝐵)) < 𝐶𝑁 .
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Plotting the distribution of penetration distances for products of randomly chosen freely reduced
braid words for different lengths we noted that most data points are distributed closely around the
mean.

Now, Conjeture 26 has significant importance for Proposition 20. Let 𝐴 and 𝐵 be two randomly
chosen braids of canonical length 𝑛 and 𝑚 respectively. Assuming Conjecture 26, i.e. assuming that
the expected penetration distance is bounded by some 𝐶𝑁 independently of the lengths of 𝐴 and 𝐵,
Proposition 20 implies that we expect at least the leftmost 𝑛− 𝐶𝑁 permutation braids of 𝐴 and
𝐴𝐵 to coincide up to reflection whenever 𝑛 ≥ 𝐶𝑁 .

Looking at the proof of Proposition 23 we see that 𝐶𝑁 is a bound for the expected size of the
parameter 𝑐 too. This is because the inverse of freely reduced braid words of a given length is a
freely reduced braid word of the same length. Thus, drawing freely reduced braid words of a given
length from the braid group 𝐵𝑁 has the same probability distribution as drawing their inverses.
Hence, if 𝐴 and 𝐵 are two randomly chosen braids of canonical length 𝑛 and 𝑚, we expect at least
the 𝑚− 𝐶𝑁 rightmost permutation braids of 𝐵 and 𝐴𝐵 to coincide whenever 𝑚 ≥ 𝐶𝑁 .

4.3 The Algorithm

We use the last part of this section to describe how our observation can be utilised to decompose
products 𝐴𝐵𝐶 of braids 𝐴,𝐵,𝐶 ∈ 𝐵𝑁 , when 𝐵 is known. More precisely, we discuss how to recover
𝐴′ ≡ 𝐴 (mod 𝛥2), 𝐶 ′ ≡ 𝐶 (mod 𝛥2) such that 𝐴𝐶 = 𝐴′𝐶 ′. Here, by (mod 𝛥2) we mean up to
multiplication with powers of 𝛥2. Later, we can apply this algorithm to break WalnutDSATM and
solve instances of the conjugacy and decomposition search problems.

Let 𝐴 = 𝛥𝑎 · 𝐴1 . . . 𝐴𝑛, 𝐵 = 𝛥𝑏 · 𝐵1 . . . 𝐵𝑚, and 𝐶 = 𝛥𝑐 · 𝐶1 . . . 𝐶𝑟 be the left normal forms
of randomly chosen freely reduced braid words 𝐴,𝐵,𝐶 ∈ 𝐵𝑁 . Assume that 𝑚 is greater than the
𝐶𝑁 given by Conjecture 26. We have discussed in the previous section that we can expect the left
normal form of 𝐵𝐶 to be of the form

𝛥𝑎+𝑏+𝑘 · 𝜏 𝑐+𝑘(𝐵1) . . . 𝜏
𝑐+𝑘(𝐵𝑚−𝐶𝑁

) · 𝑌1 . . . 𝑌𝑙

for some permutation braids 𝑌1, . . . , 𝑌𝑙 such that 𝛥𝑘 · 𝑌1 . . . 𝑌𝑙 = 𝜏 𝑐(𝐵𝑗+1) . . . 𝜏
𝑐(𝐵𝑚) ·𝛥−𝑐𝐶 and

𝑘 ∈ Z is the number of fundamental braids 𝛥 that are being created when computing the left-
weighted form of 𝜏 𝑐(𝐵𝑗+1) . . . 𝜏

𝑐(𝐵𝑚)𝐶1 . . . 𝐶𝑟.

Now, if the part of the normal form of 𝐵 that was preserved into 𝐵𝐶 is of canonical length
greater than 𝐶𝑁 + 1, which we expect to happen for 𝑚 ≥ 2𝐶𝑁 + 1, the left normal form of 𝐴(𝐵𝐶)
is expected to be of the form

𝛥𝑎+𝑏+𝑐+𝑘+𝑘′
·𝑋1 . . . 𝑋𝑟 · 𝜏 𝑐+𝑘(𝐵𝐶𝑁+1) . . . 𝜏

𝑐+𝑘(𝐵𝑚−𝐶𝑁
) · 𝑌1 . . . 𝑌𝑙 (11)

by Proposition 23 and the previous section, where 𝛥𝑘′ · 𝑋1 . . . 𝑋𝑟 is a left-weighted product of
permutation braids equal to 𝜏 𝑏+𝑐+𝑘(𝐴1) . . . 𝜏

𝑏+𝑐+𝑘(𝐴𝑛) · 𝜏 𝑐+𝑘(𝐵1) . . . 𝜏
𝑐+𝑘(𝐵𝑖) if the centre of 𝐵

equals 𝛥2 which we expect for sufficiently long 𝐵.
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We will keep this notation for the remainder of this section. Let the left normal form of a given
𝐴𝐵𝐶 be

𝛥𝑢 ·𝑋1 . . . 𝑋𝑟 · 𝜏 𝑐+𝑘(𝐵𝑖) . . . 𝜏
𝑐+𝑘(𝐵𝑗) · 𝑌1 . . . 𝑌𝑙,

where 𝑢 = 𝑎+ 𝑏+ 𝑐+ 𝑘+ 𝑘′. By the previous discussion, we know that 𝑖− 𝑗 > 0 can be expected for
randomly chosen freely reduced braid words 𝐴, 𝐵 and 𝐶 ∈ 𝐵𝑁 with 𝐵 of canonical length greater
than 2𝐶𝑁 + 1.

It is now a straightforward procedure to recover 𝐴′ ≡ 𝐴 (mod 𝛥2) and 𝐶 ′ ≡ 𝐶 (mod 𝛥2) such
that 𝐴𝐶 = 𝐴′𝐶 ′ knowing only 𝐵:

1. Compute the left normal forms of 𝐵 and 𝐴𝐵𝐶.
2. Check, whether there is a contiguous subsequence 𝐵𝑖1 . . . 𝐵𝑖2 of permutation braids of the left

normal form of 𝐵 for some 1 ≤ 𝑖 ≤ 𝑖1 < 𝑖2 ≤ 𝑗 ≤ 𝑚 in the left normal form of 𝐴𝐵𝐶 using a
string-matching algorithm. If such a subsequence is found, save the location in the left normal
form of 𝐵 and 𝐴𝐵𝐶 and go to 3. Otherwise, do the same search for contiguous subsequences
𝜏(𝐵𝑖1) . . . 𝜏(𝐵𝑖2) of 𝜏(𝐵) in the left normal form of 𝐴𝐵𝐶.
If no common subsequence of permutation braids can be found either, we terminate the process
and cannot recover the factors. If multiple common subsequences are found, we run the following
steps for every of the finitely many possible solution. Notice, the latter is not very likely to
happen for randomly chosen braid words and sufficiently long subsequences.

3. Split the braid 𝐵 or 𝜏(𝐵) = 𝜏(𝐵1) . . . 𝜏(𝐵𝑚) at 𝐵𝑖1 resp. 𝜏(𝐵𝑖1) into two parts. Then, do the
same for 𝐴𝐵𝐶. Denote the parts 𝐵𝐼 , 𝐵𝐼𝐼 , 𝐴𝐵𝐶𝐼 , and 𝐴𝐵𝐶𝐼𝐼 .
Note that we find the subsequence 𝜏 𝑐+𝑘(𝐵𝑖) . . . 𝜏

𝑐+𝑘(𝐵𝑗) in 𝐵 or 𝜏(𝐵) depending on whether
𝑐+ 𝑘 leaves residue 0 or 1 modulo 2, since 𝜏2 is the identity. Thus, even though we know neither
𝑐 nor 𝑘 we can determine the residue of 𝑐+ 𝑘 (mod 2) which we denote by (𝑐+ 𝑘)′.
Using the notation of previous paragraphs, we compute

𝐵𝐼 := 𝛥𝑏 · 𝜏 𝑐+𝑘(𝐵1) . . . 𝜏
𝑐+𝑘(𝐵𝑖1)

𝐵𝐼𝐼 := 𝜏 𝑐+𝑘(𝐵𝑖1+1) . . . 𝜏
𝑐+𝑘(𝐵𝑚)

𝐴𝐵𝐶𝐼 := 𝛥𝑎+𝑏+𝑐+𝑘+𝑘′
·𝑋1 . . . 𝑋𝑟 · 𝜏 𝑐+𝑘(𝐵𝑖) . . . 𝜏

𝑐+𝑘(𝐵𝑖1)

𝐴𝐵𝐶𝐼𝐼 := 𝜏 𝑐+𝑘(𝐵𝑖1+1) . . . 𝜏
𝑐+𝑘(𝐵𝑗) · 𝑌1 . . . 𝑌𝑙

4. Compute

𝐴′ : = 𝐴𝐵𝐶𝐼 ·𝐵−1
𝐼 ·𝛥−(𝑐+𝑘)′

= 𝛥𝑎+𝑏+𝑐+𝑘+𝑘′
·𝑋1 . . . 𝑋𝑟 · 𝜏 𝑐+𝑘(𝐵𝑖−1)

−1 . . . 𝜏 𝑐+𝑘(𝐵1)
−1 ·𝛥−𝑏−(𝑐+𝑘)′

= 𝛥𝑎+𝑐+𝑘−(𝑐+𝑘)′ ·𝐴1 . . . 𝐴𝑛

and

𝐶 ′ : = 𝛥(𝑐+𝑘)′ ·𝐵−1
𝐼𝐼 ·𝐴𝐵𝐶𝐼𝐼

= 𝛥(𝑐+𝑘)′ · 𝜏 𝑐+𝑘(𝐵𝑚)−1 . . . 𝜏 𝑐+𝑘(𝐵𝑖1+1)
−1 · 𝜏 𝑐+𝑘(𝐵𝑖1+1) . . . 𝜏

𝑐+𝑘(𝐵𝑗) · 𝑌1 . . . 𝑌𝑙

= 𝛥(𝑐+𝑘)′ · 𝜏 𝑐+𝑘(𝐵𝑚)−1 . . . 𝜏 𝑐+𝑘(𝐵𝑗+1)
−1𝛥−𝑘𝜏 𝑐(𝐵𝑗+1) . . . 𝜏

𝑐(𝐵𝑚) · 𝐶1 . . . 𝐶𝑟

= 𝛥−𝑘+(𝑐+𝑘)′𝐶1 . . . 𝐶𝑟
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Since 𝑎+ 𝑐+ 𝑘 − (𝑐+ 𝑘)′ ≡ 𝑎 (mod 2) and −𝑘 + (𝑐+ 𝑘)′ ≡ 𝑐 (mod 2), we have recovered 𝐴′ ≡ 𝐴
(mod 𝛥2) and 𝐶 ′ ≡ 𝐶 (mod 𝛥2). Using 𝑐 ≡ −𝑘 + (𝑐+ 𝑘)′ (mod 2), we have furthermore

𝐴′𝐶 ′ = 𝛥𝑎+𝑐 · 𝜏 𝑐(𝐴1) . . . 𝜏
𝑐(𝐴𝑛) · 𝐶1 . . . 𝐶𝑙 = 𝐴𝐶.

The success rate of this decomposition algorithm will be discussed in Section 6.

5 New Attack on WalnutDSATM

In this section we want to present our attack on the group-based signature scheme WalnutDSATM

which is an application of the decomposition algorithm we have developed in Section 4.

In Section 5.1 we present the idea behind our attack on WalnutDSATM, before providing
experimental results on the success of our attack in Section 5.2. In Section 5.3 we discuss how
different parameters influence the running time and success rate of our attack and we suggest one
potential countermeasure.

5.1 Universal Forgery Attack

Let 𝑚 be a message with the legitimately produced signature Sig ∈ 𝐵𝑁 . Recall that the braids
corresponding to signatures of WalnutDSATM have a representative braid word of the form

Sig = 𝑊1 · 𝐸(𝐻(𝑚)) ·𝑊2,

where 𝐸(𝐻(𝑚)) is the encoded message and 𝑊1,𝑊2 ∈ 𝐵𝑁 are braids of the form 𝑣1 · 𝑤−1 · 𝑣 and
𝑤′ · 𝑣2 with additional concealed cloaking elements inserted. Here, 𝑤,𝑤′ ∈ 𝐵𝑁 are the private braids
of the signer and 𝑣, 𝑣1, 𝑣2 are braids cloaking the identity of S𝑁 and the permutations induced by 𝑤
and 𝑤′, respectively.

It is easy to see that the braid Sig′ := 𝑊1 · 𝐸(𝐻(𝑚′)) ·𝑊2 is a valid signature for the message
𝑚′. Hence, the ability to locate 𝐸(𝐻(𝑚)) in a legitimate signature and replacing it by 𝐸(𝐻(𝑚′))
for an arbitrarily chosen message 𝑚′ gives rise to a universal forgery attack.

To prevent attackers from finding the encoded message by just parsing through the signature,
the designers of WalnutDSATM suggested an obfuscation procedure. That is, the application of a
rewriting algorithm such as the Garside normal form, BKL normal form [11], stochastic rewriting
[2] or Dehornoy’s handle reduction [17] to the braid before appending the signature to a message.

Note that rewriting changes only the representative of the same braid. Consequently, normal
forms are the strongest way to obfuscate signatures because every attacker can compute them given
another representative of the same braid.

Our experimental results in the next section will show that most legitimately produced signatures
of WalnutDSATM are susceptible to the decomposition algorithm described in Section 4.3. Since
anybody can compute the encoding of a message 𝑚, this allows us to recover 𝑊 ′

1 ≡ 𝑊1 (mod 𝛥2) and
𝑊 ′

2 ≡ 𝑊2 (mod 𝛥2) such that 𝑊 ′
1 ·𝑊 ′

2 = 𝑊1 ·𝑊2 given only one valid signature 𝑊1 ·𝐸(𝐻(𝑚)) ·𝑊2

of any 𝑚. As 𝑊 ′
1 · 𝐸(𝐻(𝑚′)) ·𝑊 ′

2 = 𝑊1 · 𝐸(𝐻(𝑚′)) ·𝑊2, this is enough to obtain forged signatures
for any other message 𝑚′.
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Proposition 27. Let 𝑊1 · 𝐸(𝐻(𝑚)) ·𝑊2 ∈ 𝐵𝑁 be a valid signature for some message 𝑚 and let
𝑊 ′

1,𝑊
′
2 ∈ 𝐵𝑁 such that 𝑊 ′

1 ≡ 𝑊1 (mod 𝛥2), 𝑊 ′
2 ≡ 𝑊2 (mod 𝛥2) and 𝑊1 ·𝑊2 = 𝑊 ′

1 ·𝑊 ′
2. Then,

𝑊 ′
1 · 𝐸

(︀
𝐻(𝑚′)

)︀
·𝑊 ′

2

is a valid signature for any message 𝑚′.

Computation of universal forgeries: Given a signature Sig = 𝑊1 · 𝐸
(︀
𝐻(𝑚)

)︀
·𝑊2 and the

corresponding message 𝑚, an adversary computes the encoded message 𝐸
(︀
𝐻(𝑚)

)︀
and uses the

procedure described in Section 4.3 to recover two braids 𝑊 ′
1, 𝑊

′
2 such that 𝑊 ′

1 ≡ 𝑊1 (mod 𝛥2),
𝑊 ′

2 ≡ 𝑊2 (mod 𝛥2) and 𝑊 ′
1 ·𝑊 ′

2 = 𝑊1 ·𝑊2. By Proposition 27, this suffices to compute a valid
signature for any message 𝑚′:

Sig′ = 𝑊 ′
1 · 𝐸

(︀
𝐻(𝑚′)

)︀
·𝑊 ′

2

Comparison to legitimately produced signatures: Since 𝑊1 and 𝑊2 are legitimately
produced and do not depend on 𝐸

(︀
𝐻(𝑚)

)︀
, it is impossible to distinguish a forged signature of the

form 𝑊 ′
1 · 𝐸

(︀
𝐻(𝑚′)

)︀
·𝑊 ′

2 from a legitimately produced signature for 𝑚′. In particular, the length
of our forgeries is the same as the one of legitimately produced signatures.

However, given two signatures one could recognize that at least one was likely forged. Note an
attacker can solve this issue by adding an additional concealed cloaking element to 𝑊1 and 𝑊2.

Complexity: In our decomposition algorithm of Section 4.3, we need to compute the Garside
normal form of Sig and 𝐸

(︀
𝐻(𝑚)

)︀
in the first step. Using Thurston’s method, this takes time in

𝒪(|Sig|2𝑁 log𝑁) and 𝒪(|𝐸(𝐻(𝑚))|2𝑁 log𝑁) respectively. Here |·| means the number of permutation
braids of the given positive braid word, not necessarily in left normal form.

The second step of the algorithm requires to find a common contiguous subsequence of permutation
braids in the normal forms. Fixing a length Len for the common subsequence that we want to find,
the naive algorithm compares 𝒪(𝑟𝑙) products of Len permutation braids, where 𝑟 and 𝑙 denote the
canonical length of 𝐸(𝐻(𝑚)) and Sig respectively. We implemented this naive approach in our
attack on WalnutDSATM (see [37]). A more efficient solution is to use the Knuth–Morris–Pratt
string-searching algorithm [32]. Running this algorithm on all contiguous subsequence of permutation
braids of length Len from the (reflected) encoding and the signature takes 𝒪(𝑟(𝑙+Len)) comparisons
of permutation braids.

For WalnutDSATM, we have |𝐸(𝐻(𝑚))| ≤ |Sig|. As the number of permutation braids in the
Garside normal is minimal compared to other positive braid words we have moreover 𝑟 ≤ |𝐸(𝐻(𝑚))|
and 𝑙 ≤ |Sig| and thus recovering the positions and whether the subsequence of the encoding in
the signature is reflected takes 𝒪(|Sig|2) comparisons of permutation braids. Since the rest of the
decomposition algorithm runs in linear time, the algorithm to forge signatures is dominated by the
time it takes to compute the Garside normal form, i.e 𝒪(|Sig|2𝑁 log𝑁).

Note that generating legitimate signatures is quadratic in 𝑁 too. Moreover, the Garside normal
form of a signature might need to be computed as well, depending on the rewriting algorithm used
in the generation of WalnutDSATM signatures.

Improvements: As the encoded message is located in between of two braids 𝑊1 and 𝑊2 of
roughly the same size in the signature, we anticipate to find the subsequence of the permutation
braids of 𝜏𝑘

(︀
𝐸(𝐻(𝑚))

)︀
roughly in the middle of the signature. Therefore, it is faster on average to

start the search for common permutation braids in the middle part of the signature and encoding.
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5.2 Experimental Results

We have implemented the relevant parts of WalnutDSATM and our attack in magma [14]. The
source code of our implementations can be found on GitHub [37]. For our experiments we used
the recommended parameters as listed in Section 3.2 for the two security levels. In particular, the
number of strands 𝑁 was set to 10.

By Section 4 we know that the crucial part for our decomposition algorithm to work is finding a
(potentially reflected) contiguous subsequence of permutation braids of the normal form of 𝐸(𝐻(𝑚))
in the normal form of the signature of 𝑚. We generated 1.000 instances of signatures for randomly
chosen messages 𝑚 and both security levels. In our experiment, we were able to locate such a common
subsequence of permutation braids in the normal forms of 𝜏𝑘

(︀
𝐸(𝐻(𝑚))

)︀
and 𝑊1 · 𝐸(𝐻(𝑚)) ·𝑊2

for either 𝑘 = 0 or 1 in all instances. The following table, Figure 4, shows the canonical lengths of
the common subsequences we found for the 128- and 256-bit parameters respectively.

length of common subsequence 128-bit security level 256-bit security level
mean 100 238

minimum 19 153
maximum 142 288

Fig. 4: Lengths of common subsequences of permutation braids of encodings and signatures

To put this into context, we measured the canonical length of encoded messages. For the 128-bit
parameters, encoded messages had canonical lengths ranging from 112 to 165 with a mean of 140.
The range for 256-bit parameters was 248 to 310 with a mean of 280 permutation braids.

To determine the position of a common subsequence of permutation braids in (reflected) encoded
message 𝜏𝑘

(︀
𝐸(𝐻(𝑚))

)︀
and signature Sig, we compared a specified number Len of permutation braids

of 𝜏𝑘
(︀
𝐸(𝐻(𝑚))

)︀
and Sig for 𝑘 = 0, 1 at a time. Note that finding common subsequences of a given

length is faster than finding all common subsequences of arbitrary lenghts.
The larger the number Len it becomes less likely that a common subsequence appears in the

signature just by coincidence. However, we want it to be small enough to actually find a common
subsequence in most cases. Fixing Len = 15 turned out to be a good choice in our implementation
but taking Len = 10 or 20 leads to almost the same results.
Later, we will see that increasing the number of strands 𝑁 in the Walnut digital signature algorithm
would lead to shorter common subsequences of permutation braids. In this situation we can improve
our algorithm to find the common position and whether 𝑘 = 0 or 1 by reducing Len inductively
whenever we can not find a common subsequence of permutation braids for 𝑘 = 0 and 1 until we
find one or Len = 0.

Testing our entire attack on randomly generated instances, 99.8% of legitimately produced
signatures for the 128-bit parameters turned out to allow our universal forgery attack. For the
256-bit security level all 100% of signatures were susceptible.

The algorithm to recover the braids 𝑊 ′
1 and 𝑊 ′

2 and thus to produce universal forgeries takes
time less than a second for the 128-bit and only a couple seconds for the 256-bit parameters.

The higher success rate for the 256-bit parameters can be explained with the output of the hash
function being twice as long. This results in the normal form of the encoding containing roughly twice
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as many permutation braids. Therefore, it is more likely to find a common contiguous subsequence
of permutation braids in the left normal forms of the signature and the (reflected) encoded message.

5.3 Countermeasures

Finally, we want to discuss how different parameters of WalnutDSATM influence the running time
and success rate of our attack and we suggest one potential countermeasure. Here, the success rate
means the proportion of signatures that allows a universal forgery attack.

Independence from 𝑞: Unlike the attacks [10, 29], our attack works on the braids only and
thus independently of the colored Burau representation. In particular, it is independent of the size 𝑞
of the underlying finite field F𝑞.

Increasing the length of the private braids: Increasing the number of concealed cloaking
elements or the length of private braids makes both 𝑊1 and 𝑊2 and consequently the signature
larger. We see that the running time of our attack is quadratic in the length of the signature and
thus it slows down our attack a little bit, while simultaneously enlarging the size of signatures.

We have seen in Section 4.3 that the expected number of permutation braids that change
non-trivially when multiplying with randomly chosen braid words on the left and right is bounded
independently of their length. Therefore, we do not expect enlarging 𝑊1 and 𝑊2 to have a great
influence on the success of our attack. Indeed, we generated random instances of Walnut signatures
using different lengths for private keys. This did not seem to have any influence on the number of
permutation braids found as a common subsequence in the signature and the (reflected) encoding.
The success rate of the attack did not change even for very long private braids either.

For private braids randomly chosen from freely reduced words of length 15.000 Artin generators
(instead of 287), our attack is still successful within a few minutes while legitimate signatures reach
the imposed upper limit for the length of signatures that are being accepted as valid in the current
implementation of WalnutDSATM. Consequently, increasing the length of private braids is not useful
to thwart our attack.

Increasing 𝑁 : Looking at the formula for the running time, increasing 𝑁 is another way to
slow down the attack slightly.

More interesting, however, is that increasing 𝑁 decreases the success rate. We conducted an
experiment generating WalnutDSATM instances for different values of 𝑁 . Figure 5 shows the
percentage of signatures allowing our universal forgery attack out of 1.500 randomly generated
Walnut instances depending on 𝑁 .

We have seen in Figure 3 that raising 𝑁 influences the number of permutation braids that are
expected to change when multiplying with braids on the right. For multiplication on the left, we
obtained the same result. At the same time the canonical length of the encoding remains constant
when scaling up 𝑁 since it only depends on the length of the output of the hash function used
in WalnutDSATM. Combined, this implies that the expected length of the common subsequence
of permutation braids of signature and encoding shrinks when raising 𝑁 . Note that we cannot
just reduce the length of the output of the hash function as the signature scheme would become
vulnerable to collision search attacks [41].

As our attack does not work anymore once there is no common subsequence of permutation
braids left, this explains the decreasing success rate when increasing 𝑁 . In the 256-bit version the
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Fig. 5: Success rate of universal forgery attack depending on 𝑁

hash function has a longer output and therefore the common subsequence of permutation braids
of encoding and signature is larger than in the 128-bit setting. This justifies, why the success
probability decreases slower when increasing 𝑁 for the 256-bit security level. Moreover, we measured
the success of our attack by checking whether we recovered the braids 𝑊1 and 𝑊2 modulo their
centre successfully. For large 𝑁 it is more likely that the centre of the encoding 𝐸(𝐻(𝑚)) does not
equal 𝛥2 and as we recover braids 𝑊1 and 𝑊2 modulo the centre of 𝐸(𝐻(𝑚)) this might not be
accepted as valid.

Considering our experiment shown in Figure 5, the success of our attack seems to decrease
exponentially when increasing 𝑁 . However, this would increase the size of the public keys and slow
down the signature verification quadratically in 𝑁 . Moreover, one could fear that with 𝑁 increasing
and the hash output length constant, the encoding will not have good mixing properties. It might
be possible to isolate the encoding in the signature just parsing through the braid, therefore leading
to other weaknesses.

Adding additional cloaking elements to the encoded message: Finally, one could add
some randomness to the encoder altering the permutation braids in the signature corresponding
to the encoding which can be done by adding concealed cloaking elements (see Section 3.1) to the
encoding. This countermeasure was independently found and suggested by the WalnutDSATM team
in a private correspondence.
Clearly, the previously described attack to recover 𝑊1 and 𝑊2 modulo 𝛥2 does not necessarily work
anymore after adding cloaking elements to the encoding. However, forging signatures is possible as
long as we can find at least one permutation braid in the signature corresponding to a permutation
braid in the encoding and the encoding separates the permutation braids of 𝑊1 and 𝑊2. This is,
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because we have 𝒫
(︁
𝐸(𝐻(𝑚))*𝐼 ·𝐸(𝐻(𝑚))−1

𝐼

)︁
= (Id, id) and 𝒫

(︁
𝐸(𝐻(𝑚))−1

𝐼𝐼 ·𝐸(𝐻(𝑚))*𝐼𝐼

)︁
= (Id, id),

where 𝐸(𝐻(𝑚))*𝑖 are the parts of the encoding 𝐸(𝐻(𝑚)) containing additionally concealed cloaking
elements. Together with the fact that all encodings are pure braids, we have therefore for 𝑘 = 0 or 1

𝒫
(︁
Sig𝐼 · 𝜏𝑘

(︀
𝐸(𝐻(𝑚))−1

𝐼 · 𝐸(𝐻(𝑚′)) · 𝐸(𝐻(𝑚))−1
𝐼𝐼

)︀
· Sig𝐼𝐼

)︁
= 𝒫

(︁
𝑊1 · 𝐸(𝐻(𝑚))*𝐼𝐸(𝐻(𝑚))−1

𝐼 · 𝐸(𝐻(𝑚′)) · 𝐸(𝐻(𝑚))−1
𝐼𝐼 𝐸(𝐻(𝑚))*𝐼𝐼 ·𝑊2

)︁
= 𝒫

(︀
𝑊1 · 𝐸(𝐻(𝑚′)) ·𝑊2

)︀
.

We know that this still satisfies (5) and thus it is a valid signature for 𝑚′. Hence, even though an
attacker can not recover 𝑊1 and 𝑊2 up to the centre they can still compute a forged signature for
any message 𝑚′ as long as they find a single permutation braid from the encoding in the signature
at the correct position.

Consequently, to counter the attack one needs to make sure that all permutation braids originat-
ing from the encoding in the signature are changed. Our experiments show that introducing one
cloaking element changes sometimes only 5 permutation braids in their surrounding for 𝑁 = 10.
Considering the canonical length of common subsequences measured in Section 5, we would therefore
expect that at least 30 and 60 additional concealed cloaking elements need to be added for the two
security levels. However, it might be necessary to add even more cloaking elements to prevent being
susceptible to our attack after applying an uncloaking procedure such as the one due to Kotov,
Menshov, and Ushakov [35] to critical positions in the middle of the signature eventually removing
concealed cloaking elements.

Altogether, adding additional concealed cloaking elements to the encoding is the best way we
found to thwart our attack. Yet, it would slow down the signature generation as all additional
concealed cloaking elements need to be generated separately and it would enlarge the signatures of
WalnutDSATM.

6 Application to the Conjugacy and Decomposition Search Problem

Another problem that can be solved using our decomposition algorithm from Section 4 is the
decomposition search problem which can be formulated for the braid group as follows.

Definition 28. Given two elements 𝑋,𝑌 of the braid group 𝐵𝑁 and two subsets 𝐴,𝐵 ∈ 𝐵𝑁 . The
decomposition search problem (DSP) is to find elements 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑌 = 𝑎𝑋𝑏.

It is straightforward to construct key exchange protocols based on this problem, assuming that
elements of 𝐴 and 𝐵 commute with each other [34, 43]. Here, our decomposition algorithm of the
previous subsection can be used to recover 𝑎 and 𝑏 for some instances up to elements of the centre
of 𝑋, given 𝑌 = 𝑎𝑋𝑏.

Recall that our algorithm to solve DSP by decomposing the braid 𝑌 is not only fast but also
requires almost no memory. Given 𝐵 and a product of braids 𝐴𝐵𝐶 in 𝐵𝑁 , the decomposition
algorithm of Section 4 is dominated by the time it takes to compute the Garside normal form
of 𝐴𝐵𝐶, i.e. 𝒪(|𝐴𝐵𝐶|2𝑁 log𝑁) using Thurston’s approach where |𝐴𝐵𝐶| denotes the number of
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permutation braids a given positive braid word of 𝐴𝐵𝐶 is written in. Note, that the Garside normal
form can be computed even faster in practice [27].

We analysed the success of our decomposition algorithm for randomly chosen braid words 𝐴, 𝐵
and 𝐶. To this end we generated uniformly at random freely reduced braid words 𝐴,𝐵,𝐶 ∈ 𝐵𝑁

of given lengths using magma [14]. Given the product 𝐴𝐵𝐶 and 𝐵, we applied the decomposition
algorithm and considered a run successful whenever we were able to recover 𝐴 and 𝐶 up to the
centre of 𝐵𝑁 , i.e. up to multiplication by powers of 𝛥2.

Figure 6 shows the percentage of successful recoveries depending on the word lengths of 𝐴,𝐵
and 𝐶 for different numbers of strands 𝑁 . We see that the attack is very successful for sufficiently
long randomly chosen braid words reaching 100% success rate. Moreover, we see that this “sufficient”
length increases with 𝑁 . This is no surprise since the bound of Conjecture 26 increases with 𝑁 as
previously noticed. Thus, for words that are shorter it is less likely to find a contiguous subsequence
of (reflected) permutation braids of 𝐵 in 𝐴𝐵𝐶.
Moreover, for randomly chosen words 𝐵 of short length it is more likely that the centre of the braid
associated to 𝐵 does not equal the centre of the braid group generated by 𝛥2. Therefore, braids recov-
ered for short 𝐵 using our decomposition algorithm might not be accepted as valid in our experiments.

Clearly, the conjugacy search problem (Definition 1) is a special case of the decomposition search
problem and our decomposition algorithm can be used to solve instances of the conjugacy search
problem too. Indeed, a successful run of the decomposition algorithm provides us with a braid 𝐶
equal to 𝐶 up to the centre of 𝑋, given 𝑋 and 𝑌 = 𝐶 ·𝑋 · 𝐶−1. Consequently 𝐶 is a solution to
the conjugacy search problem, as

𝑌 = 𝐶 ·𝑋 · 𝐶−1 = 𝐶 ·𝑋 · 𝐶−1.

Recall that our decomposition algorithm needs a common subsequence of permutation braids of
𝜏𝑘(𝑋) and 𝑌 = 𝐶 ·𝑋 · 𝐶−1, for 𝑘 = 0 or 1, to work. By Section 4.2, we can expect this for braid
words 𝑋 and 𝐶 that are chosen uniformly at random whenever 𝑋 has sufficiently large canonical
length depending on 𝑁 . However, in the case of the conjugacy search problem we can apply our
decomposition algorithm for some short 𝑋 as well, exploiting that 𝑋 and 𝑌 are conjugate.
This is because 𝐶 can be recovered by applying the decomposition algorithm to the braids 𝑋𝑛 and
𝑌 𝑛 = (𝐶 ·𝑋 · 𝐶−1)𝑛 = 𝐶 ·𝑋𝑛 · 𝐶−1 with larger canonical length instead of 𝑋 and 𝑌 , where 𝑛 is a
positive integer. We tested this procedure for randomly generated braid words of a given length 𝑋
and 𝐶. Whenever the decomposition algorithm was not able to find a common subsequence in the
permutation braids of 𝜏𝑘(𝑋) and 𝑌 = 𝐶 ·𝑋 ·𝐶−1 for 𝑘 = 0 or 1, we tried it on 𝑋𝑛 and 𝑌 𝑛 instead.
In our experiments we used 𝑛 = 4 and reran the decomposition algorithm on powers at most 3
times. The result of our experiments can be seen in Figure 7 and shows clearly that the decom-
position algorithm works in the case of CSP for shorter words than for the DSP displayed in Figure 6.

However, we want to point out that there is not always an 𝑛 such that 𝑋𝑛 and 𝑌 𝑛 share a
potentially reflected subsequence of permutation braids. Indeed, the minimal counterexample is
𝑁 = 4, 𝑋 = 𝑏1 and 𝑌 = 𝑏2𝑏1𝑏

−1
2 , where 𝑏𝑖 are Artin generators. We denote permutation braids

by their induced permutation. The left normal forms of 𝑋𝑛 and 𝑌 𝑛 are the products (1, 2)𝑛 and
(1, 3, 2, 4)(2, 3)𝑛−1(1, 3, 2) respectively, which do not share a single permutation braid.
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Fig. 6: Success rate of decomposition algorithm for instances of the DSP
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Fig. 7: Success rate of decomposition algorithm for instances of the CSP

Due to the vast use of the CSP, DSP and its variants in the design of cryptographic protocols,
studying further applications of our decomposition algorithm and a thorough comparison with other
solutions to the conjugacy and decomposition search problem in braid groups will be subject to
future work.

7 Conclusion and Further Work

In cryptographic schemes based on braid groups, products of braids are often constructed involving
secret braids as factors, and it is hoped that rewriting the product will hide the individual factors. We
demonstrated that this is not the case for randomly chosen braid words. We provided an algorithm
to compute individual components of products 𝐴𝐵𝐶 when 𝐵 is known and 𝐴𝐵𝐶 is presented in
normal form. We expect this decomposition to work for randomly chosen braids 𝐴, 𝐵 and 𝐶 if 𝐵
is of canonical length greater than 2𝐶𝑁 + 1, where 𝐶𝑁 is the number given by Conjecture 26. In
Section 4.2 we estimated 𝐶𝑁 experimentally for some values of 𝑁 .
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As an application of our decomposition algorithm we presented a new universal forgery attack on
the previously unbroken instantiation of WalnutDSATM. Given a single random message-signature
pair, our attack allows to forge signatures for arbitrary messages within seconds for the 128-bit
and 256-bit security levels. Hereby, the forgeries are indistinguishable from legitimately produced
signatures. Our experiments showed that 99.8% and 100% of legitimately produced signatures in
WalnutDSATM can be used in our new attack for the claimed 128-bit and 256-bit security levels
respectively. In contrast to previous attacks, our attack produces signatures that are identically
distributed as legitimate signatures and applies to all versions of WalnutDSATM. Unlike the previous
attacks in [10, 29], our attack works on the braids only. Thus, it does not depend on the colored
Burau representation of the braid group and is independent of the size 𝑞 of the underlying finite field
F𝑞. We have further discussed how other parameters influence the success probability and running
time of our universal forgery attack. Adding sufficiently many concealed cloaking elements to the
encoding may thwart our attack at the cost of increasing the length of signatures and slowing down
the signature generation algorithm.

As another application, we provide a new algorithm for solving the conjugacy and decomposition
search problems, two problems at the heart of other cryptographic systems based on braid groups
[22]. The running time of this algorithm is dominated by the time it takes to compute the Garside
normal form of 𝐴𝐵𝐶 but also requires almost no memory to work.

We leave a full theoretical analysis of our decomposition algorithm for products of braids to
further work. In particular, a proof of Conjecture 26 would be very interesting, even from a purely
mathematical point of view. Conjecture 25 due to Gebhardt and Tawn [27] which would provide a
partial solution is yet to be proven as well.

Improving our attack, finding different countermeasures and studying the efficiency of the one
suggested by us might be of interest for further research regarding WalnutDSATM. More generally,
we believe that our decomposition algorithm is applicable to other cryptographic schemes that have
been suggested for braid groups. Researching further applications and a thorough comparison of
our new solution to the conjugacy and decomposition search problems in braid groups to existing
approaches will be subject for future work.

Acknowledgments The authors would like to thank Ward Beullens and the anonymous reviewers
for their helpful feedback. This work was produced as part of a master’s thesis of the first author at
the University of Oxford. He is now supported by the EPSRC as part of the Centre for Doctoral
Training in Cyber Security at Royal Holloway, University of London (EP/P009301/1).



Bibliography

[1] About SecureRF: https://www.securerf.com/about-us/, accessed: 21/11/2018
[2] Anshel, I., Atkins, D., Goldfeld, P., Gunnels, D.: Kayawood, a key agreement protocol. Preprint

available at https://eprint.iacr.org/2017/1162 (version: 30-Nov-2017) (2017)
[3] Anshel, I., Anshel, M., Fisher, B., Goldfeld, D.: New key agreement protocols in braid group

cryptography. In: Naccache, D. (ed.) Topics in Cryptology — CT-RSA 2001. pp. 13–27. Springer
Berlin Heidelberg, Berlin, Heidelberg (2001)

[4] Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Mathe-
matical Research Letters 6, 287–292 (1999)

[5] Anshel, I., Anshel, M., Goldfeld, D., Lemieux, S.: Key agreement, the Algebraic Eraser, and
lightweight cryptography. Contemporary Mathematics 418, 1–34 (2007)

[6] Anshel, I., Atkins, D., Goldfeld, D., Gunnells, P.E.: WalnutDSA: A Quantum Resistant Group
Theoretic Digital Signature Algorithm. Preprint available at https://eprint.iacr.org/2017
/058 (30-Nov-2017) (2017)

[7] Artin, E.: Theorie der Zöpfe. In: Abhandlungen aus dem mathematischen Seminar der Universität
Hamburg. vol. 4, pp. 47–72. Springer (1925)

[8] Ben-Zvi, A., Blackburn, S.R., Tsaban, B.: A practical cryptanalysis of the Algebraic Eraser. In:
Annual International Cryptology Conference. pp. 179–189. Springer (2016)

[9] Ben-Zvi, A., Kalka, A., Tsaban, B.: Cryptanalysis via algebraic spans. In: Annual International
Cryptology Conference. pp. 255–274. Springer (2018)

[10] Beullens, W., Blackburn, S.: Practical attacks against the Walnut digital signature scheme.
Accepted to Asiacrypt 2018. Preprint available at https://eprint.iacr.org/2018/318/201
80404 (2018)

[11] Birman, J., Ko, K.H., Lee, S.J.: A new approach to the word and conjugacy problems in the
braid groups. Advances in Mathematics 139(2), 322–353 (1998)

[12] Birman, J.S.: Braids, Links, and Mapping Class Groups.(AM-82), vol. 82. Princeton University
Press (1975)

[13] Birman, J.S., Gebhardt, V., González-Meneses, J.: Conjugacy in Garside groups I: cyclings,
powers and rigidity. Groups, Geometry, and Dynamics 1(3), 221–279 (2007)

[14] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. Journal
of Symbolic Computation 24(3-4), 235–265 (1997)

[15] Bressaud, X.: A normal form for braids. Journal of Knot Theory and its Ramifications 17(06),
697–732 (2008)

[16] Burau, W.: Über Zopfgruppen und gleichsinnig verdrillte Verkettungen. In: Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg. vol. 11, pp. 179–186. Springer (1935)

[17] Dehornoy, P.: A fast method for comparing braids. Advances in Mathematics 125(2), 200–235
(1997)

[18] Dehornoy, P.: Alternating normal forms for braids and locally Garside monoids. Journal of
Pure and Applied Algebra 212(11), 2413–2439 (2008)

[19] Ding, J., Yang, B.Y.: Multivariate Public Key Cryptography, pp. 193–241. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009)

[20] Elrifai, E.A., Morton, H.R.: Algorithms for positive braids. Quarterly Journal of Mathematics
45(180), 479–498 (1994)

https://www.securerf.com/about-us/
https://eprint.iacr.org/2017/1162
https://eprint.iacr.org/2017/058
https://eprint.iacr.org/2017/058
https://eprint.iacr.org/2018/318/20180404
https://eprint.iacr.org/2018/318/20180404


Factoring Products of Braids via Garside Normal Form 29

[21] Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word processing in
groups (1992)

[22] Garber, D.: Braid group cryptography. In: Braids: Introductory lectures on braids, configurations
and their applications, pp. 329–403. World Scientific (2010)

[23] Garside, F.A.: The braid group and other groups. The Quarterly Journal of Mathematics 20(1),
235–254 (1969)

[24] Gebhardt, V.: A new approach to the conjugacy problem in Garside groups. Journal of Algebra
292(1), 282–302 (2005)

[25] Gebhardt, V., González-Meneses, J.: The cyclic sliding operation in Garside groups. Mathema-
tische Zeitschrift 265(1), 85–114 (2010)

[26] Gebhardt, V., González-Meneses, J.: Generating random braids. Journal of Combinatorial
Theory, Series A 120(1), 111–128 (2013)

[27] Gebhardt, V., Tawn, S.: Normal forms of random braids. Journal of Algebra 408, 115–137
(2014)

[28] Goldwasser, S., Bellare, M.: Lecture notes on cryptography. Summer course “Cryptography and
computer security” at MIT (1996)

[29] Hart, D., Kim, D., Micheli, G., Pascual-Perez, G., Petit, C., Quek, Y.: A Practical Cryptanalysis
of WalnutDSA. In: IACR International Workshop on Public Key Cryptography. pp. 381–406.
Springer (2018)

[30] Hughes, J., Tannenbaum, A.: Length-based attacks for certain group based encryption rewriting
systems. arXiv preprint cs/0306032 (2003)

[31] Kalka, A., Teicher, M., Tsaban, B.: Short expressions of permutations as products and crypt-
analysis of the Algebraic Eraser. Advances in Applied Mathematics 49(1), 57–76 (2012)

[32] Knuth, D.E., Morris, Jr, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM journal on
computing 6(2), 323–350 (1977)

[33] Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.s., Park, C.: New public-key cryptosystem
using braid groups. In: Bellare, M. (ed.) Advances in Cryptology — CRYPTO 2000. pp. 166–183.
Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

[34] Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.s., Park, C.: New public-key cryptosystem
using braid groups. In: Annual International Cryptology Conference. pp. 166–183. Springer
(2000)

[35] Kotov, M., Menshov, A., Ushakov, A.: An attack on the Walnut digital signature algorithm
(2018)

[36] McEliece, R.: A public-key cryptosystem based on algebraic coding theory. Deep Space Network
Progress Report 44, 114–116 (1978)

[37] Merz, S.P.: Non obfuscating power of Garside normal forms. GitHub repository at https:
//github.com/SimonMerz/Non-obfuscating-power-of-Garside-normal-forms (2018)

[38] Micciancio, D., Regev, O.: Lattice-based Cryptography, pp. 147–191. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

[39] Myasnikov, A.D., Ushakov, A.: Length based attack and braid groups: Cryptanalysis of anshel-
anshel-goldfeld key exchange protocol. In: Okamoto, T., Wang, X. (eds.) Public Key Cryptogra-
phy – PKC 2007. pp. 76–88. Springer Berlin Heidelberg (2007)

[40] National Institute for Standards and Technology (NIST): Post-quantum crypto standardization
(2016), https://csrc.nist.gov/projects/post-quantum-cryptography

[41] NIST PQC Forum: Available at https://groups.google.com/a/list.nist.gov/forum/#!
forum/pqc-forum, accessed: 21/11/2018

https://github.com/SimonMerz/Non-obfuscating-power-of-Garside-normal-forms
https://github.com/SimonMerz/Non-obfuscating-power-of-Garside-normal-forms
https://csrc.nist.gov/projects/post-quantum-cryptography
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum


30 Simon-Philipp Merz, Christophe Petit

[42] Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In:
Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on. pp. 124–134.
Ieee (1994)

[43] Shpilrain, V., Ushakov, A.: Thompson’s group and public key cryptography. In: International
Conference on Applied Cryptography and Network Security. pp. 151–163. Springer (2005)

[44] Stolbunov, A.: Constructing public-key cryptographic schemes based on class group action on a
set of isogenous elliptic curves. Advances in Mathematics of Communications 4(2), 215–235
(2010)

[45] Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications.
Journal of cryptology 12(1), 1–28 (1999)


	Factoring Products of Braids via Garside Normal Form
	Introduction
	Braid Groups
	Artin Presentation
	Colored Burau Representation
	Garside Normal Form

	WalnutDSATM
	E-MultiplicationTM and Cloaking Elements
	The Signature Scheme
	Key Generation and Parameter Values
	Message Encoding
	Signature Generation
	Signature Verification

	Previous Work on WalnutDSATM
	Factorization Attacks
	Collision Search Attack
	Reversing E-Multiplication
	Uncloaking Signatures


	Decomposition of Products in Braid Groups
	Garside Normal Form of Products
	Penetration Distance
	The Algorithm

	New Attack on WalnutDSATM
	Universal Forgery Attack
	Experimental Results
	Countermeasures

	Application to the Conjugacy and Decomposition Search Problem
	Conclusion and Further Work


