319 research outputs found

    Deterministic Mean-field Ensemble Kalman Filtering

    Full text link
    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Legland etal. (2011) is extended to non-Gaussian state space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ\kappa between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF when the dimension d<2κd<2\kappa. The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which exists for both DMFEnKF and standard EnKF. Numerical results support and extend the theory

    Multi-Tap Extended Kalman Filter for a Periodic Waveform with Uncertain Frequency and Waveform Shape, and Data Dropouts

    Get PDF
    Gait analysis presents the challenge of detecting a periodic waveform in the presence of time varying frequency, amplitude, DC offset, and waveform shape, with acquisition gaps from partial occlusions. The combination of all of these components presents a formidable challenge. The Extended Kalman Filter for this system model has six states, which makes it weakly identifiable within the standard Extended Kalman Filter network. In this work, a novel robust Extended Kalman Filter-based approach is presented and evaluated for clinical use in gait analysis. The novel aspect of the proposed method is that at each sample, the present and several past observations are used to update the system state, strengthening the state identification. These past observations are referred to as delay-line taps

    Distributed fusion filter over lossy wireless sensor networks with the presence of non-Gaussian noise

    Full text link
    The information transmission between nodes in a wireless sensor networks (WSNs) often causes packet loss due to denial-of-service (DoS) attack, energy limitations, and environmental factors, and the information that is successfully transmitted can also be contaminated by non-Gaussian noise. The presence of these two factors poses a challenge for distributed state estimation (DSE) over WSNs. In this paper, a generalized packet drop model is proposed to describe the packet loss phenomenon caused by DoS attacks and other factors. Moreover, a modified maximum correntropy Kalman filter is given, and it is extended to distributed form (DM-MCKF). In addition, a distributed modified maximum correntropy Kalman filter incorporating the generalized data packet drop (DM-MCKF-DPD) algorithm is provided to implement DSE with the presence of both non-Gaussian noise pollution and packet drop. A sufficient condition to ensure the convergence of the fixed-point iterative process of the DM-MCKF-DPD algorithm is presented and the computational complexity of the DM-MCKF-DPD algorithm is analyzed. Finally, the effectiveness and feasibility of the proposed algorithms are verified by simulations

    Distributed Kalman Filters over Wireless Sensor Networks: Data Fusion, Consensus, and Time-Varying Topologies

    Get PDF
    Kalman filtering is a widely used recursive algorithm for optimal state estimation of linear stochastic dynamic systems. The recent advances of wireless sensor networks (WSNs) provide the technology to monitor and control physical processes with a high degree of temporal and spatial granularity. Several important problems concerning Kalman filtering over WSNs are addressed in this dissertation. First we study data fusion Kalman filtering for discrete-time linear time-invariant (LTI) systems over WSNs, assuming the existence of a data fusion center that receives observations from distributed sensor nodes and estimates the state of the target system in the presence of data packet drops. We focus on the single sensor node case and show that the critical data arrival rate of the Bernoulli channel can be computed by solving a simple linear matrix inequality problem. Then a more general scenario is considered where multiple sensor nodes are employed. We derive the stationary Kalman filter that minimizes the average error variance under a TCP-like protocol. The stability margin is adopted to tackle the stability issue. Second we study distributed Kalman filtering for LTI systems over WSNs, where each sensor node is required to locally estimate the state in a collaborative manner with its neighbors in the presence of data packet drops. The stationary distributed Kalman filter (DKF) that minimizes the local average error variance is derived. Building on the stationary DKF, we propose Kalman consensus filter for the consensus of different local estimates. The upper bound for the consensus coefficient is computed to ensure the mean square stability of the error dynamics. Finally we focus on time-varying topology. The solution to state consensus control for discrete-time homogeneous multi-agent systems over deterministic time-varying feedback topology is provided, generalizing the existing results. Then we study distributed state estimation over WSNs with time-varying communication topology. Under the uniform observability, each sensor node can closely track the dynamic state by using only its own observation, plus information exchanged with its neighbors, and carrying out local computation
    • …
    corecore