2,569 research outputs found

    Analyzing Least Squares and Kalman Filtered Compressed Sensing

    Full text link
    In recent work, we studied the problem of causally reconstructing time sequences of spatially sparse signals, with unknown and slow time-varying sparsity patterns, from a limited number of linear "incoherent" measurements. We proposed a solution called Kalman Filtered Compressed Sensing (KF-CS). The key idea is to run a reduced order KF only for the current signal's estimated nonzero coefficients' set, while performing CS on the Kalman filtering error to estimate new additions, if any, to the set. KF may be replaced by Least Squares (LS) estimation and we call the resulting algorithm LS-CS. In this work, (a) we bound the error in performing CS on the LS error and (b) we obtain the conditions under which the KF-CS (or LS-CS) estimate converges to that of a genie-aided KF (or LS), i.e. the KF (or LS) which knows the true nonzero sets.Comment: Proc. IEEE Intl. Conf. Acous. Speech Sig. Proc. (ICASSP), 200

    Nonlinear Compressive Particle Filtering

    Full text link
    Many systems for which compressive sensing is used today are dynamical. The common approach is to neglect the dynamics and see the problem as a sequence of independent problems. This approach has two disadvantages. Firstly, the temporal dependency in the state could be used to improve the accuracy of the state estimates. Secondly, having an estimate for the state and its support could be used to reduce the computational load of the subsequent step. In the linear Gaussian setting, compressive sensing was recently combined with the Kalman filter to mitigate above disadvantages. In the nonlinear dynamical case, compressive sensing can not be used and, if the state dimension is high, the particle filter would perform poorly. In this paper we combine one of the most novel developments in compressive sensing, nonlinear compressive sensing, with the particle filter. We show that the marriage of the two is essential and that neither the particle filter or nonlinear compressive sensing alone gives a satisfying solution.Comment: Accepted to CDC 201

    LS-CS-residual (LS-CS): Compressive Sensing on Least Squares Residual

    Full text link
    We consider the problem of recursively and causally reconstructing time sequences of sparse signals (with unknown and time-varying sparsity patterns) from a limited number of noisy linear measurements. The sparsity pattern is assumed to change slowly with time. The idea of our proposed solution, LS-CS-residual (LS-CS), is to replace compressed sensing (CS) on the observation by CS on the least squares (LS) residual computed using the previous estimate of the support. We bound CS-residual error and show that when the number of available measurements is small, the bound is much smaller than that on CS error if the sparsity pattern changes slowly enough. We also obtain conditions for "stability" of LS-CS over time for a signal model that allows support additions and removals, and that allows coefficients to gradually increase (decrease) until they reach a constant value (become zero). By "stability", we mean that the number of misses and extras in the support estimate remain bounded by time-invariant values (in turn implying a time-invariant bound on LS-CS error). The concept is meaningful only if the bounds are small compared to the support size. Numerical experiments backing our claims are shown.Comment: Accepted (with mandatory minor revisions) to IEEE Trans. Signal Processing. 12 pages, 5 figure

    Norm minimized Scattering Data from Intensity Spectra

    Get PDF
    We apply the l1l_1 minimizing technique of compressive sensing (CS) to non-linear quadratic observations. For the example of coherent X-ray scattering we provide the formulae for a Kalman filter approach to quadratic CS and show how to reconstruct the scattering data from their spatial intensity distribution.Comment: 26 pages, 10 figures, reordered section

    Active Classification for POMDPs: a Kalman-like State Estimator

    Full text link
    The problem of state tracking with active observation control is considered for a system modeled by a discrete-time, finite-state Markov chain observed through conditionally Gaussian measurement vectors. The measurement model statistics are shaped by the underlying state and an exogenous control input, which influence the observations' quality. Exploiting an innovations approach, an approximate minimum mean-squared error (MMSE) filter is derived to estimate the Markov chain system state. To optimize the control strategy, the associated mean-squared error is used as an optimization criterion in a partially observable Markov decision process formulation. A stochastic dynamic programming algorithm is proposed to solve for the optimal solution. To enhance the quality of system state estimates, approximate MMSE smoothing estimators are also derived. Finally, the performance of the proposed framework is illustrated on the problem of physical activity detection in wireless body sensing networks. The power of the proposed framework lies within its ability to accommodate a broad spectrum of active classification applications including sensor management for object classification and tracking, estimation of sparse signals and radar scheduling.Comment: 38 pages, 6 figure
    • …
    corecore