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We apply the ℓ
1
minimizing technique of compressive sensing (CS) to nonlinear quadratic observations. For the example of coherent

X-ray scattering we provide the formulas for a Kalman filter approach to quadratic CS and show how to reconstruct the scattering
data from their spatial intensity distribution.

1. Introduction

The rapidly growing Si technology in semiconductor elec-
tronics [1, 2] opens the possibility to grow III–V inorganic
nanowires, such as GaAs, InAs, or InP, which were supposed
to have potential [3, 4] to become building blocks in a variety
of nanowire-based nanoelectronic devices, for example, in
nanolaser sources [5] or nanoelectronics [6]. Such epitaxially
grown nanowires are repeating the crystal orientation of
the substrate and usually grow in Wurtzite (WZ) or Zinc-
Blende (ZB) structure differing in the stacking sequences
𝐴𝐵𝐴𝐵𝐴𝐵 and 𝐴𝐵𝐶𝐴𝐵𝐶𝐴𝐵𝐶, respectively, of the atomic
bilayers. Theoretical predictions on the electronic properties
[7] of these nanowires show that stacking sequences with
WZ and ZB segments considerably differ in the conductivity.
However, during the nanowire growth stacking faults, the
mixing of ZB andWZ segments takes place, and twin defects
[8] appear. As these defects have their own impact on the con-
ductivity and band structure there is great interest in knowing
the exact stacking sequence which can be studied by, for
example, Transmission Electron Microscopy [9]. But, as this
is a destructive method, it is impossible to use the nanowire
after the structural studies. Nowadays the 3rd generation
synchrotron sources and rapidly developing focusing devices
like Fresnel Zone Plates opens newfields of nondestructive X-
ray imaging. For example, in the Coherent X-ray Diffraction
Imaging (CXDI) experiments, an isolated nanoobject is
illuminated with coherent X-ray radiation and the scattered

intensity ismeasured by a 2Ddetector [10, 11] under the Bragg
condition. The diffraction patterns are structure-specific and
encode the information about the electron density of the
sample and thus the stacking sequence of the atomic bilayers
formally by Fourier transform. However, because of sensor
physics, the phase information is lost in CXDI measurement
since the measured intensity pattern is the modulus square
of the scattered X-rays and no inverse Fourier transform
can be directly applied to recover the stacking sequence.
The classical approach with the Patterson function [12] fails
as the number of expected randomly distributed stacking
faults is too high. Other inversion algorithms [13, 14] could
be used instead to reconstruct the lost phase information:
althoughdual space iterative algorithms [15] have been shown
to converge under specific conditions [16] there still remain
some convergence problems for a number of cases when not
enough preliminary information regarding the structure of
the object is previously known [17]. Indeed ptychography
type of experiments [18, 19] were suggested to determine at
least the relative phases of the bilayers by interfering adjacent
Bragg reflections. But this type of experiments is more
difficult to realize, as it requires higher stability in comparison
to conventional CXDI and the longer measurement time can,
however, influence the sample [20].

Due to the principal loss in phase information the scat-
tering data can be considered to be undersampled and algo-
rithms tailored to this lack of information, like basis pursuit
approaches [21] realized by minimizing the ℓ

1
norm of
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sparse vectors in an appropriate basis or phase retrieval via
matrix completion [22–24], could be tested for reconstruc-
tion from conventional CXDI measurements: as these data
are recorded without structured illumination for applying
matrix completion we focus on utilizing the ℓ

1
minimizing

technique to reconstruct undersampled sparse signals [25,
26] as vectors from linear mappings between the signal
and the observations. For an overview of this so-called
compressive sensing (CS) see the textbook [27]. The method
of CS aims at a signal’s sparse support which can be estimated
by, for example, Kalman filtering [28]. As the underlying
filter formulas also relate observations and signals to be
reconstructed by linear mappings this technique meets CS
and was also used to explicitly minimize the ℓ

1
norm by

so-called pseudomeasurements [29]. For an example see the
reconstruction from a random sample of Fourier coefficients
[30], where the dimensionality of the underlyingKalman gain
matrices can be reduced utilizing the null space of the sensing
matrix [31]. Even for nonlinear mappings of signals Kalman
filtering applies by using Jacobians rather than constant
sensing matrices. These extended Kalman filters (EKF) are
used for, for example, tracking issues [32] or robotics [33] and
matching the sensing problem of the quadratic nonlinearities
in the spatial intensity distribution of CXDI.

The paper is organized as follows. In Section 2 we set up
the observation model for modulus-squared amplitudes of
intensity distributions in coherent X-ray scattering and point
out the relation to the ℓ

1
minimization. In Section 3 we give

a brief overview of the linear Kalman filter model and show
how to incorporate the complex nonanalytic ℓ

1
norm as a

linearized observation tomeet theminimizing strategy of CS.
In this framework we prove a convergence concept for the ℓ

1

minimization in the reconstruction scheme. In Section 4 we
apply our findings to 1D and 2D Fourier data and remark in
Section 5 on future considerations.

2. Motivation

2.1. Intensity Spectra in Coherent Scattering Experiments.
Exposing crystals to nondestructive coherent X-ray radiation
in 𝑑 dimensions the amplitude of the elastically scattered
radiation is proportional to the Fourier transform [34]

𝑆 (q) = ∫ d𝑑𝑥ei⟨q|r⟩𝑏 (r) (1)

of the electron density 𝑏(r), where the vector q fl kout −
kin is a parametrization of the direction where radiation is
detected and (multiplied by Planck’s constant) also describes
the momentum transfer in a kinematical scattering theory;
kin is the incident direction whereas kout represents the
outgoing direction for radiation with wave vectors ‖kout‖ =

‖kin‖ = 2𝜋/𝜆 of wavelength 𝜆 (see Figure 1).
Following standard textbooks, for example, [34], one

deals with two sets of basis vectors to characterize
the scattering. The spatial vectors are represented in the
basis {a

1
, . . . , a

𝑑
} of the grid whereas the reciprocal basis

kout

kinkin

b(r)

q

Figure 1

{b
1
, . . . , b

𝑑
} is used for wave vectors q, kin, kout relying on the

normalization

⟨a
𝑗
| b
𝑘
⟩ = 2𝜋𝛿

𝑗𝑘
, 𝑗, 𝑘 = 1, . . . , 𝑑. (2)

As the units of lengths and wave vectors are carried by the
basis sets the scalar products read, with dimensionless factors
𝑦
𝑗
and 𝜅
𝑘
,

r =
𝑑

∑

𝑗=1

𝑦
𝑗
a
𝑗
,

q =
𝑑

∑

𝑘=1

𝜅
𝑘
b
𝑘
,

⟨q | r⟩ = 2𝜋

𝑑

∑

𝑗=1

𝑦
𝑗
𝜅
𝑗
.

(3)

Restricting to a finite grid with 𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑑
lattice sites

in each direction with periodic boundary conditions the
possible grid positions and wave vectors allowing for a
discrete Fourier transform1 read, for all 𝑗 = 1, 2, . . . , 𝑑,

𝑦
𝑗
∈ {0, 1, . . . , 𝑛

𝑗
− 1} ,

𝜅
𝑗
∈ {

0

𝑛
𝑗

,
1

𝑛
𝑗

, . . . ,

𝑛
𝑗
− 1

𝑛
𝑗

} .

(4)

Thus the scalar product separates into the 𝑑 spatial
dimensions according to

⟨q | r⟩ =
𝑑

∑

𝑗=1

2𝜋𝑘
𝑗
𝑟
𝑗

𝑛
𝑗

, 𝑘
𝑗
, 𝑟
𝑗
∈ {0, 1, . . . , 𝑛

𝑗
− 1} , (5)

where 𝑘
𝑗
are related to the lattice positions in direction of

the lattice constant a
𝑗
and 𝑟

𝑗
refer to a discretized wave

vector in direction of the corresponding reciprocal basis b
𝑗
.

For example, a 𝑑 = 2-dimensional regular hexagonal lattice
{a
1
, a
2
} encloses 120∘angles (see Figure 2).
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Figure 2

The bold parallelogram represents periodic boundary
conditions with, for example, 𝑛

1
= 4 and 𝑛

2
= 3 fragmenting

the 1st Brillouin zone, the elementary cell spanned by {b
1
, b
2
}

in reciprocal space, into a subgrid according to (4). With the
normalization (2) the reciprocal lattice encloses angles of 60∘
with a fixed orientation with respect to {a

1
, a
2
}.

2.2. Setting. Of course for the application the formulas are
only needed up to 𝑑 = 3 dimensions: nanowires can be
characterized by the stacking sequence of atomic bilayers
which are shifted laterally and vertically with respect to each
other. In coherent X-ray diffraction summing up all scattered
radiation from a certain bilayer perpendicular to the growth
direction a

3
yields a complex scattering amplitude 𝑥

𝑘
∈ C

associated with the 𝑘th bilayer spanned by {a
1
, a
2
}. Due to the

hexagonal lattice and with respect to an arbitrary reference
bilayer there are three different phase factors:

{1, exp (2𝜋i
3

(2𝜅
1
+ 𝜅
2
)) , exp(2𝜋i

3
(𝜅
1
+ 2𝜅
2
))} (6)

for the amplitudes left [34, 35]. Wave vectors q sensitive to
the arrangement of the bilayers are selected from directions
related to the Bragg condition by 𝜅

1
− 𝜅
2

̸= 3𝑁 with
𝑁, 𝜅
1
, 𝜅
2
∈ Z yielding {1, exp(−2𝜋i/3), exp(2𝜋i/3)}, which

directly relates to the three possible lateral shifts.With respect
to the experimental setup [17] this is satisfied by 𝜅

1
= 0 and

𝜅
2
= 1. Recovering the stacking sequence of these relative

phase factors by varying 𝜅
3
directly reveals the Zinc-Blende or

Wurtzite structure of the wire along with their stacking faults.
Carrying out the remaining summation over all equidis-

tant bilayers in growth direction a
3
mathematically corre-

sponds to the 1D discrete Fourier transform

𝑆
𝑟
=

𝑛−1

∑

𝑘=0

e2𝜋i𝑘𝑟/𝑛𝑥
𝑘
, 𝑟 = 0, 1, . . . , 𝑛 − 1 (7)

of the periodically continued complex scattering amplitudes
𝑥
𝑘
combinedwith the vector x. Each nonzero entry represents

one bilayer and 𝑟 refers to the discretized component 𝜅
3
of the

q vector in the reciprocal basis corresponding to the growth
direction. As the outcome of the detector is the measured
intensity rather than the amplitude the observation is the
squared signal

𝑆𝑟


2

= ⟨x‖ 𝑇𝑟 |x⟩ , 𝑟 = 0, 1, . . . , 𝑛 − 1, (8)

where the Fourier coefficients build a Hermitian Toeplitz
matrix

𝑇
𝑟
fl (e−(2𝜋i𝑟/𝑛)(𝑝−𝑞))

𝑝𝑞
∈ C
𝑛×𝑛

, 𝑟 = 0, 1, . . . , 𝑛 − 1, (9)

showing orthogonality 𝑇
𝑟
𝑇
𝑠
= 𝑛𝛿
𝑟𝑠
𝑇
𝑟
with respect to multi-

plication and a completeness property𝑇
0
+𝑇
1
+⋅ ⋅ ⋅+𝑇

𝑛−1
= 𝑛1
𝑛

with respect to summation. Clearly, due to the squaring, the
signal (8) is invariant under both the transformation x →

ei𝜙x with any global phase 𝜙 ∈ R and the reflection 𝑥
𝑘
→

𝑥
𝑛−1−𝑘

, 𝑘 = 0, . . . , 𝑛−1, on the lattice. As the spatial directions
exhibit periodic boundary conditions the signal also remains
invariant under discrete translations 𝑥

𝑘
→ 𝑥
𝑘+𝑞

, 𝑞 ∈ Z, on
the grid.

On the contrary, setting the q component 𝜅
3
correspond-

ing to the growth direction a
3
in the reciprocal basis to

zero, (1) examines the 2D structure of all the 𝑀 bilayers
simultaneously. If they are assumed to be identical without
lateral2 shifts the scattering amplitudes of the bilayer’s lattice
sites are 2D real data sets 𝑋

𝑘
1
𝑘
2

with the discrete Fourier
transform

𝑆
𝑟
1
𝑟
2

= 𝑀

𝑛
1
−1

∑

𝑘
1
=0

𝑛
2
−1

∑

𝑘
2
=0

exp(2𝜋i𝑘1𝑟1
𝑛
1

) exp(2𝜋i𝑘2𝑟2
𝑛
2

)𝑋
𝑘
1
𝑘
2

(10)

for fixed 𝑟
1

= 0, 1, . . . , 𝑛
1
− 1 and 𝑟

2
= 0, 1, . . . , 𝑛

2
− 1

discretizing 𝜅
1
and 𝜅
2
. Squaring (10) yields Toeplitz matrices

with Kronecker product structure (A.7) for the detected
signal


𝑆
𝑟
1
𝑟
2



2

= 𝑀
2
⋅ ⟨x‖ 𝑇

𝑟
1

⊗ 𝑇
𝑟
2
|x⟩ (11)

with multiple row and column indices (𝑝
1
𝑝
2
) and (𝑞

1
𝑞
2
),

respectively, referring to the ordinary rows 𝑝
1
, 𝑝
2
and col-

umns 𝑞
1
, 𝑞
2
of the Toeplitz matrices (9):

(𝑇
𝑟
1

⊗ 𝑇
𝑟
2

)
(𝑝
1
𝑝
2
),(𝑞
1
𝑞
2
)
= (𝑇
𝑟
1

)
𝑝
1
𝑞
1

(𝑇
𝑟
2

)
𝑝
2
𝑞
2

,

(x)
(𝑞
1
𝑞
2
)
fl 𝑋
𝑞
1
𝑞
2

.

(12)

The scattering amplitudes in Fourier domain can be
assigned with arbitrary phases. As this leaves the given
intensity distribution |𝑆|

2 unchanged an related infinite set
of broadened scattering data is formed by convolution. But
if the signal |𝑆|2 is assumed to be oversampled the original
scattering data in this set appear to be sparse and can be
recovered by an ℓ

1
minimization run on, for example, (8) or

(11)—up to translations, reflections, or global phases.

3. Kalman Filter-Driven ℓ
1

Minimization

3.1. Kalman Filter Equations. The equations for the Kalman
filter usually apply to vectors over the field of real numbersR.
We will examine next that the equations can also be extended
to the field C. Anticipating this in the classical state space
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approach [36] the vectorial quantity x
𝑘
is supposed to evolve

according to the linear evolution

x
𝑘+1

= 𝐴
𝑘
x
𝑘
+ u
𝑘
+ 𝐺w ∈ C𝑛 stochastic (13a)

𝐴
𝑘
∈ C𝑛×𝑛, u

𝑘
∈ C𝑛 deterministic (13b)

𝐺 ∈ C𝑛×𝑟, w ∈ C𝑟 stochastic (13c)

with a fixedmatrix𝐺 and a determined sequence of evolution
matrices 𝐴

𝑘
. In the model above the quantity x

𝑘
is assumed

to be only traceable indirectly by linear observations y
𝑘
which

can be viewed as linearmappings with given sensingmatrices
𝐶
𝑘
by

y
𝑘
= 𝐶
𝑘
x
𝑘
+ k ∈ C

𝑚 stochastic (14a)

𝐶
𝑘
∈ C𝑚×𝑛, k ∈ C𝑚 stochastic. (14b)

The stochastic behaviour of all the considered quantities is
modelled by zero-mean Gaussian distributions with positive
definite matrices 𝑅 and 𝑄. These covariance matrices and
related mean values can be calculated from normalized
Gaussian integrals denoted by expectation or mean values
𝐸{∘}:

𝐸 {w} = 0 ∈ C
𝑟
,

Cov {w} = 𝐸 {|w⟩ ⟨w|} = 𝑄 ∈ C
𝑟×𝑟
,

𝐸 {k} = 0 ∈ C
𝑚
,

Cov {k} = 𝐸 {|k⟩ ⟨k|} = 𝑅 ∈ C
𝑚×𝑚

.

(15)

The main idea behind Kalman filtering is to invert the
observation model (14a) and (14b), where the estimation of
the quantities x

𝑘
from the measurements y

𝑘
shows predictor-

corrector structure [36]: the prediction step relates the esti-
mates x−

𝑘+1
and x+
𝑘
by extrapolation

x−
𝑘+1

= 𝐴
𝑘
x+
𝑘
+ u
𝑘
,

𝑃
+

𝑘
= Cov {x+

𝑘
} ,

(16a)

𝑃
−

𝑘+1
= 𝐴
𝑘
𝑃
+

𝑘
𝐴
𝐻

𝑘
+ 𝐺𝑄𝐺

𝐻
, (16b)

whereas the correction step updates the estimate x−
𝑘+1

by
relating it to the new measurement y

𝑘+1
: as the underlying

equations utilize conditional mean values the update can be
formulated in terms of covariances

(𝑃
+

𝑘+1
)
−1

= (𝑃
−

𝑘+1
)
−1

+ 𝐶
𝐻

𝑘+1
𝑅
−1
𝐶
𝑘+1

, (17a)

x+
𝑘+1

= 𝑃
+

𝑘+1
(𝑃
−

𝑘+1
)
−1 x−
𝑘+1

+ 𝑃
+

𝑘+1
𝐶
𝐻

𝑘+1
𝑅
−1y
𝑘+1

. (17b)

An alternative form of the covariance cycle in the cor-
rection step above reads, in terms of the explicit so-called
Kalman gain matrix𝐾

𝑘+1
,

𝐾
𝑘+1

= 𝑃
−

𝑘+1
𝐶
𝐻

𝑘+1
(𝐶
𝑘+1

𝑃
−

𝑘+1
𝐶
𝐻

𝑘+1
+ 𝑅)
−1

, (18a)

𝑃
+

𝑘+1
= (1 − 𝐾

𝑘+1
𝐶
𝑘+1

) 𝑃
−

𝑘+1
, (18b)

x+
𝑘+1

= x−
𝑘+1

+ 𝐾
𝑘+1

(y
𝑘+1

− 𝐶
𝑘+1

x−
𝑘+1

) . (18c)

3.2. ℓ
1
Minimization. Themain problem inCS is tominimize

‖x‖
1
subject to the constraint y = 𝐶x for fixed y and 𝐶.

Because this linear structure matches the evolution equation
(13a) of Kalman filtering in Section 3.1 we want to follow
[29] using a pseudomeasurement to iteratively minimize the
ℓ
1
norm: here, the 𝑘th estimate of the state vector x can

be associated with x
𝑘
and the norm minimization is driven

by the fixed constraint y augmented by the lowered norm
𝛾‖x
𝑘−1

‖
1
from the previous step by a factor of 0 < 𝛾 ≤ 1

as an additional observation. The main issue of applying the
Kalman filter to the ℓ

1
minimization procedure consists in

suitably linearizing the nonanalytic ℓ
1
norm: Solving

|𝑧|
2
= Re2 (

𝑧𝑧
0

𝑧0


) + Im2 (
𝑧𝑧
0

𝑧0


) (19)

for |𝑧| in the vicinity of 𝑧
0
∈ C yields for 𝜑 fl arg(𝑧𝑧

0
/|𝑧
0
|)

the expression

|𝑧| = Re(
𝑧𝑧
0

𝑧0


)√1 + tan2𝜑 ≥ Re(
𝑧𝑧
0

𝑧0


) . (20)

Thus the ℓ
1
normof any vector z ∈ C𝑛 can be linearized in

the vicinity of z
0
∈ C𝑛 utilizing its phase information p ∈ C𝑛

by

Re ⟨p | z⟩ ≤ ‖z‖1 ,

⟨p| = ⟨p| (z0) fl (
(z
0
)
1

(z0)1


, . . . ,
(z
0
)
𝑛

(z0)𝑛


) .

(21)

Due to vectors over the field C it is necessary to distin-
guish row vectors ⟨p| from the usual column vectors |p⟩ fl
p related by Hermitian conjugation. The notation is based
on complex scalar products and matrix multiplication (cf.
Appendix A).

3.3. Pseudomeasurements. Involving the observation y =

𝐶x ∈ C𝑚 as a constraint like, for example, a Fourier
transform, the Kalman filter equations (16a), (16b), (17a), and
(17b) read (for 𝐴 = 𝐺 = 1, u

𝑘
= 0) for the estimates x

𝑘
fl x+
𝑘

to the vector x involving a full prediction-correction step

𝑃
−1

𝑘+1
= (𝑃
𝑘
+ 𝑄)
−1

+ 𝐶
𝐻

𝑘+1
𝑅
−1
𝐶
𝑘+1

(22a)

x
𝑘+1

= 𝑃
𝑘+1

𝑃
−1

𝑘
x
𝑘
+ 𝑃
𝑘+1

𝐶
𝐻

𝑘+1
𝑅
−1y
𝑘+1

(22b)

with the initial values 𝑃
0
∈ C𝑛×𝑛, x

0
∈ C𝑛 and the constant

parameters 𝐶 ∈ C𝑚×𝑛, 𝑅 ∈ C(𝑚+1)×𝑛 and 𝑄 ∈ C𝑛×𝑛 to
reconstruct x = lim

𝑘→∞
x
𝑘
from a given y as a limiting value.

The minimization of the ℓ
1
norm is incorporated into the

(pseudo)measurements by

y
𝑘+1

= (
y

𝛾
𝑘

x𝑘
1

) ∈ C
𝑚+1

,

𝐶
𝑘+1

= (
𝐶

⟨p| (x𝑘)
) ∈ C

(𝑚+1)×𝑛
,

(23)
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where the factor 0 < 𝛾
𝑘
≤ 1 adaptively lowers the current

ℓ
1
norm solving for a corresponding estimate x

𝑘+1
in the next

iteration step. For a solution to the linear constraint𝐶 ∈ C𝑚×𝑛

as initial data can serve

x
0
=
{

{

{

(𝐶
𝐻
𝐶)
−1

𝐶
𝐻y for 𝑚 > 𝑛

𝐶
𝐻
(𝐶𝐶
𝐻
)
−1

y for 𝑚 ≤ 𝑛.

(24)

3.4. Convergence Considerations. By inserting (22a) into
(22b) the enhancement of the estimate x

𝑘+1
compared to x

𝑘

reads with respect to the measurement y
𝑘+1

∈ C𝑚+1 of a
lowered ℓ

1
norm

(𝐶
𝑘+1

x
𝑘+1

− y
𝑘+1

) = [𝑅 − 𝐶
𝑘+1

𝑃
𝑘+1

𝐶
𝐻

𝑘+1
] 𝑅
−1

⋅ (𝐶
𝑘+1

x
𝑘
− y
𝑘+1

) .

(25)

Using the covariance cycle (22a) again the enhancement
matrix composed of positive definite matrices 𝑅, 𝑃, and𝑄 on
the RHS can be recast into the more suitable3 form

[𝑅 − 𝐶
𝑘+1

𝑃
𝑘+1

𝐶
𝐻

𝑘+1
] 𝑅
−1

= 𝑅 ⋅ [𝑅 + 𝐶
𝑘+1

(𝑃
𝑘
+ 𝑄)𝐶

𝐻

𝑘+1
]
−1

≤ 1
𝑚+1

(26)

yielding the inequality

⟨e
𝑗
| 𝐶
𝑘+1

x
𝑘+1

− y
𝑘+1

⟩

≤

⟨e
𝑗
| 𝐶
𝑘+1

x
𝑘
− y
𝑘+1

⟩

,

𝑗 = 1, . . . , 𝑚 + 1,

(27)

by components.Thekey ingredients are the restricted positive
eigenvalues of (26) bounded from above by the spectral norm
‖1
𝑚+1

‖
2

= 1 (cf. (B.1)). What remains to prove for the
inequality in (26) is the combination 𝐶

𝑘
(𝑃 + 𝑄)𝐶

𝐻

𝑘
to be

positive semidefinite.
In the overdetermined case 𝑚 ≥ 𝑛 this holds true for

𝐶
𝐻

𝑘
𝐶
𝑘
to be positive definite: as the combination 𝐶

𝑘
(𝑃 +

𝑄)𝐶
𝐻

𝑘
∈ C(𝑚+1)×(𝑚+1) has only rank 𝑛 the amount of𝑚+1−𝑛

of its eigenvalues is zero. The positive sign of the remaining
eigenvalues can be obtained from a Cholesky factorization
of 𝑃 + 𝑄 = 𝐹𝐹

𝐻 with a lower triangular matrix 𝐹 ∈ C𝑛×𝑛

yielding 𝐶
𝑘
𝐹𝐹
𝐻
𝐶
𝐻

𝑘
= (𝐶
𝑘
𝐹)(𝐶
𝑘
𝐹)
𝐻. Due to a singular value

decomposition [37] of 𝐶
𝑘
𝐹 the remaining eigenvalues belong

to (𝐶
𝑘
𝐹)
𝐻
(𝐶
𝑘
𝐹) = 𝐹

𝐻
(𝐶
𝐻

𝑘
𝐶
𝑘
)𝐹 ∈ C𝑛×𝑛 which, however,

is along with the prerequisite 𝐶𝐻
𝑘
𝐶
𝑘
> 0 positive definite

because of Theorem 1.

Theorem 1 (see [37]). If 𝐵 ∈ C𝑛×𝑛 is positive definite and 𝑋 ∈

C𝑛×𝑘 has rank 𝑘, then the matrix 𝑌 = 𝑋
𝐻
𝐵𝑋 ∈ C𝑘×𝑘 is also

positive definite.

By virtue of the same theorem the combination 𝐶
𝑘
(𝑃 +

𝑄)𝐶
𝐻

𝑘
∈ C(𝑚+1)×(𝑚+1) is always positive definite in the

underdetermined case 𝑚 < 𝑛, which is independent of the
sensing matrix 𝐶

𝑘
.

So in each iteration step with adaptive 0 < 𝛾
𝑘
≤ 1 the

linearized ℓ
1
norm is lowered (or remains at least constant)

subject to the approximated constraint y = 𝐶
𝑘
x
𝑘
. In the real

case (20) even holds with “=” yielding for 𝑗 = 𝑚 + 1 the
relation |‖x

𝑘+1
‖
1
−𝛾
𝑘
‖x
𝑘
‖
1
| ≤ (1−𝛾

𝑘
)‖x
𝑘
‖
1
implying ‖x

𝑘+1
‖
1
≤

‖x
𝑘
‖
1
for all 𝛾

𝑘
. To show a general convergence let us start with

the exact solution x
∞

= x and 𝐶
∞

related to it. Because of
𝐴 = 𝐺 = 1 with zero shifts u

𝑘
= 0 in the Kalman filter model

(13a), (13b), and (13c) the constant (pseudo)measurement y
∞

already implies with 𝛾
𝑘
≡ 1 a linear convergence of the series

{𝐶
∞
x
0
, 𝐶
∞
x
1
, 𝐶
∞
x
2
, . . .} by


⟨e
𝑗
| 𝐶
∞
x
𝑘+1

− y
∞
⟩

≤

⟨e
𝑗
| 𝐶
∞
x
𝑘
− y
∞
⟩

≤ ⋅ ⋅ ⋅

≤

⟨e
𝑗
| 𝐶
∞
x
0
− y
∞
⟩


(28)

for all 𝑗 = 1, . . . , 𝑚 + 1 starting with an x
0
in the vicinity

of x
∞
. Thus the series {x

0
, x
1
, x
2
, . . .} is said to be weakly

convergent and reconstructs the original signal as long as the
requirement for sparsity in the CS approach is met. In the
framework of weak convergence the limiting value of Cov{x

𝑘
}

reads for large 𝑘 ≫ 1

𝑃
𝑘

≥

{{

{{

{

𝑃
0
− 𝑃
0
𝐶
𝐻

∞
(𝐶
∞
𝑃
0
𝐶
𝐻

∞
)
−1

𝐶
∞
𝑃
0
+ O(

1

𝑘
) , 𝑚 < 𝑛

1

𝑘
(𝐶
𝐻

∞
𝑅
−1
𝐶
∞
)
−1

+ O(
1

𝑘2
) , 𝑚 ≥ 𝑛,

(29)

where “=” represents the special case 𝑄 ≡ 0. The limit 𝑄 →

∞ is only possible for 𝑚 ≥ 𝑛 yielding a constant covariance
𝑃
𝑘
= (𝐶
𝐻

∞
𝑅
−1
𝐶
∞
)
−1 in each iteration.

For an example of linear compressive sensing in the
framework of Kalman filtering see [30, 31] using random
samples of Fourier coefficients. Applying the method to a
quadratic nonlinear observationmodel is shown for coherent
X-ray scattering in Section 5.

4. Linearized Observation Model

Like the ℓ
1
norm in Section 3.2 we linearize the squared

observations (8) to apply the Kalman filtering scheme. Dif-
ferentiating with respect to 𝑥

𝑘
and 𝑥

𝑘
, respectively, yields

𝜕

𝜕𝑥
𝑘

𝑆𝑟


2

= (⟨x‖ 𝑇𝑟)𝑘 ,

𝜕

𝜕𝑥
𝑘

𝑆𝑟


2

= (𝑇
𝑟 |x⟩)𝑘

(30)

and Taylor expansion around z
0
∈ C𝑛 reads up to 1st order

𝑆𝑟


2

= 2Re ⟨z
0

 𝑇𝑟 |x⟩ − ⟨z0
 𝑇𝑟

z0⟩ + ⋅ ⋅ ⋅ ,

𝑟 = 0, 1, . . . , 𝑛 − 1.

(31)



6 Mathematical Problems in Engineering

With the biases 𝑠
𝑟
= ⟨z
0
‖𝑇
𝑟
|z
0
⟩, 𝑟 = 0, 1, . . . , 𝑛 − 1, from

the linearization the observation model is

(

(

𝑆0


2

.

.

.

𝑆𝑛−1


2

‖x‖1

)

)

=(

2⟨z
0

 𝑇0

.

.

.

2 ⟨z
0

 𝑇𝑛−1

⟨p| (z0)

) ⋅(

𝑥
0

.

.

.

𝑥
𝑛−2

𝑥
𝑛−1

)

−(

𝑠
0

.

.

.

𝑠
𝑛−1

0

)

(32)

y
𝑘
= 𝐶
𝑘
⋅ x − s

𝑘
, (33)

where the real parts over all 𝐶x combinations have to be
taken. The model in detail reads y

𝑘
= Re(𝐶

𝑘
x) − s

𝑘
∈ R𝑛+1

and because of the𝐶x combinationswe choose the alternative
representation (18a), (18b), and (18c) of the Kalman filter
equations to invert (32). Then the iterated estimates x

𝑘
to the

state vector x read

𝐾
𝑘+1

= (𝑃
𝑘
+ 𝑄)𝐶

𝐻

𝑘+1
(𝐶
𝑘+1

(𝑃
𝑘
+ 𝑄)𝐶

𝐻

𝑘+1
+ 𝑅)
−1

, (34a)

𝑃
𝑘+1

= (1 − 𝐾
𝑘+1

𝐶
𝑘+1

) (𝑃
𝑘
+ 𝑄) , (34b)

x
𝑘+1

= x
𝑘
+ 𝐾
𝑘+1

⋅ Re [y
𝑘+1

− 𝐶
𝑘+1

x
𝑘
+ s
𝑘+1

] (34c)

with the complex sensing matrix 𝐶
𝑘+1

∈ C(𝑛+1)×𝑛, biases
s
𝑘+1

∈ C𝑛+1, and the given real (pseudo)measurements y
𝑘+1

∈

R𝑛+1 according to

𝐶
𝑘+1

=(

2⟨x
𝑘

 𝑇0

.

.

.

2 ⟨x
𝑘

 𝑇𝑛−1

⟨p| (x𝑘)

),

s
𝑘+1

=(

⟨x
𝑘

 𝑇0
x𝑘⟩

.

.

.

⟨x
𝑘

 𝑇𝑛−1
x𝑘⟩

0

),

y
𝑘+1

=(

(

𝑆0


2

.

.

.

𝑆𝑛−1


2

𝛾
𝑘

x𝑘
1

)

)

.

(35)

A properly chosen factor 0 < 𝛾
𝑘

≤ 1 adaptively
lowers the ℓ

1
norm in each iteration step 𝑘 to reconstruct

the signal x = lim
𝑘→∞

x
𝑘
as a limiting value from its given

squared measurements ⟨y| = (|𝑆
0
|
2
, . . . , |𝑆

𝑛−1
|
2
). Note that

{𝑇
0
|x
𝑘
⟩, 𝑇
1
|x
𝑘
⟩, . . . , 𝑇

𝑛−1
|x
𝑘
⟩} ⊂ C𝑛 form an orthogonal basis.

Thus

𝐶
𝐻

𝑘+1
𝐶
𝑘+1

= 4

𝑛−1

∑

𝑟=0

𝑇
𝑟

x𝑘⟩ ⟨x𝑘
 𝑇𝑟 + |p⟩ ⟨p| (x𝑘) (36)

is Hermitian and positive definite due to (B.1) for all 𝑘 with
|x
𝑘
⟩ ̸= |0⟩which is sufficient to proveweak convergence of the

ℓ
1
minimization under the constraint of squared observations

(cf. (26)–(28)).

4.1. Example 1: Stacking Sequence. To demonstrate the rel-
ative phase recovery from the observed intensity (8) not
only restricting to the Zinc-Blende and Wurtzite phases (6)
assume a linear chain with 117 lattice sites and 6 equidistant
sparse amplitudes |𝑥

𝑗
| = 1 with phases from the set

{−𝜋/3, −𝜋/6, 0, 𝜋/6, 𝜋/3, 𝜋/2} forming xsparse ∈ C𝑛.
As in the original objective the number of bilayers is

roughly known we use as initial values x
0
∈ C𝑛 a broadened

modulus and phase distribution related to the setting xsparse
(cf. Figure 3): with the support S fl supp xsparse a leakage

(f±
0
)
𝑘
= ∑

𝛼∈S

sin ((𝑘 ± 𝑠 − 𝛼) 𝜋)
(𝑘 ± 𝑠 − 𝛼) 𝜋

∈ R, 𝑘 = 0, . . . , 𝑛 − 1 (37)

for the moduli and phases of xsparse is with shifts 0 ≤ 𝑠 < 1, a
suitable way to also consider the limit 𝑠 → 0 of exactly known
positions. Note that for the phases we only used one fixed
value for each occupied lattice site broadened by the leakage.
So the main effort is the recovery of the relative phases from
the measurements.

For an exponential decaying lowering factor 𝛾
𝑘
= 1 −

0.1 ⋅ exp(−0.0019𝑘) within 1200 iterations the reconstruction
results for noiseless synthetic measurements are shown in
Figures 4 and 5. Experientially, good algorithm’s covariances
were found to be

𝑃
0
= 0.3 ⋅ 1

117
,

𝑄 = 10
−8
⋅ 1
117
,

𝑅 = diag (10−4, . . . , 10−4, 10−6) ∈ R
118×118

.

(38)

To drive the ℓ
1
minimization the corresponding entry

(here 10−6) in the 𝑅 matrix has to be much lower in mag-
nitude than the ones (here 10−4) related to the observations
of the constraint. When reconstructed amplitudes are said to
vanish (e.g., in Figure 4) this means only up to numerical
precision where the zero value is dominated by the entries of
𝑄. Empirically, the exponential decay in the lowering factor 𝛾

𝑘

is chosen such that its values approach about 0.99, . . . , 0.999
after the maximum number of iterations. A resulting typical
smooth convergence of the ℓ

1
norm due to the exponential

decay is shown in Figure 6: the constant tail can be used
to determine a maximal number of iterations as a stopping
criterion. Note that the reconstructed results beyond this
guessed number are insensitive to further iterations meaning
for (34a), (34b), and (34c) to perform fixed point iterations
within accuracies related to the covariances 𝑄 and 𝑃

𝑘
.
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0.2
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Figure 3: A number of 6 equidistant scatterers on a periodic chain
of length 117. To allow for a signal from the substrate the wires
are growing on we added some parasitic scatterers to the chain. As
initial data we use the moduli and phases from xsparse symmetrically
broadened by a leakage (1/2)(f+

0
+ f−
0
) (cf. (37)) with shift 𝑠 = 0.3 and

amplitudes 0.6 and 1.1, respectively.

In the nanowire the equidistant bilayers are at fixed
positions in growth direction a

3
. Thus the reconstruction

of their complex scattering amplitudes does not suffer from
“off-grid” problems in general (see, e.g., [38–40]) if integer
multiples of the lattice constants are used for the DFT.

4.2. Example 2: Pattern Reconstruction. The 2D reconstruc-
tion from (11) can be calculated with the same algorithm
already used for Example 1 above, as the 2D data set of
size 12 × 25 can be mapped to a 1D vector by means of
(12) (cf. Figure 7). Like the example from Figure 3, we
use as initial values with the same reasoning and broad-
ening parameters the given distribution. Within 2000 iter-
ations and an exponentially decaying lowering factor 𝛾

𝑘
=

1 − 0.17 ⋅ exp(−0.0028𝑘) the reconstruction for noiseless
measurements is shown in Figure 8 with empirically good
algorithm’s covariances:

𝑃
0
= 0.3 ⋅ 1

300
,

𝑄 = 10
−7
⋅ 1
300
,

𝑅 = diag (10−4, . . . , 10−4, 10−6) ∈ R
301×301

.

(39)

Actual scatterers
Reconstructed
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3.14

Modulus

Scatterer position

Scatterer positions

0 20 40 60 80 100
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1
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0.4
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0
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𝜋/3

0

−𝜋/3

Figure 4: Reconstructed moduli of all scatterers. In the phase
domain the values corresponding to vanishing moduli are sup-
pressed. Due to the symmetry of the sensing problem the phases are
only reconstructed up to a global phase.

Phase shift
2𝜋/3

𝜋/3

0

−𝜋/3

−3.14

3.14

Scatterer position

Scatterer positions

0 20 40 60 80 100

Figure 5: Adding a global phase (slider on the left) verifies that
all relative phases are reconstructed correctly. The open rectangles
mark the position of occupied lattice sites on the chain. In the
original objective this would refer to bilayers and substrate in the
nanowire.

Note that there is a combined translational and reflectional
symmetry mapping thevectorized real scattering amplitude
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Figure 6: Note that the ℓ
1
convergence (27) in the 𝑘th iteration step relates the linearized norm ⟨p | x

𝑘
⟩ ≤ ‖x

𝑘
‖
1
to ‖x
𝑘−1

‖
1
. Because of this

inequality (cf. (21)) there is no guarantee of a monotonically lowered ℓ
1
norm, which can be seen in the beginning (iteration step 2).
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Figure 7: The actual scatterers forming the 5 × 5 structure are made from real amplitudes 0.12, 0.28, and 0.56 whereas the two parasitic
scatterers are assigned with 0.23 and 0.42 (a). The scattering strength in the plane is represented by the area of the filled circles (b).

distribution onto itself (cf. Figure 7). As this is also a
symmetry of the squared observations (8) in the linear con-
figuration, there are two competing solutions to the sensing
problem. Interestingly, breaking this symmetry improved the
ℓ
1
convergence in Figure 8: without the parasitic scatterers

the symmetric positions of consecutive sites4 are correctly
(with respect to the support) found after 5000 iterations (cf.
Figure 9) and the remaining discrepancies in the amplitudes
do not even vanish completely after inefficient 50000 itera-
tions. On the contrary the random sample of 25 scatterers
from Figure 10 is already reconstructed with less than 1000

iterations suggesting a strong dependence of the algorithm’s
convergence from the vector under consideration.

5. Conclusion and Outlook

We aimed to implement nonlinear compressive sensing for
complex vectors x by inverting the underlying observation
model with Kalman filtering. For this reason we proved a
weak convergence of the filter equations for complex sens-
ing matrices 𝐶 and Hermitian covariances 𝑅, 𝑃, 𝑄. For the
example of quadratic nonlinearities we applied our formulas
to retrieve relative phase information in the objective of
simulated noiseless coherent X-ray diffraction. Due to the
nonlinearity the noise in the intensity is not Gaussian and
needs further considerations to also account for, for example,
lattice distortions or the finite coherence of the primary beam.
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Figure 8: The real amplitudes are nicely reconstructed (a) after 2000 iterations which can also be seen in the 2D setting (b) by comparing
with Figure 7.
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Figure 9: Without parasitic scatterers the positions are correctly found (b) after 5000 iterations and 𝛾
𝑘
= 1 − 0.17 ⋅ exp(−0.0012𝑘). The

remaining discrepancies in the amplitudes seem to be complementarily symmetric with respect to the central peak (a).
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Figure 10: A random distribution of 25 scatterers with real random amplitudes normalized in the ℓ
2
norm. The reconstruction is without

artefacts and discrepancies occurred after 1000 iterations with 𝛾
𝑘
= 1 − 0.17 ⋅ exp(−0.0058𝑘).

As an outlook we presented a 2D pattern reconstruction
which, hopefully, can help to investigate if the cross sections
of the wires were grown regularly.

Because of the Jacobians building up the sensing matrix
𝐶 the convergence of the underlying ℓ

1
norm minimization

does depend on the reconstructed vector x and may go
beyond the resolution issues [40] for even constant sensing
matrices. For this reason a thorough analysis on the relation
between maximal sparsity (for the examples here about
10% of the available lattice sites) and the Toeplitz matrix
(9) representing the sensing process for a successful CS
is needed. As mentioned in the introduction algorithms
in general minimizing the ℓ

1
norm could be of interest

retrieving information out from intensity spectra: to compare
our results we applied the nonlinear version [41] of the
primal dual algorithm [42] to the 1D sensing problem above
yielding similar results with respect to iteration numbers,
reconstructed amplitudes, and phases. On the one hand
primal dual reconstructed the zeros outside the support (once
a solution was isolated from the algorithm) numerically
exact compared to accuracies of orders 10−5 reached by the
Kalman filter. On the other hand our approach focused in
the first quarter of the iterations on guessing the support by
strongly increasing and decreasing the corresponding ampli-
tudes, whereas primal dual homogeneously acted on all the
amplitudes during all iterations. For a detailed comparison
and maybe a combination, the whole parameter range of
the approaches have to be investigated. To apply the Kalman
filter-based algorithm above to recorded data [17] we need to
deal with several 104 x-vector’s entries describing a sparsely
(by a factor of roughly 1 : 101) occupied linear grid covering
all the approximately 103 bilayers in a nanowire of 500 nm
in height. For this reason matrix inversions, cf. (34a), (34b),

and (34c), should be reformulated by, for example, sequential
processing techniques to make the algorithm more scalable.
Furthermore it would also be interesting if other adaptive
lowering factors 𝛾

𝑘
compared to the exponential ones yield

faster convergences.
As the reconstruction from quadratic constraints seems

to depend only little on the explicit algorithm used for the ℓ
1

minimization, it would be interesting to figure out to which
extent the linear matrix completion approach [22–24] with
respect to the nuclear norm can still be applied in the face of
seemingly too few numbers of independent observations.

Appendix

A. Vector Notations for Complex Numbers

Vectors over the field C consist of complex numbers 𝑧 = 𝑥 +

i𝑦 with 𝑥, 𝑦 ∈ R and i2 = −1. With a vector |k⟩ ∈ C𝑛 we
usually associate 𝑛 complex numbers V

1
, V
2
, . . . , V

𝑛
arranged

as a column. With the complex conjugate 𝑧 fl 𝑥 − i𝑦 row
vectors ⟨k| ∈ C𝑛 are considered to be dual to |k⟩ by

|k⟩ = (

V
1

.

.

.

V
𝑛

) ∈ C
𝑛
,

⟨k| fl (V
1
, . . . , V

𝑛
) ∈ C
𝑛
,

|k⟩ =
𝑛

∑

𝑘=1

V
𝑘

e𝑘⟩ ,

(|k⟩)𝑗 = V
𝑗
∈ C,

(A.1)
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where (|e
𝑗
⟩)
𝑘
= 𝛿
𝑗𝑘

denotes with 𝑗, 𝑘 = 1, . . . , 𝑛 the usual
standard basis. With the complex scalar product

⟨k | w⟩ =
𝑛

∑

𝑘=1

V
𝑘
𝑤
𝑘
, |k⟩ , |w⟩ ∈ C

𝑛 (A.2)

each vector |k⟩ ∈ C𝑛 can be represented in a unitary basis
{|q
1
⟩, . . . , |q

𝑛
⟩} ⊂ C𝑛 yielding the expansion

|k⟩ =
𝑛

∑

𝑘=1

q𝑘⟩ ⟨q𝑘 | k⟩ ,

⟨q
𝑗
| q
𝑘
⟩ = 𝛿
𝑗𝑘

with 𝑗, 𝑘 = 1, . . . , 𝑛.

(A.3)

With 𝐴 = (𝑎
𝑖𝑗
)
𝑖𝑗
∈ C𝑚×𝑛 we denote matrices with 𝑚

rows and 𝑛 columns consisting of the complex entries 𝑎
𝑖𝑗
=

(𝐴)
𝑖𝑗
. Let (𝐴𝐻)

𝑖𝑗
fl (𝐴)

𝑗𝑖
= 𝑎
𝑗𝑖
represent the Hermitian

conjugate; then we get from its column decomposition 𝐴𝐻 =
(|𝑎
1
⟩, . . . , |𝑎

𝑛
⟩) ∈ C𝑚×𝑛,

𝐴 = (

⟨𝑎
1



.

.

.

⟨𝑎
𝑛



) , ⟨𝑎
𝑗


=

𝑎
𝑗
⟩
𝐻

∈ C
𝑚
. (A.4)

Using such a row decomposition the matrix multiplication of
commensurable 𝐴 ∈ C𝑚×𝑛 and 𝐵 ∈ C𝑛×𝑝 can be viewed as
𝑚𝑝 single-scalar products yielding with 𝐵 = (|b

1
⟩, . . . , |b

𝑝
⟩)

𝐴𝐵 = 𝐶 = (𝑐
𝑖𝑘
)
𝑖𝑘
∈ C
𝑚×𝑝

,

𝑐
𝑖𝑘
=

𝑛

∑

ℓ=1

𝑎
𝑖ℓ
𝑏
ℓ𝑘
= ⟨a
𝑖
| b
𝑘
⟩

(A.5)

including products 𝐴|x⟩ ∈ C𝑚 for 𝐵 = |x⟩ ∈ C𝑛. Thus
with the identity 1

𝑛
= (𝛿
𝑖𝑗
)
𝑖𝑗
∈ C𝑛×𝑛 unitary matrices 𝑄 =

(|q
1
⟩, . . . , |q

𝑛
⟩) ∈ C𝑛×𝑛 consist of orthonormal (row and)

columns defined by the property

𝑄𝑄
𝐻
= 𝑄
𝐻
𝑄 = 1

𝑛
,

(𝑄
𝐻
𝑄)
𝑗𝑘
= ⟨q
𝑗
| q
𝑘
⟩ = 𝛿
𝑗𝑘
,

𝑄
𝐻
= 𝑄
−1
.

(A.6)

The possibility of multiplying matrices𝐴 = (𝑎
𝑖𝑗
)
𝑖𝑗
∈ C𝑚×𝑛

and 𝐵 = (𝑏
𝑟𝑠
)
𝑟𝑠
∈ C𝑝×𝑞 of arbitrary dimensions is covered by

the Kronecker product

𝐴 ⊗ 𝐵

=

(
(
(
(
(
(
(
(
(
(

(

𝑎
11
𝑏
11

⋅ ⋅ ⋅ 𝑎
11
𝑏
1𝑞

.

.

. d
.
.
.

𝑎
11
𝑏
𝑝1

⋅ ⋅ ⋅ 𝑎
11
𝑏
𝑝𝑞

⋅ ⋅ ⋅

𝑎
1𝑛
𝑏
11

⋅ ⋅ ⋅ 𝑎
1𝑛
𝑏
1𝑞

.

.

. d
.
.
.

𝑎
1𝑛
𝑏
𝑝1

⋅ ⋅ ⋅ 𝑎
1𝑛
𝑏
𝑝𝑞

.

.

. d
.
.
.

𝑎
𝑚1
𝑏
11

⋅ ⋅ ⋅ 𝑎
𝑚1
𝑏
1𝑞

.

.

. d
.
.
.

𝑎
𝑚1
𝑏
𝑝1

⋅ ⋅ ⋅ 𝑎
𝑚1
𝑏
𝑝𝑞

⋅ ⋅ ⋅

𝑎
𝑚𝑛
𝑏
11

⋅ ⋅ ⋅ 𝑎
𝑚𝑛
𝑏
1𝑞

.

.

. d
.
.
.

𝑎
𝑚𝑛
𝑏
𝑝1

⋅ ⋅ ⋅ 𝑎
𝑚𝑛
𝑏
𝑝𝑞

)
)
)
)
)
)
)
)
)
)

)

∈ C
(𝑚𝑝)×(𝑛𝑞)

(A.7)

reading in components (𝐴 ⊗ 𝐵)
(𝑖𝑟)(𝑗𝑠)

= 𝑎
𝑖𝑗
𝑏
𝑟𝑠
with multiple

row and column indices (𝑖𝑟) and (𝑗𝑠), respectively. For |x⟩ ∈
C𝑛, |y⟩ ∈ C𝑞, and 𝜆 ∈ C the Kronecker product meets

(𝜆𝐴 |x⟩) ⊗ (𝐵 y⟩) = (𝐴 |x⟩) ⊗ (𝜆𝐵 y⟩)

= 𝜆 (𝐴 ⊗ 𝐵) (|x⟩ ⊗ y⟩) .
(A.8)

Introducing the length of row or column vectors x ∈ C𝑛

can be accomplished with the ℓ
𝑝
norms ‖x‖

𝑝
defined for all

real 𝑝 > 0 by

‖x‖𝑝
𝑝
fl
𝑛

∑

𝑗=1


𝑥
𝑗



𝑝

,

‖x‖0 fl card {𝑗 | 𝑥
𝑗

̸= 0, 𝑗 = 1, . . . , 𝑛} .

(A.9)

Particularly ℓ
0
is no norm but can be viewed as the number

of nonzero entries. The corresponding matrix norms of 𝐴 ∈

C𝑚×𝑛 can be related to the vector norms according to

‖𝐴‖𝑝 fl sup
x∈C𝑛

‖𝐴x‖𝑝
‖x‖𝑝

= sup
‖x‖
𝑝
=1

‖𝐴x‖𝑝 . (A.10)

B. Hermitian Matrices

Hermitianmatrices𝑋,𝑌 ∈ C𝑛×𝑛 can be related by𝑋 > 𝑌 (𝑋 ≥

𝑌) if𝑋 − 𝑌 is positive (semi)definite which can be written as
𝑋 − 𝑌 > 0 (𝑋 − 𝑌 ≥ 0). In addition, there is Theorem B.1.

Theorem B.1 (see [43]). If 𝑋,𝑌 ∈ C𝑛×𝑛 are Hermitian with
𝑋 ≥ 𝑌 > 0, then 0 < 𝑋

−1
≤ 𝑌
−1.

Proof. 𝑌 = 𝑌
1/2
𝑌
1/2, cf. § 9.2.4 in [37]⇒ 1

𝑛
≤ 𝑌
−1/2

𝑋𝑌
−1/2,

has eigenvalues larger than 1 ⇒ 𝑌
1/2
𝑋
−1
𝑌
1/2 that has positive

eigenvalues lower than 1 ⇒ 0 < 𝑌
1/2
𝑋
−1
𝑌
1/2

≤ 1
𝑛
.

Thus all Hermitian matrices 𝑅,𝑋 ∈ C𝑛×𝑛 with 𝑅 positive
definite and𝑋 positive semidefinite satisfy the inequalities

𝑅 + 𝑋 ≥ 𝑅 > 0 ⇐⇒

0 < (𝑅 + 𝑋)
−1
≤ 𝑅
−1
.

(B.1)
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Endnotes

1. In solid state physics the reciprocal vectors q according
to (3) and (4) for 𝜅

𝑗
are said to be from the 1st Brillouin

zone which is a fragmentation of the elementary cell
spanned by {b

1
, . . . , b

𝑑
}.

2. However, in the hexagonal lattice there are three possible
lateral shifts yielding additional phase factors in (10)
for each layer. So carrying out the complete Fourier
transform of all bilayers yields a random sequence 𝑐

1
+

𝑐
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑀
with

𝑐
𝑗
∈ {1, exp(2𝜋i

3
(
2𝑟
1

𝑛
1

+
𝑟
2

𝑛
2

)) ,

exp(2𝜋i
3

(
𝑟
1

𝑛
1

+
2𝑟
2

𝑛
2

))} , 𝑗 = 1, . . . ,𝑀

(∗)

rather than the constant𝑀 in front of (10) and (11). In the
general case the q vectors corresponding to the bilayers
can be expressed by q = 𝜅

1
b
1
+ 𝜅
2
b
2
. Then the phase

factors (∗) read

𝑐
𝑗
∈ {1, exp(2𝜋i

3
(2𝜅
1
+ 𝜅
2
)) ,

exp (2𝜋i
3

(𝜅
1
+ 2𝜅
2
))} , 𝑗 = 1, . . . ,𝑀

(∗∗)

and their q dependence can be suppressed by choosing
wave vectors related to the Bragg condition by 𝜅

1
−

𝜅
2
= 3𝑁 with 𝑁, 𝜅

1
, 𝜅
2
∈ Z. One could be misled

that this selects a certain amount of data points on the
grid spanned by {b

1
, b
2
} allowing for CS techniques.

Switching to the discrete version this reduces to one
corner of the 1st Brillouin zone, that is, to the case of one
single data point 𝑟

1
= 𝑟
2
= 0 which is in fact too little for

CS.
3. A completely factorized version of (26) reads for𝑚 < 𝑛

𝑅 ⋅ [𝑅 + 𝐶
𝑘+1

(𝑃
𝑘
+ 𝑄)𝐶

𝐻

𝑘+1
]
−1

= (𝐶
𝑘+1

(𝑃
𝑘
+ 𝑄)𝐶

𝐻

𝑘+1
𝑅
−1
)
−1

⋅ (𝐶
𝑘+1

𝑃
𝑘+1

𝐶
𝐻

𝑘+1
𝑅
−1
) .

(∗ ∗ ∗)

4. At least in linear CS with a constant sensing matrix the
resolution of consecutive frequency bins is also to be
considered in discrete Fourier transform (cf. [40] and
the references therein).
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