8 research outputs found

    Multilingual projection for parsing truly low resource languages

    Get PDF
    International audienceWe propose a novel approach to cross-lingual part-of-speech tagging and dependency parsing for truly low-resource languages. Our annotation projection-based approach yields tagging and parsing models for over 100 languages. All that is needed are freely available parallel texts, and taggers and parsers for resource-rich languages. The empirical evaluation across 30 test languages shows that our method consistently provides top-level accuracies , close to established upper bounds, and outperforms several competitive baselines

    Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing

    Get PDF
    Linguistic typology aims to capture structural and semantic variation across the world's languages. A large-scale typology could provide excellent guidance for multilingual Natural Language Processing (NLP), particularly for languages that suffer from the lack of human labeled resources. We present an extensive literature survey on the use of typological information in the development of NLP techniques. Our survey demonstrates that to date, the use of information in existing typological databases has resulted in consistent but modest improvements in system performance. We show that this is due to both intrinsic limitations of databases (in terms of coverage and feature granularity) and under-employment of the typological features included in them. We advocate for a new approach that adapts the broad and discrete nature of typological categories to the contextual and continuous nature of machine learning algorithms used in contemporary NLP. In particular, we suggest that such approach could be facilitated by recent developments in data-driven induction of typological knowledge

    KLcpos3 - a Language Similarity Measure for Delexicalized Parser Transfer

    No full text
    We present KLcpos3, a language similarity measure based on Kullback-Leibler divergence of coarse part-of-speech tag trigram distributions in tagged corpora. It has been designed for multilingual delexicalized parsing, both for source treebank selection in single-source parser transfer, and for source treebank weighting in multi-source transfer. In the selection task, KLcpos3 identifies the best source treebank in 8 out of 18 cases. In the weighting task, it brings +4.5% UAS absolute, compared to unweighted parse tree combination

    Supervised Training on Synthetic Languages: A Novel Framework for Unsupervised Parsing

    Get PDF
    This thesis focuses on unsupervised dependency parsing—parsing sentences of a language into dependency trees without accessing the training data of that language. Different from most prior work that uses unsupervised learning to estimate the parsing parameters, we estimate the parameters by supervised training on synthetic languages. Our parsing framework has three major components: Synthetic language generation gives a rich set of training languages by mix-and-match over the real languages; surface-form feature extraction maps an unparsed corpus of a language into a fixed-length vector as the syntactic signature of that language; and, finally, language-agnostic parsing incorporates the syntactic signature during parsing so that the decision on each word token is reliant upon the general syntax of the target language. The fundamental question we are trying to answer is whether some useful information about the syntax of a language could be inferred from its surface-form evidence (unparsed corpus). This is the same question that has been implicitly asked by previous papers on unsupervised parsing, which only assumes an unparsed corpus to be available for the target language. We show that, indeed, useful features of the target language can be extracted automatically from an unparsed corpus, which consists only of gold part-of-speech (POS) sequences. Providing these features to our neural parser enables it to parse sequences like those in the corpus. Strikingly, our system has no supervision in the target language. Rather, it is a multilingual system that is trained end-to-end on a variety of other languages, so it learns a feature extractor that works well. This thesis contains several large-scale experiments requiring hundreds of thousands of CPU-hours. To our knowledge, this is the largest study of unsupervised parsing yet attempted. We show experimentally across multiple languages: (1) Features computed from the unparsed corpus improve parsing accuracy. (2) Including thousands of synthetic languages in the training yields further improvement. (3) Despite being computed from unparsed corpora, our learned task-specific features beat previous works’ interpretable typological features that require parsed corpora or expert categorization of the language
    corecore