11 research outputs found

    An in-vitro assessment of myocardial ischaemia

    Get PDF
    Ischaemic heart disease is the most common causes of death in the United Kingdom. In addition to the mortality associated with this disease there are the human and economic costs associated with chronic illness. Many strategies for the treatment and prevention of heart disease are in use and under investigation. The consequences of myocardial infarction have been well described but the causes and mechanisms underlying the disease and its sequeli remain largely unknown. In order to investigate the mechanisms of ischaemic injury and the interventions that might lead to new or improved therapeutic strategies a number of model systems have been devised. The work described in this thesis concerns the construction and validation of a new model system. In order to investigate the mechanisms of ischaemic injury at the cellular level a model has been constructed based on the adult cardiac myocyte in culture. In the first series of experiments described in this thesis the characteristics of adult cardiomyocytes in culture were investigated and a model of ischaemia / reperfusion injury was devised. The model was tested to determine the effects of the individual components of the ischaemic milieu, in living tissues, on cells in culture. Combinations of these components that would cause reproducible lethal and sub-lethal stimuli analogous to those observed in other models and in living tissues were also investigated. It was also determined that cells in culture retained the responses to injury found in the in-vivo heart and that these responses could be modified by similar interventions. The second series of experiments described in this study dealt with the potential for gene-transfer to myocardial cells as a strategy for modifying the response of these cells to ischaemic injury. This work was divided into three parts. The first was concerned with finding the optimal gene delivery vehicle for use in cells in culture that would also have utility in other model systems such as the in-vitro or in-vivo heart. In this section of the work, both viral and non-viral gene delivery systems were investigated. The second part of the work involved an assessment of the modification of response to injury of gene transfer techniques per se. The final part of the work was to have looked at the action of the transfer of specific genes on the response to ischaemic injury in the in-vitro model

    Construction of recombinant adenoviruses encoding skeletal troponin C protein and expression analyses in transduced cardiac myocytes

    Get PDF
    Troponin C is a regulatory protein of the myofilament which binds to calcium to trigger the process of contraction. This protein exists in two isoforms, skeletal and cardiac, which are spatially and temporally regulated. Work in this project builds the primary stage of a long-term project, for using the gene transfer method to overexpress the skeletal isoform of Troponin C in cardiomyocytes. The long-term aim is to achieve complete or partial substitution of the native cardiac isoform and study the effects on contractile force produced, in normal and ischemic cardiomyocytes, both in vitro and in vivo. This project has involved designing, constructing and analyzing expression of adenoviral gene transfer vectors overexpressing the sTnC isoform. Several adenoviral vectors were generated with the wild type sTnC gene under the control of muscle-specific promoters. To facilitate analysis of protein expression and its subcellular localization, the sTnC protein was tagged with epitope tags and adenovirus generated, with this gene under the control of constitutive (CMV) and cardiac-specific (HCA) promoters. Epitope-tagged adenoviruses were expressed in vitro using mouse fibroblast (NIH3T3) cells and analyzed by western blot analysis, showing successful constitutive expression. Recombinant adenoviruses containing epitope-tagged-sTnC under the control of the human cardiac actin promoter showed cardiac-specific expression in cultured cardiomyocytes, in situ, using immunocytochemistry. The constitutively-expressing sTnC adenoviral vector showed successful expression in cardiomyocytes in culture, using northern blot analysis. A range of adenoviral vectors have been successfully generated, and constitutive and tissue-specific expression has been established for some of these vectors. Successes attained in this project have established the initial requirements to achieve the long-term goal to alter calcium sensitivity of myofilaments, by overexpression of sTnC isoform in cardiomyocytes, both in vitro and in vivo

    KLONER; a computer program to simulate recombinant DNA strategies by restriction map manipulation.

    No full text
    A computer program is described which allows for the manipulation of restriction maps of various DNA fragments to demonstrate techniques used in DNA cloning and to predict and/or confirm experimental results. This program is capable of reading in restriction enzyme cleavage sites for several different DNA molecules of interest. This information is then compiled in order to form restriction maps which can then be processed by digestion with restriction endonucleases and treatment with other common DNA modifying enzymes. Ligation can then be simulated by joining fragments with complementary ends in all possible orientations, producing restriction maps of the products. The resulting recombinants can then be further analyzed by physical mapping with appropriate restriction endonucleases. This program was written in Pascal on an Apple II computer

    Brain Injury

    Get PDF
    The present two volume book "Brain Injury" is distinctive in its presentation and includes a wealth of updated information on many aspects in the field of brain injury. The Book is devoted to the pathogenesis of brain injury, concepts in cerebral blood flow and metabolism, investigative approaches and monitoring of brain injured, different protective mechanisms and recovery and management approach to these individuals, functional and endocrine aspects of brain injuries, approaches to rehabilitation of brain injured and preventive aspects of traumatic brain injuries. The collective contribution from experts in brain injury research area would be successfully conveyed to the readers and readers will find this book to be a valuable guide to further develop their understanding about brain injury

    Novel Strategies in Ischemic Heart Disease

    Get PDF
    The first edition of this book will provide a comprehensive overview of ischemic heart disease, including epidemiology, risk factors, pathogenesis, clinical presentation, diagnostic tests, differential diagnosis, treatment, complications and prognosis. Also discussed are current treatment options, protocols and diagnostic procedures, as well as the latest advances in the field. The book will serve as a cutting-edge point of reference for the basic or clinical researcher, and any clinician involved in the diagnosis and management of ischemic heart disease. This book is essentially designed to fill the vital gap existing between these practices, to provide a textbook that is substantial and readable, compact and reasonably comprehensive, and to provide an excellent blend of "basics to bedside and beyond" in the field of ischemic heart disease. The book also covers the future novel treatment strategies, focusing on the basic scientific and clinical aspects of the diagnosis and management of ischemic heart disease

    Development Of A Novel Cardiac Ischemia-Reperfusion Model In The Axolotl

    Get PDF
    The Center for Disease Control’s National Center for Health Statistics data for mortality from diseases of the heart show the age-adjusted death rate has fallen from almost 600 deaths in the 1950s to just over 190 deaths per 100,000 U.S. residents today. With the recognized limitations of pharmacotherapy of myocardial infarction (MI), cell-based therapies have been undergoing rapid development and clinical testing. However, there is still no consensus about cell types, delivery routes, dosing and treatment schedules and pretreatment conditioning of cells prior to administration. Furthermore, a fundamental question remains unanswered about the reasons for the poor capacity for myocardial tissue regeneration in humans (mammals in general) as compared to robust myocardial regeneration in lower vertebrates (i.e., axolotl [Ambystoma mexicanum] and zebrafish [Danio rerio]). This lack in understanding the mechanisms behind the cell-cycle of cardiomyocytes and or cardiac progenitor cells, both during times of normal homeostasis and after pathologic insults, is central to the lack of progress in stimulating the regeneration of cardiac tissue. To understand the differences in cardiac tissue response after an MI, developing a true model of ischemia-reperfusion injury in an animal known for epimorphic regeneration in the adult life stage will help reframe the direction of research in the field of tissue engineering and regenerative medicine in the field of cardiology. To understand how the axolotl will respond to an MI, this research focuses on two Specific Aims: Specific Aim 1: Develop a cardiac injury model in the axolotl that mimics the pathophysiology of a myocardial infarction in the mammalian heart. Cardiac injury models used to study heart regeneration in lower vertebrates known for robust healing responses have used novel approaches to induce major cardiomyocyte death. However, these novel injury models do not recapitulate the cellular signaling mechanisms present during ischemia and ischemia-reperfusion injuries. Thus, to study the epimorphic regeneration of heart tissue in axolotls, a novel model of inducing ischemia needs to be developed. Specific Aim 2: Determine the spatiotemporal progression of axolotl cardiac tissue histopathology over time. Once a novel cardiac injury model produces the expected pathophysiological tissue response, chronic follow-up of surviving animals will help develop the spatiotemporal response to an MI. Data on functional recovery will require the development of regular, non-invasive techniques for monitoring heart function. After long-term recovery, appropriate harvesting of heart samples for histologic study is required to determine if the axolotl can completely regenerate cardiac injuries after an MI

    Dynamic hypoxic pre-conditioning of cells seeded in tissue-engineered scaffold to improve neovascularisation

    Get PDF
    Introduction: Tissue engineering (TE) is the potential solution to the global shortage of tissue and organs. However, the lack of adequate angiogenesis to TE scaffolds during the initial stages of implantation has hindered its success in vivo. Mesenchymal stem cells (MSC) have the most established track record for translational regenerative therapy and have been widely used in combination with TE scaffolds. Hypoxia is one of the main potentiators for upregulating angiogenic factors in MSC. However, fine-tuning their cellular function and behaviour is still not fully understood. This study aims to help increase the understanding of this process by determining the effects of in vitro hypoxic conditioning on enhancement of angiogenesis of MSC for the purpose of pre-clinical translational for TE application. Methods: The angiogenic potential of 3 different tissue sources (bone marrow, umbilical cord and adipose) MSC were initially determined for downstream pre-clinical application. We established the appropriate regime for in vitro dynamic hypoxia conditions in 2D and 3D hydrogel to enhance MSC angiogenic pathway using real-time continuous oxygen sensors and angiogenic cytokine profiling. Cell metabolism and proliferation effects were also evaluated using intravital Realtime-glo, D-luciferin (on transduced MSC) and microscopic Live-Dead stain techniques. We optimised seeding of cells on the tissue engineered dermal (INTEGRA®) for in vivo translational purpose and used targeted in vitro and ex vivo angiogenesis assays, which helped to determine aspects of the MSC conditioned media on endothelial migration, proliferation, morphogenesis and matrix degradation. Finally, the functional reproducibility of the in vitro angiogenic response was assessed using in vivo angiogenesis CAM assay and murine diabetic wound healing models. Results: Adipose derived MSC (adMSC) were found to have the most angiogenic potential in response to hypoxic conditioning. Dynamic hypoxia (DH) regime of changing oxygen levels from 21% to 1% when transitioning from T-flask subculture to multiwell plate seeding was most effective at eliciting pro-angiogenic response from adMSC for both in vitro 2D and 3D models compared to controls using static normoxia (21% oxygen) and static hypoxia (1%). Low seeding density of adMSC was found to be the most appropriate to ensure optimised cell adherence and survival post-seeding on TE dermal scaffold (INTEGRA®). It also minimised on localised hypoxic gradient induced oxidative stress by the seeded cells when compared to high seeding density techniques found on non-invasive oxygen monitoring. Conditioned media from DH seeded adMSC was shown to have enhanced angiogenic proteomic profile compared to the controls. In vitro angiogenesis assays showed better human endothelial cell migration and morphogenesis in scratch assay and tubular formation assay compared to controls. Preliminary ex vivo organ assay results using novel human umbilical arterial rings showed better endothelial out-sprouting and migration through embedded matrix compared to controls. Results from in vivo transplantation of adMSC seeded INTEGRA® scaffold showed a mixed response in the CAM assay, highlighting an unaccounted scaffold effect from INTEGRA® from the host. Histological sections showed increased vascular and host tissue infiltration into the scaffold. When evaluating the functional angiogenesis in murine wound healing models, although DH adMSC seeded scaffolds showed non-statistically significant increased rate of wound closure, there was significantly greater vessel density within the scaffold on histological evaluation in this group compared to controls. Conclusion: The results provide a better comprehension of how cells behave in 2D and 3D environments when cultured in dynamically changing oxygen environments. The study addresses important issues, such as the effects of chronic hypoxia on MSC, and how dynamic hypoxia can enhance angiogenic signalling. It also offers a crucial understanding of the in vitro oxygen culture environments for future research applications. Further insight into cell-scaffold interaction during in vivo transplantation was also established. The importance of having an appropriate in vivo model to determine if such in vitro angiogenic enhancement would translate to functionally improving neoangiogenesis and subsequent tissue regeneration in vivo was also highlighted in this study. Improving and advancing research into optimising and evaluating the in vitro environment for clinical application will undoubtedly have a huge impact on the future of cell therapy for regenerative medicine purposes

    Creatine Supplementation for Health and Clinical Diseases

    Get PDF
    Creatine plays a critical role in cellular metabolism, primarily by binding with phosphate to form phosphocreatine (PCr) as well as shuttling high-energy phosphate compounds in and out of the mitochondria for metabolism. Increasing the dietary availability of creatine increases the tissue and cellular availability of PCr, and thereby enhances the ability to maintain high-energy states during intense exercise. For this reason, creatine monohydrate has been extensively studied as an ergogenic aid for exercise, training, and sport. Limitations in the ability to synthesize creatine and transport and/or store dietary creatine can impair metabolism and is a contributor to several disease states. Additionally, creatine provides an important source of energy during metabolically stressed states, particularly when oxygen availability is limited. Thus, researchers have assessed the role of creatine supplementation on health throughout the lifespan, as well as whether creatine availability may improve disease management and/or therapeutic outcomes. This book provides a comprehensive overview of scientific and medical evidence related to creatine's role in metabolism, health throughout the lifespan, and our current understanding of how creatine can promote brain, heart, vascular and immune health; reduce the severity of musculoskeletal and brain injury; and may provide therapeutic benefits in glucose management and diabetes, cancer therapy, inflammatory bowel disease, and post-viral fatigue
    corecore