13,426 research outputs found
Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids
Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis–Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions
Genome-inspired molecular identification in organic matter via Raman spectroscopy
Rapid, non-destructive characterization of molecular level chemistry for
organic matter (OM) is experimentally challenging. Raman spectroscopy is one of
the most widely used techniques for non-destructive chemical characterization,
although it currently does not provide detailed identification of molecular
components in OM, due to the combination of diffraction-limited spatial
resolution and poor applicability of peak-fitting algorithms. Here, we develop
a genome-inspired collective molecular structure fingerprinting approach, which
utilizes ab initio calculations and data mining techniques to extract molecular
level chemistry from the Raman spectra of OM. We illustrate the power of such
an approach by identifying representative molecular fingerprints in OM, for
which the molecular chemistry is to date inaccessible using non-destructive
characterization techniques. Chemical properties such as aromatic cluster size
distribution and H/C ratio can now be quantified directly using the identified
molecular fingerprints. Our approach will enable non-destructive identification
of chemical signatures with their correlation to the preservation of
biosignatures in OM, accurate detection and quantification of environmental
contamination, as well as objective assessment of OM with respect to their
chemical contents
The Oil Shale Transformation in the Presence of an Acidic BEA Zeolite under Microwave Irradiation
The transformation of an oil shale sample from the Autun Basin in the Massif Central, France, was studied using two different heating strategies: microwave irradiation and conventional heating. Microwave heating was performed using a single-mode cavity operating at a frequency of 2.45 GHz under an inert atmosphere. Heating of the sample generated liquid products of similar composition using either microwave or conventional heating. The yields of liquid products were similar in the two cases, while the overall energy requirements were much lower using microwave irradiation. The influence of water vapor on the oil shale decomposition was also studied under microwave energy. In order to simulate conversion of the organic fraction of the oil shale in the presence of an acidic zeolite catalyst, the oil shale sample was mixed with 5 wt % BEA zeolite and heated under microwave irradiation. It was found that the liquid products yield decreased along with an increase in the amount of coke produced. Gaseous and liquid products recovered showed a tendency for the production of lighter components in the presence of zeolite. The aromatic character of the oils was more important when microwaves were used, especially in the presence of zeolite
Recommended from our members
Is UV laser ablation a suitable tool for geochemical analysis of organic rich source materials?
Abstract not available
Recommended from our members
A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS.
Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials. SRXTM data of these shales were acquired under similar conditions at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory, USA, the Advanced Photon Source (APS) of Argonne National Laboratory, USA, and the Swiss Light Source (SLS) of the Paul Scherrer Institut, Switzerland. The data reconstruction of all datasets was handled under the same procedures in order to compare the data quality and determine phase proportions and microstructures. With a 10× objective lens the spatial resolution is approximately 2 µm. The sharpness of phase boundaries in the reconstructed data collected from the APS and SLS was comparable and slightly more refined than in the data obtained from the ALS. Important internal features, such as pyrite (high-absorbing), and low-density features, including pores, fractures and organic matter or kerogen (low-absorbing), were adequately segmented on the same basis. The average volume fractions of low-density features for sample N1 and B1 were estimated at 6.3 (6)% and 4.5 (4)%, while those of pyrite were calculated to be 5.6 (6)% and 2.0 (3)%, respectively. The discrepancy of data quality and volume fractions were mainly due to different types of optical instruments and varying technical set-ups at the ALS, APS and SLS
Potential Unconventional Gas Plays in Mature Basin of the Czech Republic
The presence of unconventional resources has been proven in deeper parts of mature oil and gas provinces and coal basins of the world. In this context, it is worth to focus also on the prospects of unconventional gas production from within hydrocarbon provinces of the Moravian part of the Vienna basin. The estimation of hydrocarbon generation potential of Jurasic marls from the Mikulov Formation of the Czech part of the Vienna Basin was performed based on the Rock Eval pyrolysis
Recommended from our members
Report of Investigations No. 123 Petroleum Potential of the Palo Duro Basin, Texas Panhandle
UT Librarie
- …
