957 research outputs found

    HH-product and HH-threshold graphs

    Full text link
    This paper is the continuation of the research of the author and his colleagues of the {\it canonical} decomposition of graphs. The idea of the canonical decomposition is to define the binary operation on the set of graphs and to represent the graph under study as a product of prime elements with respect to this operation. We consider the graph together with the arbitrary partition of its vertex set into nn subsets (nn-partitioned graph). On the set of nn-partitioned graphs distinguished up to isomorphism we consider the binary algebraic operation H\circ_H (HH-product of graphs), determined by the digraph HH. It is proved, that every operation H\circ_H defines the unique factorization as a product of prime factors. We define HH-threshold graphs as graphs, which could be represented as the product H\circ_{H} of one-vertex factors, and the threshold-width of the graph GG as the minimum size of HH such, that GG is HH-threshold. HH-threshold graphs generalize the classes of threshold graphs and difference graphs and extend their properties. We show, that the threshold-width is defined for all graphs, and give the characterization of graphs with fixed threshold-width. We study in detail the graphs with threshold-widths 1 and 2

    Hadwiger Number and the Cartesian Product Of Graphs

    Full text link
    The Hadwiger number mr(G) of a graph G is the largest integer n for which the complete graph K_n on n vertices is a minor of G. Hadwiger conjectured that for every graph G, mr(G) >= chi(G), where chi(G) is the chromatic number of G. In this paper, we study the Hadwiger number of the Cartesian product G [] H of graphs. As the main result of this paper, we prove that mr(G_1 [] G_2) >= h\sqrt{l}(1 - o(1)) for any two graphs G_1 and G_2 with mr(G_1) = h and mr(G_2) = l. We show that the above lower bound is asymptotically best possible. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let the (unique) prime factorization of G be given by G_1 [] G_2 [] ... [] G_k. Then G satisfies Hadwiger's conjecture if k >= 2.log(log(chi(G))) + c', where c' is a constant. This improves the 2.log(chi(G))+3 bound of Chandran and Sivadasan. 2. Let G_1 and G_2 be two graphs such that chi(G_1) >= chi(G_2) >= c.log^{1.5}(chi(G_1)), where c is a constant. Then G_1 [] G_2 satisfies Hadwiger's conjecture. 3. Hadwiger's conjecture is true for G^d (Cartesian product of G taken d times) for every graph G and every d >= 2. This settles a question by Chandran and Sivadasan (They had shown that the Hadiwger's conjecture is true for G^d if d >= 3.)Comment: 10 pages, 2 figures, major update: lower and upper bound proofs have been revised. The bounds are now asymptotically tigh

    Star-factorization of symmetric complete bipartite multi-digraphs

    Get PDF
    AbstractWe show that a necessary and sufficient condition for the existence of an Sk-factorization of the symmetric complete bipartite multi-digraph λKm,n∗ is m=n≡0(modk(k−1)/d), where d=(λ,k−1)

    Proper Colorings and p-Partite Structures of the Zero Divisor Graph

    Get PDF
    Let Γ(Zm) be the zero divisor graph of the ring Zm. In this paper we explore the p-partite structures of Γ(Zm), as well as determine a complete classification of the chromatic number of Γ(Zm). In particular, we explore how these concepts are related to the prime factorization of m
    corecore