863 research outputs found

    A Hermite interpolatory subdivision scheme for C2C^2-quintics on the Powell-Sabin 12-split

    Get PDF
    In order to construct a C1C^1-quadratic spline over an arbitrary triangulation, one can split each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell-Sabin 12-split. It has been shown previously that the corresponding spline surface can be plotted quickly by means of a Hermite subdivision scheme. In this paper we introduce a nodal macro-element on the 12-split for the space of quintic splines that are locally C3C^3 and globally C2C^2. For quickly evaluating any such spline, a Hermite subdivision scheme is derived, implemented, and tested in the computer algebra system Sage. Using the available first derivatives for Phong shading, visually appealing plots can be generated after just a couple of refinements.Comment: 17 pages, 7 figure

    Recent Results on Near-Best Spline Quasi-Interpolants

    Full text link
    Roughly speaking, a near-best (abbr. NB) quasi-interpolant (abbr. QI) is an approximation operator of the form Qaf=αAΛα(f)BαQ_af=\sum_{\alpha\in A} \Lambda_\alpha (f) B_\alpha where the BαB_\alpha's are B-splines and the Λα(f)\Lambda_\alpha (f)'s are linear discrete or integral forms acting on the given function ff. These forms depend on a finite number of coefficients which are the components of vectors aαa_\alpha for αA\alpha\in A. The index aa refers to this sequence of vectors. In order that Qap=pQ_a p=p for all polynomials pp belonging to some subspace included in the space of splines generated by the BαB_\alpha's, each vector aαa_\alpha must lie in an affine subspace VαV_\alpha, i.e. satisfy some linear constraints. However there remain some degrees of freedom which are used to minimize aα1\Vert a_\alpha \Vert_1 for each αA\alpha\in A. It is easy to prove that max{aα1;αA}\max \{\Vert a_\alpha \Vert_1 ; \alpha\in A\} is an upper bound of Qa\Vert Q_a \Vert_{\infty}: thus, instead of minimizing the infinite norm of QaQ_a, which is a difficult problem, we minimize an upper bound of this norm, which is much easier to do. Moreover, the latter problem has always at least one solution, which is associated with a NB QI. In the first part of the paper, we give a survey on NB univariate or bivariate spline QIs defined on uniform or non-uniform partitions and already studied by the author and coworkers. In the second part, we give some new results, mainly on univariate and bivariate integral QIs on {\sl non-uniform} partitions: in that case, NB QIs are more difficult to characterize and the optimal properties strongly depend on the geometry of the partition. Therefore we have restricted our study to QIs having interesting shape properties and/or infinite norms uniformly bounded independently of the partition

    Near-best C2C^2 quartic spline quasi-interpolants on type-6 tetrahedral partitions of bounded domains

    Full text link
    In this paper, we present new quasi-interpolating spline schemes defined on 3D bounded domains, based on trivariate C2C^2 quartic box splines on type-6 tetrahedral partitions and with approximation order four. Such methods can be used for the reconstruction of gridded volume data. More precisely, we propose near-best quasi-interpolants, i.e. with coefficient functionals obtained by imposing the exactness of the quasi-interpolants on the space of polynomials of total degree three and minimizing an upper bound for their infinity norm. In case of bounded domains the main problem consists in the construction of the coefficient functionals associated with boundary generators (i.e. generators with supports not completely inside the domain), so that the functionals involve data points inside or on the boundary of the domain. We give norm and error estimates and we present some numerical tests, illustrating the approximation properties of the proposed quasi-interpolants, and comparisons with other known spline methods. Some applications with real world volume data are also provided.Comment: In the new version of the paper, we have done some minor revisions with respect to the previous version, CALCOLO, Published online: 10 October 201

    Recent progress on univariate and multivariate polynomial and spline quasi-interpolants

    No full text
    Polynomial and spline quasi-interpolants (QIs) are practical and effective approximation operators. Among their remarkable properties, let us cite for example: good shape properties, easy computation and evaluation (no linear system to solve), uniform boundedness independently of the degree (polynomials) or of the partition (splines), good approximation order. We shall emphasize new results on various types of univariate and multivariate polynomial or spline QIs, depending on the nature of coefficient functionals, which can be differential, discrete or integral. We shall also present some applications of QIs to numerical methods
    corecore